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Abstract

We present a new strategy for calibration and validation of hierarchical multiscale models
based on computational homogenization. The proposed strategy hinges on the concept of the
experimental simulator repository (SIMEX) which provides the basis for a generic algorithmic
framework in calibration and validation of multiscale models. Gradient-based and genetic algo-
rithms are incorporated into SIMEX framework to investigate the validity of these algorithms
in multiscale model calibration. The strategy is implemented using the eigendeformation-based
reduced order homogenization (EHM) model and integrated into a commercial finite element
package (Abaqus). Ceramic- and polymer- matrix composite problems are analyzed to study
the capabilities of the proposed calibration and validation framework.

1 Introduction

This paper is concerned with the development of calibration and validation procedures for
hierarchical multiscale models. We particularly concentrate on validation of eigendeformation-
based reduced order computational homogenization method (EHM) developed by the authors
in [1]. EHM has its roots in mathematical homogenization theory with eigenstrains [2, 3, 4]
and transformation field analysis [5, 6, 7], but extends these methods to incorporate interface
failure and model adaptivity.

We adopt the definition of validation introduced by Babuska and Oden [8] as “the process
of determination whether a mathematical model of a physical event represent physical events
with sufficient accuracy”. Hierarchical multiscale models based on mathematical homogeniza-
tion are the mathematical model space of interest, and the physical event is defined as the
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failure of heterogeneous systems subjected to mechanical or thermal loads. The relative accu-
racy is considered to be the discrepancy between the experimental observations of a certain
quantity of interest (such as the uniaxial stress-strain response in case of a uniaxial tension
test) and the predictions of a calibrated multiscale model. Calibration process is defined as the
estimation of material parameters by minimizing the discrepancy between numerical simula-
tions and calibration experiments which are separate and independent of the experiments used
for validation purposes. One primary objective of this manuscript is to formulate a strategy
for calibration of hierarchical multiscale models with particular emphasis on the EHM model.
Multiscale model calibration present distinct challenges compared to that of phenomenological
models. Calibration of phenomenological models is a relatively straightforward task: typically,
experimental techniques are tailored to estimate a single (or a small set of) phenomenological
parameter defined at the macroscopic scale. In contrast, material parameters associated with
multiscale models are defined at fine scales, often orders of magnitude smaller than the scale
at which experiments are conducted. For some heterogeneous systems, calibration based on
virgin properties of microconstituents were shown to be satisfactory [9]. On many others,
virgin properties may differ significantly from in-situ properties [10]. When virgin and in-situ
properties markedly differ from each other, calibrations must be conducted simultaneously for
all (or large sets of) microconstituent material parameters that affect predictions at the coarse
scale.

The traditional paradigm for evaluation of best material parameter set is gradient-based
optimization. This approach typically converges quadratically when the following criteria is
satisfied: (a) close proximity of the initial guess to the global minimum; (b) smoothness of the
objective function for computability; and (c) convexity. While criteria (b) and (c) are typically
satisfied for PDE-based optimization problems to satisfy existence and uniqueness properties
of the forward problem, the failure of criterion (a) generally leads to premature convergence
to local minima. This problem is alleviated by invoking the gradient-based algorithms from
multiple randomly chosen initial guesses and selecting the smallest of the computed optimal
minima. Genetic type evolutionary algorithms present an alternative paradigm for the evalu-
ation of globally optimal material parameter set. While the fundamental ideas are based on
evolutionary biology, such algorithms were shown to be effective in evaluating various opti-
mization problems in science, engineering and information technology [11, 12].

In this manuscript, we present a new strategy for calibration of hierarchical multiscale mod-
els. In the proposed approach, the concept of an experiment simulator (SIMEX) repository is
devised, which is a collection of program modules tasked to simulate a particular experimental
setup. SIMEX based validation strategy proposed here has the following characteristics:

1. The experiment simulator repository is fully extensible: incorporation of additional ex-
perimental setups is trivial;

2. The algorithm is implemented around a commercial finite element software; and,

3. It allows for calibration of an arbitrary subset of the material parameters pertinent to
the model based on an arbitrary subset of the available experimental results.

The calibration of the multiscale models were conducted using gradient-based and evolution-
ary (i.e., genetic) optimization algorithms with the objectives of improving the reliability of
the calibrated material parameters, and assessing the validity of these algorithms in evaluat-
ing the optimal set of material parameters. The optimizations are focused on exploring the
parameter space associated with the microstructural constituents of heterogeneous materials.
The proposed calibration and validation strategy is implemented for the EHM method. The
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capabilities of the strategy are demonstrated by the analysis of ceramic- and polymer-matrix
composite systems.

This manuscript is organized as follows: In Section 2, we review the governing equations
for the eigendeformation-based reduced order homogenization method in the context of rate-
independent and rate-dependent damage mechanics, and discuss the model reduction method-
ology. In Section 3, the calibration strategy for the reduced order models is proposed. The
implementation of the proposed calibration and validation strategies are discussed in detail
and a general computer code structure for calibration and validation of multiscale models are
described. Chapter 4 presents calibration and validation examples on ceramic and polymer
matrix composites. We conclude with a summary and discussion of the future work.

2 Eigendeformation-Based Homogenization

Consider a macroscopic domain, Ω, with a locally periodic heterogeneous microstructure of
arbitrary complexity. Domain of the microstructure, Θ, is composed of one (or more) rein-
forcing inclusion phase in addition to the surrounding matrix (Fig. 1). The interfaces between
the microstructural phases are denoted by S. The ratio between the characteristic lengths of
the microstructure and macrostructure is assumed to be small.

