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Abstract

The seismic behavior of massive geotechnical systems exhibits complex response patterns and mechanisms under severe loading

conditions. Some of these mechanisms are localized in space, but nevertheless impact significantly the entire system response and ultimately

its stability. A thorough monitoring and identification of the whole response of a distributed soil system commonly constitutes a significant

challenge, and would generally be prohibitively expensive. This study presents a point-wise identification technique of soil-systems using the

acceleration records provided by local instrument arrays. The newly developed identification algorithm consists of: (1) evaluation of strain

tensor time histories using the motions recorded by a cluster of instruments (arranged in an appropriate multi-dimensional configuration), (2)

estimation of the stress tensors corresponding to the evaluated strains utilizing a pre-selected class of constitutive models of soil response, (3)

computation of accelerations associated with estimated stresses using the equations of motion, and (4) calibration and evaluation of an

optimal model of soil response by minimizing discrepancies between recorded and computed accelerations. Computer simulations and

analysis of centrifuge tests of a soil–quay wall system showed that the proposed technique provides an effective tool to identify local soil

characteristics and properties.
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1. Introduction

Massive and distributed geotechnical systems exhibit a

broad range of response patterns when subjected to seismic

excitations. The response of sites, embankment and other

massive deposits depends on soil properties, water level and

degree of saturation, stratigraphy, topography, and other

factors. Under severe loading conditions, soils also exhibit

local response mechanisms which affect significantly the

whole system behavior. Some of these mechanisms reflect

the particulate nature of soils, and others are associated with

abrupt changes in properties. For instance, liquefaction of a

thin soil layer at a certain depth may lead to excessive site

lateral spreading and failure [1].

Identifying and calibrating models of the dynamic

response of a full soil system is a complex endeavor,

especially when the behavior of this system is marked by the

development of localized response mechanisms (e.g.

formation a shear band or liquefaction of a thin soil

stratum). Commonly, the measured or recorded global

response of a massive system does not provide enough

information to uniquely and accurately identify local

mechanisms. Global identification approaches based on

boundary value problem formulations smear these mech-

anisms over the entire system, and possibly lead to

erroneous idealizations. To reduce the problem indetermi-

nacy, a significant number of sensors would generally be

needed to monitor the system local and global response as

well as the boundary conditions. Furthermore, such a

thorough monitoring may be prohibitively expensive and

technically challenging.

This study presents an effective alternative to global

system analyses. The multi-dimensional constitutive

response of massive soil-systems is assessed locally using

point-wise identification analyses. These identifications are

performed using the accelerations recorded by local multi-

dimensional arrays of closely spaced instruments. The

developed identification algorithm does not use or require

the availability of recordings or measurements of boundary

conditions, nor the solution of boundary value problems.

Computer simulations and centrifuge model tests of a soil

system behind a quay wall were used to demonstrate the

capabilities of the proposed identification technique.

In Section 2, a general formulation of the identification

technique is presented. Thereafter, results of the conducted
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analyses using numerical simulations and centrifuge model

tests are described.

2. Identification algorithm

As mentioned earlier, local soil properties and mechan-

isms may have considerable impact on the behavior of

geotechnical systems. Accurate identification of these local

mechanisms based on modeling of a whole system requires

a significant number of sensors. The problem is even more

complex for semi-infinite systems, such as sites and slopes.

Adequate monitoring of the boundary conditions of such

systems when subjected to multi-dimensional excitations

remains an unresolved issue. Generally, the information

provided by a limited number of sensors would suffice only

when evaluating the main global features of a system

response, and may lead to erroneous identifications of local

mechanisms or properties.

A new system identification technique is developed in

this paper to analyze soil system local response mechanisms

using the motion recorded by a cluster of closely spaced

accelerometers appropriately located and arranged in 2D or

3D configurations (depending on the dimensionality of the

system response). The developed algorithm (Fig. 1) consists

of the following: (1) evaluation of strain tensor time

histories using the recorded accelerations, (2) estimation

of the corresponding stress tensor utilizing a pre-selected

class of constitutive models of soil response, (3) compu-

tation of the accelerations associated with the estimated

stress tensors using the equilibrium equations, and (4)

evaluation and calibration of an optimal model of soil

response. Model calibration is based on a minimization of

the discrepancies between recorded and computed accel-

erations using optimization techniques. The approach

focuses on the evaluation of actual soil dynamic response

characteristics and properties without interfering with the

mechanisms of seismic wave propagation. Fig. 2 shows

schematically a range of local conditions of a quay

wall–soil system which may advantageously be analyzed

using local instrument arrays. The proposed algorithm

requires specific configurations for local instrument arrays,

as described below. Such configurations are expected to

become widely used in centrifuge and 1g shake table model

tests, and eventually in full-scale system instrumentation.

2.1. Evaluation of the strain field

For small deformations, the strain tensor, 1, is given by:

1 ¼ 1
2
ðu7þ 7uÞ ð1Þ

where u ¼ {u1,u2,u3}T is displacement vector, 7 ¼ {›=›x1;

›=›x2; ›=›x3}T is Laplace differentiation operator, and xi

(i ¼ 1, 2, 3) refers to an orthogonal Cartesian coordinate

system. The displacements may be obtained through double

time integration of the corresponding acceleration records.