When subjected to mechanical loads, the heterogeneous body undergoes inelastic defor-
mations and damage in the form of microcrack formation, growth and coalescence in addition
to debonding along the interfaces. In this manuscript this problem is evaluated by employing
the eigendeformation based reduced order homogenization method. The failure of the het-
erogeneous body is modeled by considering damage within the microconstituents and along
the interfaces. Continuous damage mechanics models are employed to represent the state of
damage at each phase in addition to the interfaces. The governing equations of the macro-
scopic boundary value problem associated with the heterogeneous domain are obtained using
the eigendeformation-based reduced order homogenization methodology [1]. The momentum
balance equation is given by

∇ · σ̄ + b̄ = ρ̄ü (1)

in which, σ̄ (x, t) is the macroscopic stress tensor; u (x, t) the macroscopic displacement field;
b̄ (x, t) the body force; and, ρ̄ (x, t) the macroscopic density. Superposed single and double dot
correspond to first and second order material time derivatives, respectively; overbar denotes
average over the microstructural domain, Θ; x ∈ Ω the position vector in the macroscopic
domain; and, t ∈ [0, t0] the time coordinate. Macroscopic strain tensor, ε̄ (x, t), is expressed in
terms of macroscopic displacement field based on the assumption of small deformations (for
extension to large deformation we refer to [1])

ε̄ = ∇su (2)

where ∇s is the symmetric gradient operator. Initial and boundary conditions are

u = û; t = 0 (3)
u̇ = v̂; t = 0 (4)
u = ū; x ∈ Γu (5)

n · σ̄ = t̄; x ∈ Γt (6)
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Figure 1: Macroscopic problem domain and microstructure.

in which, û (x) and v̂ (x) are the initial displacement and velocity fields, respectively; ū (x, t)
and t̄ (x, t) are the prescribed displacements and tractions on the boundaries Γu and Γt, re-
spectively, where Γ = Γu ∪ Γt and Γu ∩ Γt = ∅, and; n is the unit normal to Γt.

The constitutive relation for the macroscopic problem is

σ̄ = L̄ : ε̄ +
m∑

β=1

R̄(β) · δ̂(β) +
n∑

γ=1

M̄(γ) : µ(γ) (7)

in which δ̂(β) (x, t) is the microscopically nonlocal displacement jump vector; and, µ(γ) (x, t)
the microscopically nonlocal inelastic deformation tensor. δ̂(β) (x, t) and µ(γ) (x, t) are col-
lectively called eigendeformation, which characterize the effects of the presence of inelastic
processes due to accumulation of phase and interface damage; R̄(β), L̄, and M̄(γ) are coef-
ficient tensors which reflect the geometrical effects in the microstructure in addition to the
mechanical properties of the associated phases and interfaces. The expressions for R̄(β), L̄,
and M̄(γ) are presented in the Appendix. m and n are the number of microscopic phase and
interface partitions, respectively. The size and number of phase and interface partitions are
evaluated based on the characteristic size within the microstructure and level of model accu-
racy as further discussed below and in Ref. [1]. The eigendeformation fields are evaluated by
solving a system of algebraic equations which are derived from the microscopic boundary value
problem of the direct nonlinear homogenization theory (see, for instance, [13, 14, 15]). The
algebraic system consists of kinetic and kinematic equations, contact conditions and evolution
equations for phase and interface damage variables. Kinetic equation reads

t̂(α) +
m∑

β=1

D̂(αβ) · δ̂(β) +
n∑

γ=1

F̂(αγ) : µ(γ) = −Ĉ(α) : ε̄, α = 1, 2, . . . ,m (8)

where t̂(α) (x, t) is a microscopically nonlocal traction vector; D̂(αβ), F̂(αγ) and Ĉ(α) are coef-
ficient tensors reflecting the microstructural effects. The expressions for the coefficient tensors
are listed in the Appendix. The kinematic equation is given by

n∑
γ=1

[
δK
ηγI−P(ηγ)ω

(η)
ph

]
: µ(γ) − ω

(η)
ph

m∑
β=1

[
R̂(ηβ) · δ̂(β)

]
= ω

(η)
ph A(η) : ε̄, η = 1, 2, . . . , n (9)
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in which, ω
(η)
ph (x, t) is the isotropic, scalar phase damage variable; δK

ηγ the Kronecker Delta
function; I the fourth order identity tensor; P(ηγ), R̂(ηβ) and A(η) are coefficient tensors listed
in the Appendix.

Progressive debonding along the microconstituent interfaces is modeled using Continuous
Damage Mechanics (CDM). The state of adhesion along the interfaces is characterized by a
scalar interface damage variable. The unilateral contact conditions in the presence of adhesion
along the interfaces are given as

tN(α) −
(
1− ω

(α)
int

)
k

(α)
N δN(α) 6 0; δN(α) > 0 (10){

tN(α) −
(
1− ω

(α)
int

)
k

(α)
N δN(α)

}
δN(α) = 0 (11)

where tN(α) (x, t) and δN(α) (x, t) are the normal components of the traction and displacement
jump vectors, respectively; ω

(α)
int (x, t) the isotropic, scalar, interface damage variable; and, k

(α)
N

is the undamaged normal stiffness along the interface. In the tangential direction, adhesion is
coupled by a Coulomb type friction model

tT (α) = tTa(α) + tTf(α) (12)

tTa(α) =
(
1− ω

(α)
int

)
k

(α)
T δT (α) (13)∥∥∥tTf(α)

∥∥∥ 6 t
(α)
crit (14)∥∥∥tTf(α)

∥∥∥ < t
(α)
crit ⇒ δ̇T (α) = 0 (15)∥∥∥tTf(α)

∥∥∥ = t
(α)
crit ⇒ δ̇T (α) = κtTf(α), κ > 0 (16)

t
(α)
crit = µF

∣∣∣tN(α) −
(
1− ω

(α)
int

)
k

(α)
N δN(α)

∣∣∣ (17)

in which, tT (α) (x, t), tTa(α) (x, t) and tTf(α) (x, t) are total, adhesion and friction component
of the tangential tractions, respectively; t̂(α) = [tN(α); tT (α)]; δT (α) (x, t) is the tangential
displacement jump vector; δ̂(α) = [δN(α); δT (α)]; and, k

(α)
T is the undamaged tangential stiffness

along the interface.

2.1 Damage Evolution

The interface damage variable, ω
(α)
int , α = 1, 2, . . . ,m and phase damage variable, ω

(η)
ph , η =

1, 2, . . . , n represent the inelastic processes within the microstructure. The state of adhesion
along the αth partition of the microconstituent interfaces is characterized by the interface
damage variable, ω

(α)
int , whereas, the nucleation and coalescence of microcracks within the ηth

partition of the reinforcement and matrix phases are characterized by the phase damage vari-
able, ω

(η)
ph . In this manuscript, rate-independent and rate-dependent models for the evolution

of damage variables are presented. First, the thermodynamics based damage evolution formu-
lation is introduced to model the rate-independent response. Next, the rate-dependent model
is described. Rate-dependent response is achieved by a straightforward extension of the rate-
independent model using viscoplastic regularization of the Perzyna type. Such rate-dependent
damage models with viscoplastic regularization have been proposed for failure characterization
of concrete by Simo and Ju [16], Dube et al. [17] and others.
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2.2 Rate-Independent Damage Model

Let f be the damage potential function in the form

f
(
υ

(η)
ph , r

(η)
ph

)
= φ

(
υ

(η)
ph

)
− φ

(
r
(η)
ph

)
6 0 (18)

where υ
(η)
ph (x, t) is phase damage equivalent strain; r

(η)
ph (x, t) is damage hardening variable;

and φ is a monotonically increasing damage evolution function. The evolution equations for
damage and hardening variables are given as

ω̇
(η)
ph = λ̇

∂φ

∂υ
(η)
ph

(19)

ṙ
(η)
ph = λ̇ (20)

in which, λ̇ is the consistency parameter for phase damage. Damage accumulation is governed
by the Kuhn-Tucker conditions

λ̇ > 0; f
(
υ

(η)
ph , r

(η)
ph

)
6 0; λ̇f

(
υ

(η)
ph , r

(η)
ph

)
= 0 (21)

The Kuhn-Tucker conditions state that when damage potential function is negative (f < 0)
rate of damage growth vanish as λ̇ = 0. λ̇ > 0 indicates a damage process where f = 0.
Neutral loading conditions occur if changes in the strain space do not alter the state of damage
equivalent strain (λ̇ = 0 and f = 0).

The phase damage equivalent strain is defined as

υ
(η)
ph =

√
1
2

(
F(η)ε̂(η)

)T L̂(η)
(
F(η)ε̂(η)

)
(22)

where ε̂(η) is the vector of principal components of the average strain tensor,ε(η), in Θ(η); L̂(η)

the tensor of elastic moduli in the principal directions of ε(η); and F(η) (x, t) the weighting
matrix. The weighting matrix is introduced to model different damage accumulation charac-
teristics in tensile and compressive loading directions

F(η) =

 h
(η)
1 0 0
0 h

(η)
2 0

0 0 h
(η)
3

 (23)

h
(η)
ξ =

1
2

+
1
π

atan
[
c
(η)
1

(
ε̂
(η)
ξ − c

(η)
2

)]
(24)

where c
(η)
1 and c

(η)
2 represent the contribution of tensile and compressive loadings in the prin-

cipal directions.
An arctangent damage evolution function is considered for rate-independent characteriza-

tion of phase damage [4]

φ
(η)
ph =

atan
(
a

(η)
ph

〈
υ

(η)
ph − υ

(η)
0ph

〉
− b

(η)
ph

)
+ atan

(
b
(η)
ph

)
π/2 + atan

(
b
(η)
ph

) (25)
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where υ
(η)
0ph, is the threshold value of the strain state below which no damage in Θ(η) occurs;

〈·〉 = [‖ · |+ (·)]/2 denotes MacCauley brackets; a
(η)
ph and b

(η)
ph are material parameters.

The evolution of rate-independent interface damage variable, ω
(α)
int , is described similarly

by replacing phase damage equivalent strain and hardening variables with interface damage
equivalent strain, υ

(β)
int (x, t), and interface damage hardening variable, r

(β)
int , in Eq. 18. υ

(η)
int in

S(β) is expressed in terms of the displacement jump vector as

υ
(β)
int = k

(β)
N δN(β) + k

(β)
T

∥∥∥δT (β)
∥∥∥ (26)

An alternative arctangent law is adopted to model the evolution of interface damage

φ
(β)
int =

atan
(
a

(β)
int υ

(β)
int (x, t) /b

(β)
int

)
atan

(
a

(β)
int

) ; φ
(β)
int ≤ 1 (27)

in which, a
(β)
int and b

(β)
int are material parameters.

2.3 Rate-Dependent Damage Model

Rate dependence of the progressive failure of many composite materials have been well doc-
umented and available in open literature (e.g., [18, 19, 20]). At a given strain level, available
experimental data suggest that the amount of damage accumulation vary with rate of loading
in addition to the possible presence of other effects such as variations in elastic properties [18].
Rate sensitive response of composite materials may be captured by simple modifications of
rate-independent models. In this manuscript, the rate-independent damage model presented
above is modified using a viscous regularization analogous to Perzyna type [21] in the plas-
ticity theory. The modification for phase damage is achieved by replacing the Kuhn-Tucker
conditions (Eq. 21) with the following power law expression of the consistency parameter

λ̇ =
1

q
(η)
ph

〈
f

(
υ

(η)
ph , r

(η)
ph

)〉p
(η)
ph (28)

where p
(η)
ph and q

(η)
ph are rate-dependent phase damage parameters. Modification of the interface

damage model is achieved by considering a similar expression for the interface consistency
parameter in terms of the rate-dependent interface damage parameters p

(β)
int and q

(β)
int .

It can be easily shown that regularized rate-dependent damage models converge to rate-
independent limit as q

(η)
ph → 0 for phase damage and q

(β)
int → 0 for interface damage models.

A power law is considered to characterize damage evolution in the rate-dependent model

φ
(η)
ph = a

(η)
ph

〈
υ

(η)
ph − υ

(η)
0ph

〉b
(η)
ph ; φ

(η)
ph ≤ 1 (29)

in which, a
(η)
ph and b

(η)
ph are material parameters.

2.4 (m + n) Point Model with Static Partitioning

Equations 8-17 along with the evolution equations for phase and interface damage variables
form the nonlinear system of algebraic equations which is evaluated to obtain the eigendefor-
mation fields. The nonlinear system consists of 3m + 6n equations for 3-D problems. This
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model is therefore referred to as (m+n) point model. m and n denote the number of interface
and phase partitions respectively. In phase partitioning, microconstituents are divided into n
partitions denoted by Θ(η), η = 1, 2, . . . , n. The partitioning is conducted such that partitions
do not intersect more than one material phase, Θ ≡

⋃n
η=1 Θ(η) and Θ(η)

⋂
Θ(γ) ≡ ∅ for η 6= γ.

Microscopically nonlocal inelastic strains, µ(γ), and microscopically nonlocal phase damage
variable, ω

(η)
ph are associated with partition Θ(η). In interface partitioning, microstructural in-

terfaces are divided into m partitions and corresponding interface partition domain is denoted
by S(α), α = 1, 2, . . . ,m. In contrast to the phase partitioning, interface partitions overlap to
satisfy continuity of the displacement field along the interface; and S ≡

⋃m
α=1 S(α). Displace-

ment jumps, δ̂(α), and interface damage variable ω
(α)
int are associated with interface partition,

S(α).
The accuracy and efficiency of the (m + n) point models is directly related to the parti-

tioning of the microstructural domain constituents. Clearly, selecting large values for phase
and interface partitions increase the level of accuracy accompanied by an increase in the com-
putational cost. A sequence of (m + n) point models may therefore be constructed, where
the most efficient member represents simultaneous failure at all material points within each
microconstituent and interface. For instance, the most efficient model for a 2-phase fibrous
composite system has two phase partitions (n = 2, reinforcement and matrix) and a single
interface partition (m = 1). A-priori knowledge that certain microconstituents or interface
do not fail will further reduce the computational cost. The (0 + 1) point model may also
be chosen if interface and fiber is assumed damage-free. The most comprehensive member of
the sequence coincides with the direct homogenization method, in which failure is evaluated
separately at each finite element of the microstructural mesh (i.e., n = nel and m = mel where
nel and mel are the number of phase and interface elements within the microstructural mesh).

Static and dynamic strategies have been previously proposed for partitioning of the mi-
crostructural geometry [1]. In static domain partitioning (SDP) strategy, model order (m and
n) and division of the microstructural phases and interfaces into Θ(η), η = 1, 2, . . . , n and S(α),
α = 1, 2, . . . ,m, respectively, are conducted prior to the analysis of the macroscale problem.
In dynamic domain partitioning (DDP) strategy, the microstructural domain is repartitioned
based on the evolution of the material failure as the macroscopic analysis progresses. DDP
strategy is advantageous when preprocessing cost is substantially lower than the cost of non-
linear iterations. Otherwise, SDP strategy with higher order (m + n) point model may be
more efficient and accurate. The SDP strategy is adopted in this manuscript.

The static domain partitioning strategy is illustrated in Fig. 2. For a given model order m
and n, microstructural phases and interfaces are partitioned based on the elastic macroscopic
strains ε̄el which is computed in the preliminary linear analysis of the macroscopic problem.
The corresponding microstructural deformation is obtained as εel = Gε̄el. G is the elastic
polarization function in the matrix form. The microstructural domain, Θ, and interface, S
is partitioned into Θ(η), η = 1, 2, . . . , n and S(α), α = 1, 2, . . . ,m, respectively based on the
amplitude of the microscopic stress and interface traction values. Coefficient tensors are then
computed for phase and interface damage partitions in the preprocessing stage and remain
constant throughout the macroscopic analysis. For a comprehensive treatment of the static
partitioning strategy, we refer to Ref. [1].
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Figure 2: Static Domain Partitioning (SDP).

3 Validation Strategy

The (m + n) point model with static domain partitioning has been previously verified against
direct homogenization method [1]. The (m + n) point model was shown to provide computa-
tional cost savings of 3 orders of magnitude without significantly compromising on accuracy
compared to the direct homogenization method. In this manuscript, we focus on a systematic
calibration and validation of the (m + n) point models.

Validation of multiscale computational models present unique challenges compared to a
single scale phenomenological model. For example, whereas the validation of phenomenolog-
ical models commonly involve calibration of model parameters with experiments designed to
uniquely identify a single model parameter at a time, such a methodology cannot be extended
to calibrate models developed using multiscale methods. In multiscale modeling, model param-
eters are commonly associated with microstructural constituents. Most experimental methods
provide observations at macroscopic scale, and therefore, may not be used to uniquely identify
multiscale model parameters one at a time. Despite current developments in experimentation
technologies which allow estimation of few microscopic parameters directly (e.g., [22]), it is
essential to develop novel validation strategies specifically suited for multiscale models.

The model validation methodology described below introduces the concept of repository
of experiment simulator modules, which has been implemented to validate the (m + n) point
models against experimental data. The validation methodology is generic in the sense that it
may be implemented without extensive effort to assess the validity of alternative hierarchical
multiscale models [23].

Validation of the (m + n) point models are conducted in two steps:

1. Calibration of the multiscale parameters using a suite of experiments.

2. Simulation of a complex system using the calibrated model and assessment of the model
by comparing the simulation predictions with experimental results. Calibration and
validation simulations must be dissimilar for proper validation of the model.

Figure 3 illustrates the algorithm of the calibration methodology for the (m + n) point
model. The calibration is conducted in three steps:
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Computation of Coefficient Tensors: 

Calibration of Failure Parameters: 

Figure 3: Calibration Algorithm.

1. Calibration of the elastic parameters;

2. Computation of coefficient tensors;

3. Calibration of the phase and interface failure parameters.

Elastic and failure parameter calibrations are conducted using programs ELASCLB and
FAILCLB, respectively. ELASCLB and FAILCLB, collectively called MNCLB, are optimiza-
tion algorithms to minimize the discrepancy between the experimental and simulation predic-
tions as described below.

In the context of the static partitioning strategy, the calibration of elastic and failure
parameters, in addition to computation of the coefficient tensors is conducted prior to the
macroscopic analysis. In the first step of the calibration algorithm, ELASCLB is employed
to evaluate the optimal elastic material parameters. The elastic influence function, H, which
is a function of the elastic material parameters, is updated at every step of the optimization.
The phase and interface damage influence functions (hph and hint, respectively) are computed
following the elastic calibration step. The influence functions H, hph and hint are solutions to
influence function problems stated in the Appendix. The final step employs FAILCLB which
evaluates the optimal failure parameters by minimizing the discrepancy between experimen-
tal data and numerical simulation predictions. An experiment simulator repository (SIMEX)
is devised to conduct numerical simulations at every step of the optimizations in MNCLB.
SIMEX is composed of a collection of experiment simulator modules as illustrated in Fig. 4.
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SIMEX

Experiment Simulator 
Repository

Uniaxial Tensile Test
Simulator Module

Double Notch Shear Test
Simulator Module

Flatwise Tensile Test
Simulator Module

Rail Shear Test
Simulator Module

Fiber Pullout Test
Simulator Module

Figure 4: Experiment Simulator Repository.

SIMEX architecture permits incorporation of additional experiment simulators without alter-
ing the structure of the optimization program. Such architecture is particularly powerful for
calibration of multiscale models in which a multitude of parameters are identified simultane-
ously based on experimental data at various scales.

The calibration code communicates with a commercial finite element software (Abaqus) to
conduct numerical simulations along with appropriate user supplied subroutines. The struc-
ture of the calibration code implementation is shown in Fig. 5. The objective function is
constructed based on experimental data and SIMEX simulation predictions as described be-
low. The communication with the finite element software is conducted in SIMEX.

3.1 Optimization Algorithm

A model, M (x), is said to be calibrated when the model parameter set, x, minimizes the
objective function

x∗ = arg min
x∈Rb

1
2
F (x)T F (x) =

1
2

a∑
i=1

[ei − si (x)]2

subject to l ≤ x ≤ u
(30)

in which, x∗ is the calibrated material parameter set, e the data provided by the experiments;
s (x) is the simulation predictions of model, M (x); F (x) = e − s (x); b and a the lengths of
the model parameter set, x, and data set, e, respectively; and l and u are the lower and upper
bound vectors for the model parameter set.
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Figure 5: Structure of the calibration code.

3.1.1 Gradient-based optimization

The optimization problem stated in Eq. 30 is evaluated using the Levenberg-Marquardt al-
gorithm with active set strategy to impose simple bounds on the model parameters. IMSL
Fortran Library Routine (DBCLSF) is employed. Levenberg-Marquardt algorithm is based on
the trust region approach [24]. The model parameter set at each iteration is updated by

x̄k+1 = x̄k −
(
J̄T J̄ + µI

)−1
J̄T F̄ (31)

in which, F̄ includes components of F for which the model parameters lie inside bounds (i.e.,
i = 1, 2, . . . , b such that li < xi < ui); J̄ the jacobian of F̄; µ the Levenberg-Marquardt
parameter to ensure that iterates lie within a trust region δ (i.e., µ = 0 if ‖J̄−1F̄‖2 = δ and
µ > 0 otherwise); I the identity matrix; and superscripts indicate optimization iteration count.
A finite difference scheme is employed to approximate the jacobian. µ and δ is computed based
on a locally constrained hook step algorithm [25]. The optimality conditions for termination
of optimizations are given as [26]

‖g (xi)‖ 6 tol; if li < xi < ui (32)
g (xi) < 0; if xi = ui (33)
g (xi) > 0; if xi = li (34)

where g = J̄T F̄. The components of F̄ are updated based the active set strategy as model
parameters reach the bounds or optimality conditions are violated [27].

3.1.2 Evolutionary optimization

Evolutionary algorithms provide an alternative approach to the optimization problem. This
approach is based on the observation that a march towards an extremum of an objective func-
tion resembles the evolution of living organisms into superior individuals. The primary driving
mechanism of evolution of biological systems, i.e., natural selection, is therefore employed to
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evaluate the optimization problem. Literature on evolutionary algorithms is vast and evolu-
tionary techniques have been employed to evaluate a wide range of problems (e.g., [11, 12]).
In this study, a genetic algorithm is used to evaluate the calibrated material set x∗. A public
domain genetic algorithm software, PIKAIA [28], is incorporated into the SIMEX framework.

Genetic algorithms typically consist of the creation of a population of individuals, and
execution of a set of rules to breed subsequent generations of the population until one individual
reaches the desired fitness value. An individual is defined as a point in the material parameter
space

x̂ ∈ B; B =
{
x ∈ Rb | l ≤ x ≤ u

}
(35)

The population is defined as a set of npop individuals. Initial population of individuals are
selected by randomly sampling the parameter space B. The fitness of an individual is propor-
tional to the distance to the calibrated material parameter set, x∗

F (x̂) =
C

F (x̂)T F (x̂)
(36)

where, C is a constant algorithmic scaling parameter. Subsequent generations of the population
are created using the following strategy:

a. selection of parents from the current population;

b. cross-over and mutation operations to generate offsprings; and

c. generational replacement using elitism.

Parents are selected among the individuals within the population using a roulette wheel al-
gorithm. The probability of selection of an individual in the population is evaluated by the
relative fitness function:

F ′ (x̂) = (fd + 1) (npop + 1)− 2r (F) fd (37)

in which 0 ≤ fd ≤ 1 is an algorithmic parameter which controls the sensitivity of the relative
fitness function to rank, r ∈ {1, npop}, such that r = npop and r = 1 are the least fit and fittest
individuals, respectively.

Cross-over operation is used to breed two offsprings from two parents selected using the
roulette wheel algorithm. This operation, illustrated in Fig. 6, is conducted using the denary
representation (chromosome) of the individuals. The chromosomes of the parents are split into
two parts at a randomly selected locus. The chromosome fragments to the right of the split
are interchanged and concatenated to the left part to form the offsprings. The offsprings are
then randomly mutated. The mutation operation consists of replacing a targeted gene (a digit
in the denary representation of the individual) in the chromosome offspring with a randomly
created gene. The mutation operation increases the probability of avoiding convergence to a
local minimum.

A generational replacement algorithm with elitism is employed to breed new generations
of individuals. In this study, the population is kept constant throughout generations. The
algorithm consists of creating npop offsprings which constitutes the candidates for the next
generation of individuals. The fittest individual of the new and the previous generation is
artificially added to the new population (elitism) to eliminate the possibility of losing fittest
individuals in the cross-over and mutation operations.

While the genetic algorithm strategy defined above has been successfully applied to evaluate
the global minima of many complex problems, the solution is trapped to local minima in
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Figure 6: Illustration of the cross-over operation to breed offsprings from parent chromosomes in
the genetic algorithm.

others[29]. A detailed study of the characteristics of a number of evolutionary algorithms
for finding global minima with real valued parameters are described in [30]. In this study
genetic algorithm is invoked multiple times to increase the reliability of the computed optimal
parameters.

4 Validation Examples

The capabilities of the (m+n) point model and the validation strategy are demonstrated con-
sidering two composite systems: (i) ceramic matrix composite (CMC) system; and (ii) polymer
matrix composite system.

4.1 Ceramic Matrix Composites

We consider a silicon carbide fiber-reinforced silicon carbide matrix composite. The composite
system consists of high quality Hi-Nicalon type S fibers and matrix material processed by melt-
infiltration. Such high quality CMC systems are often being used in aircraft jet engine [31]
and gas turbine [32, 33] components.

Calibration of the (m + n) point models are conducted using specimens with [0/90]2s

laminate. A thin matrix layer with approximately 1/3 of the ply thickness exists between
each composite ply as shown in Fig. 7. Experiments conducted on the composite laminates
consists of (a) flatwise tensile (ASTM-C-297); (b) double notch shear (ASTM-D-3846-94);
and (c) uniaxial tensile tests. Flatwise tensile tests were conducted on flat round shaped
specimens to measure the interlaminar strength of the composite system. The failure was
observed primarily within the thin matrix interlayer. Double notch shear tests were conducted
to quantify the macroscopic shear strength of the composite specimens. Uniaxial tensile testing
was conducted in the fiber direction only. Experimental results and numerical predictions of the
present composite system are export controlled. We present normalized results with randomly
selected normalization constants only.

The optimization-based calibration scheme is used to identify the microscopic phase and
interface parameters of the (m + n) point models. 00 and 900 layers are modeled using a
fibrous unit cell. The finite element mesh of the unit cell is provided in Fig. 8. The (0 + 2)
and (1 + 2) point models are chosen to idealize the unit cell response, where one point is
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Figure 7: Idealized meso- and micro-structure of the laminated CMC composite.

reserved for each of the two phases (matrix and fiber). Perfect interface and one point interface
damage representations are chosen for the former and latter models, respectively. Fiber and
matrix materials are assumed to be isotropic. The interlayer is modeled explicitly assuming
transversely isotropic response. The thickness direction is taken to be the axis of transverse
isotropy. The evolution of the matrix, fiber and interface damage is modeled using the rate-
independent damage model (Section 2.2) with the arctangent evolution laws (Eqs. 25,27).

The response of the laminated composite system is defined using 19 phase and 5 interface
material parameters in the microscale. The available experimental data does not provide
sufficient information for the calibration of all 19 parameters for (0 + 2) and 24 parameters
for (1 + 2) point models. The number of independent parameters is reduced by the following
idealizations:

a. Poisson’s ratios of the matrix and fiber material are assumed to be the same (υM = υF );

b. The elastic and failure properties of the interlayer are assumed to be identical to the
matrix material along directions perpendicular to the axis of transverse isotropy (i.e.,
EI1 = EM , υI13 = υI12 = υM ). The only variation between the interlayer and matrix
material is the initial elastic modulus in the direction of transverse isotropy which is
assumed to have significant initial damage.

c. Weighting matrix parameters for the matrix and fiber materials are not calibrated since
experiments on the compressive response of the composite laminate are not available.

d. Threshold values for damage accumulation are set to zero. Therefore, damage is assumed
to accumulate from the onset of loading (υ(M)

0ph = υ
(F )
0ph = 0).

e. Initial interface stiffness in the normal and tangential directions are assumed to be the
same (kN = kT ).

f. Post-debonding interface friction is ignored (µF = 0)

The microscopic material parameters to be calibrated are reduced to 9 phase (EF , EM , υF ,
EI3, GI13, aph(F ) , bph(F ) , aph(M) , bph(M)), and 3 interface (aint, bint, kN ) parameters. The matrix
and fiber phase elastic parameters (EF , EM and υF ) are identified in the elastic calibration
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Figure 8: Fibrous microstructure mesh for the 0 and 90 layers.

step (see Section 3). The elastic properties describing the response in the transverse direction
of the interlayer (EI3 and GI13) are identified in the failure parameter calibration step since
direct experimental data in the elastic regime were not available. The elastic modulus of
Hi-Nicalon type S fiber is documented in the open literature. In this analysis, the elastic
modulus of the fiber material at room temperature is taken to be 420GPa as provided by
Ref. [34]. The standard deviation in the elasticity modulus is less than 2.5%. The Poisson’s
ratio of the composite system is provided by the uniaxial tensile tests. Elastic modulus of
the matrix material is identified using ELASCLB program based on the elastic data provided
by uniaxial tensile tests. Using the calibrated microscopic material parameters, the simulated
elastic modulus of the laminated composite system is within 99% of the experiments.

Program FAILCLB is used to identify the remaining parameters (EI3, GI13, aph(F ) , bph(F ) ,
aph(M) , bph(M) for (0+2) and (1+2) point models, in addition to aint, bint, kN for (1+2) point
model) in the failure parameter calibration step. The interlaminar and shear strength from
the flatwise tensile and double notch shear tests in addition to stress-strain curves from the
uniaxial tensile tests are simultaneously used to calibrate the failure parameters. Finite element
discretization of the flatwise tensile, double notch shear and uniaxial tensile test specimens are
shown in Fig. 9.

The simulated and experimental normalized stress-strain curves for the uniaxial tensile
test is shown in Fig. 11. Simulations using the calibrated model estimates the uniaxial tensile
strength with 4% error compared to mean strength (standard deviation is 4.5% of the mean).
Strength in the transverse direction using the calibrated model is within 5% of the mean
strength (8.5% standard deviation) observed in flatwise tensile tests. Simulation of the double
notch shear test shear strength within 93% of the experimental value. Figure 11 indicates
a marginal improvement in the calibrated model response when interface damage effects are
present. This suggest that failure largely initiates within the matrix material.
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(a) (b) (c)

Figure 9: Finite element discretization of the flatwise tensile, double notch shear and uniaxial tensile
test specimens used in the calibration of the laminated CMC composite.

Remark: The calibration of the material parameters for (0 + 2) and (1 + 2) point models were
conducted using gradient-based and genetic algorithms. Global convergence in the gradient
based algorithm is achieved by multiple parallel evaluations with random initial parameter
configurations. The projection of the multi-dimensional objective function onto aph(F ) − bph(F )

and aph(M) − bph(M) subspaces are shown in Fig. 10. The figures show a rather smooth vari-
ation of the objective function within the subspaces. Smoothness of the objective function is
essential for the performance and validity of the gradient-based optimization methods. Genetic
algorithms, while tailored to finding the global minimum, tend to converge to local minima [30]
even when advanced modifications to the algorithm is employed. Similar to the gradient based
approach, genetic algorithm is evaluated repeatedly to increase the reliability of the global op-
timal set of parameters. Gradient-based and genetic algorithms yield nearly identical optimal
parameter set for the present problem.

4.2 Polymer Matrix Composites

In this section, rate-dependent nonlinear behavior of a glass fiber composite system is in-
vestigated. The composite system consists of S2-glass fibers and an epoxy (8553-40) matrix
material. The (m + n) point model is calibrated using unidirectional off-axis coupon speci-
mens loaded at various strain rates. The calibrated (m + n) point model is then validated by
predicting the rate-dependent response of laminated systems.

Thiruppukuzhi and Sun [35] conducted a suite of uniaxial tensile tests on S2-glass/epoxy
composite systems. The nominal resin content is reported as 35%. Off-axis specimens with
cut angles of 150, 300, 450, 600 and 900 were loaded at strain rates of 0.0001/s, 0.01/s and
1/s up to failure. Experimental findings reported in [35] are employed to calibrate the model
parameters of a (0 + 2) point model. Each microphase (fiber and matrix) is modeled using a
single point. Perfect bonding is assumed along the interface (m = 0). Matrix and fiber phases
consist of isotropic materials with damage. Rate-dependent effects were considered by utilizing
the rate-dependent damage model described in Section 2.3. Damage evolution is described by
the power law (Eq. 29).

The response of the composite system is fully defined using 18 microscopic material pa-
rameters. The weighting parameters for the matrix (c(M)

1 and c
(M)
2 ) and fiber materials (c(F )

1
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Figure 10: The variation of the objective function in the parameter subspaces: (a) matrix damage
parameter subspace; (b) fiber damage parameter subspace.
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Figure 11: Simulated and experimental uniaxial tensile stress strain curves at room temperature.

and c
(F )
2 ) are not calibrated since experiments on the compressive response are not available.

Threshold values for damage accumulation are set to zero. Therefore, damage is assumed to
accumulate from the onset of loading (υ(M)

0ph = υ
(F )
0ph = 0). Calibration of the matrix (EM and

υM ) and fiber (EF and υF ) elastic parameters is carried out in the elastic parameter calibration
step using ELASCLB program. The virgin elastic modulus of the S2-glass fiber [36] is used as
the in-situ elastic fiber modulus EF = 87.5GPa. The Poisson ratio of the microconstituents
is set to the Poisson ratio of the overall unidirectional composite system υM = υF = 0.29
provided in [35]. The elastic modulus of the matrix material is calibrated using ELASCLB.
The calibration yields EM = 4.775GPa.

The failure parameters of the (0 + 2) point model were calibrated using experiments on
150 and 300 off-axis specimens. Loading with slow (0.0001/s), medium (0.01/s), and fast (1/s)
strain rates were applied to each geometric configuration. Program FAILCLB is employed to
conduct the calibrations. Gradient-based and genetic algorithms are utilized in the calibration
of the model. Figures 12 and 13 illustrate the fitted stress-strain curves for the 150 and
300 off-axis specimens, respectively, for slow, medium and fast strain rates in addition to
two calibration approaches. The difference between the predictions of the gradient-based
and genetically optimized models are insignificant. Tensile strength of 150 and 300 off-axis
specimens were simulated within 92-99% accuracy, whereas the strains-to-failure were within
87.5-99% of the experimental results for all the tested specimens. Tensile strength and strain-
to-failure values are summarized in Table 1.

The simulated and experimental stress strain response of 450, 600, and 900 off-axis unidi-
rectional specimens subjected to slow strain rates are shown in Fig. 14 in addition to 150 and
300 specimen curves which were used in the calibration step. A good agreement is observed
between the predicted and experimental curves. 450, 600, and 900 stress-strain curves were
not used in the calibration of the model parameters and constitute a preliminary validation
step.
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Figure 12: Simulated and experimental uniaxial tensile stress strain curves for the 150 off-axis
specimen at various strain rates.
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Table 1: Strength and strains-to-failure for the 150 and 300 off-axis specimens at various strain
rates.

150 off-axis 300 off-axis
0.0001/s 0.01/s 1/s 0.0001/s 0.01/s 1/s

strength [MPa]
simulation 211 225 250 112 119 133
experiment 213 234 262 104 113 128

strain-to- simulation 0.98 1.02 1.11 1.02 1.07 1.17
failure [%] experiment 0.97 1.01 1.1 1.02 0.97 1.04
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Figure 14: Simulated and experimental uniaxial tensile stress strain curves for the 150, 300, 450,
600, and 900 off-axis specimens at 0.0001/s strain rate.
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Figure 15: Simulated and experimental uniaxial tensile stress strain curves for the [±45]3S S2-glass
laminate at various strain rates.

The calibrated (0 + 2) point model was then used to predict the response of laminated
composite systems composed of S2-glass fibers and epoxy matrix for two symmetric laminate
constructions. The constructions are a balanced [±45]3S and an unbalanced [+15/ − 75]3S
laminate system. The symmetric laminates have 12 plies each. Figures 15 and 16 illustrate
the model predictions with the experimental stress-strain curves for slow (0.0001/s), medium
(0.01/s), and fast (1/s) strain rates. A reasonable agreement was observed between the model
predictions and the experimental results. Maximum stresses for the given strain range were
predicted to be within 92-96% accuracy for the balanced [±45]3S systems and 85-92% accuracy
for the unbalanced [+15/− 75]3S composite system.

5 Conclusions

The manuscript presents an optimization-based calibration model strategy for computational
homogenization methods. The method features an experimental simulator repository, which is
used to simulate experiments for model calibration. The optimization-based approach provides
the best possible fit of model parameters to minimize the error between simulations and exper-
imental observations for all tests. The method has been fully integrated within a commercial
finite element software (Abaqus). Several important challenges and questions remain in valida-
tion and calibration of the mathematical homogenization based multiscale models. First issue
is the determination of the type and number of calibration experiments. At the present time,
the choice of experiments is very limited and depends on what is available rather than what
is needed. Sensitivity studies of identified material parameters present additional challenges.
While the complexity of the multiscale models prohibits analytical or semi-analytical sensi-
tivity studies, a rigorous parametric study is critical to increase the confidence in multiscale
model predictions.
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Figure 16: Simulated and experimental uniaxial tensile stress strain curves for the [+15/ − 75]3S
S2-glass laminate at various strain rates.
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Appendix: Coefficient Tensors

The coefficient tensors for the (m + n) point model are functions of elastic (Gijkl), phase
(gph

ijkl), and interface (gint
ijk) polarization functions, in addition to the elastic properties of the

microconstituents. The expressions for the coefficient tensors are given as:

L̄ijkl =
1
|Θ|

∫
Θ

Lijmn (y) Amnkl (y) dy (38)

R̄(β)
ij =

1
|Θ|

∫
Θ

Lijkl (y) R̃(β)
kl (y) dy (39)

M̄
(γ)
ijkl =

1
|Θ|

∫
Θ

Lijmn (y)
(
P̃

(γ)
klij (y)− IklijN

(γ)
ph (y)

)
dy (40)

Ĉ(α)
ij =

1∣∣S(α)
∣∣ ∫
S(α)

∫
Θ

gint
mnp (y, ŷ) Lmnkl (y) Aklij (y) êp (ŷ) dydŷ (41)

D̂(αβ) =
1∣∣S(α)

∣∣ ∫
S(α)

∫
Θ

gint
mnp (y, ŷ) Lmnkl (y) R̃(β)

kl (y)⊗ êp (ŷ) dydŷ (42)

F̂(αγ)
ij =

1∣∣S(α)
∣∣ ∫
S(α)

∫
Θ

gint
mnp (y, ŷ) Lmnkl (y)

(
P̃

(γ)
klij (y)− IklijN

(γ)
ph (y)

)
êp (ŷ) dydŷ(43)

P
(ηγ)
ijkl =

1∣∣Θ(η)
∣∣ ∫
Θ(η)

P̃
(γ)
ijkl (y) dy (44)

A
(η)
ijkl =

1∣∣Θ(η)
∣∣ ∫
Θ(η)

Aijkl (y) dy (45)

R̂(ηβ)
ij =

1∣∣Θ(η)
∣∣ ∫
Θ(η)

R̃(β)
ij (y) dy (46)

P̃
(η)
ijkl (y) =

∫
Θ(η)

gph
ijkl (y, ŷ) dŷ (47)

R̃(α)
ij (y) =

∫
S̄(α)

gint
ijp (y, ŷ) N

(α)
int (ŷ) êp (ŷ) dŷ (48)

where ê are the basis vectors in the local normal and tangential directions along the interface;
N

(γ)
ph and N

(α)
int are phase partition and interface partition shape functions. The selection of

appropriate shape functions are provided in [1]. The polarization function are obtained by
solving influence function problems given below
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Elastic Influence Function (EIF) Problem:

Given Lijmn (y), find Hikl (y) : Θ̄ → R such that:

{Lijmn (y) Amnkl (y)},yj
= 0; y ∈ Θ

Aijkl (y) = Iijkl + Gijkl (y) ; Gijkl (y) = H(i,yj)kl (y)
Θ− periodic boundary conditions on y ∈ ΓΘ

Phase Damage Influence Function (PDIF) Problem:

Given Lijmn (y), find hph
ikl (y, ŷ) : Θ̄× Θ̄ → R such that:{

Lijmn (y)
(
gph
mnkl (y, ŷ) + Imnkld (y − ŷ)

)}
,yj

= 0; y, ŷ ∈ Θ

gph
ijkl (y, ŷ) = hph

(i,yj)kl (y, ŷ)

Θ− periodic boundary conditions on y ∈ ΓΘ

Jhph
iklK (y, ŷ) = 0 on y, ŷ ∈ Θ

Interface Damage Influence Function (IDIF) Problem:

Given Lijmn (y), find hint
ip (y, ŷ) : Θ̄× S → R such that:{

Lijmn (y) gint
mnp (y, ŷ)

}
,yj

= 0; y ∈ Θ, ŷ ∈ S

gint
ijp (y, ŷ) = hint

(i,yj)p
(y, ŷ)

Θ− periodic boundary conditions on y ∈ ΓΘ

Jhph
ip K (y, ŷ) = Qipd (y − ŷ) when y ∈ S or ŷ ∈ S

in which, d is Dirac delta; ΓΘ denotes boundaries of the unit cell; and J·K is the jump operator.
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