When a soil system is monitored by an array consisting of a

cluster of accelerometers (Fig. 2), estimates of the strain

field may be evaluated within the instrumented zone using

interpolation or finite differentiation techniques [2]. The

accuracy of these strain estimates is a function of spacing

and number of instruments used in interpolations. For a 2D

analysis, second order accurate estimates may be obtained at

instrument locations if a cluster of five appropriately

distributed sensors is used. Fig. 3 exhibits the required

instrument configuration to achieve such an accuracy for

interior, edge and corner cluster locations. Second order

accurate strains may also be evaluated at the center of a

group of four sensors within a rectangular or a parallelogram

configuration (Fig. 3), as discussed below.

Evaluation of the components of a 2D strain tensor also

requires recordings of soil response in two orthogonal or

skew rectilinear directions (i.e. x1 and x2 in Fig. 4). A larger

number of sensors are needed to achieve a higher order

accuracy (nine are required for fourth order accuracy).

Similarly, seven instruments distributed along three orthog-

onal or skew rectilinear directions are necessary to estimate

second order accurate strains in 3D analyses.

For 2D plane-strain conditions, the discrete counterpart

of strains at the ðp; qÞ instrument location in Fig. 3 (usingFig. 1. Algorithm of the developed local system identification approach.

Fig. 2. Schematic of a quay wall–soil system, showing a range of local

conditions which may advantageously be analyzed using the developed

local identification technique.
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a two-index numbering) is given by:

1ðp;qÞ ¼ 1
2
ðu7ðp;qÞ þ 7ðp;qÞuÞ ð2Þ

in which 7ðp;qÞ is a discrete counterpart of the Laplace

differentiation operator 7:

7ðp;qÞð·Þ ¼

ð·Þðpþ1;qÞ2ð·Þðp21;qÞ

Dx1

ð·Þðp;qþ1Þ2ð·Þðp;q21Þ

Dx2

8<
:

9=
; ð3Þ

Eq. (3) requires constant instrument spacing, Dx1 and Dx2,

in the x1 and x2 directions, respectively. Alternative

equations should be employed with nonuniform spacing,

as described by Zeghal et al. [3] for a 1D case.

In this study, second order accurate strains were therefore

evaluated using clusters of 9 (3-by-3 instruments within

parallelogram 2D configurations, Fig. 4) at locations of the

intermediate nodes ðp 2 1=2; q 2 1=2Þ; ðp þ 1=2; q 2 1=2Þ;

ðp 2 1=2; q þ 1=2Þ; and ðp þ 1=2; q þ 1=2Þ; and expressed in

terms of the skew rectilinear coordinates ji, (i ¼ 1,2,3). The

corresponding stresses obtained at these same locations

(Section 2.2) are then used to evaluate second order accurate

accelerations (Section 2.3) at the central location of the

cluster, as described below (Fig. 4). At these intermediate

nodes, the strain tensor is given by Ref. [4]:

1 ¼ F1̂F21 ð4Þ

in which 1̂ is the stress tensor in the skew rectilinear

coordinate system ji (i ¼ 1, 2, 3) (Fig. 4):

1̂ ¼ 1
2
ðû7̂þ 7̂ûÞ ð5Þ

In Eqs. (4) and (5), û and 7̂ (with 7̂ijð Þ ¼ ›ð Þi=›jj) are

displacement and differentiation vectors expressed in

the skew coordinate system, and F is transformation tensor

Fig. 3. Instrumentation configurations for evaluation of second order accurate 2D strain estimates (at locations ðp; qÞ and ðp þ 1=2; q þ 1=2Þ).

Fig. 4. Instruments, strain and stress point locations for a 2D local (point-wise) identification analysis.
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from the skew to the Cartesian coordinate system [4]:

Fij ¼
›xj

›ji

; i; j ¼ 1; 2; 3: ð6Þ

2.2. Constitutive modeling and estimation of the stress field

Under conditions of multi-dimensional wave propa-

gation, nonparametric estimates of stresses could not be

evaluated directly from recorded accelerations. Such

nonparametric identification is possible for level sites

under conditions of vertical propagation [3]. Any parametric

identification therefore requires the use of a pre-selected

class of constitutive models to evaluate stresses from the

estimated strains. The class of models may then be

calibrated using the measured response. To demonstrate

the capabilities of the proposed technique, this study

focused on analyses of clayey soils under short term loading

conditions. A Von-Mises criterion was therefore used to

describe the yield condition. A multi-surface plasticity

technique was used to idealize soil nonlinear, hysteretic and

path dependent stress–strain response and to address the

problem of load reversals associated with dynamic exci-

tations [5]. The elasto-plastic constitutive relations for

clayey soils are given by:

Yield function:

f ðs;a; kÞ ¼ 3
2
ðS 2 aÞ : ðS 2 aÞ2 k2 ¼ 0; ð7Þ

Flow rule:

d1p ¼ kdLlP ð8Þ

Hardening rule:

da ¼ kdLlam ð9Þ

in which s is stress tensor, S is deviatoric stress tensor

ðS ¼ s2 pd; with p ¼ 1=3traceðsÞ and d is Kroneker delta

unit tensor), a and k are plastic internal variables defining

location and size of the yield surface, d1p is plastic strain

tensor, P is a symmetric second order tensor giving the

direction of plastic deformations, m is a second order tensor

defining the direction of kinematic hardening, a is kinematic

hardening parameter, k l are Mac-Cauley brackets ðkdLl ¼
dLHðdLÞ; with H the Heavyside step function), and dL is

plastic loading function increment. The elasto-plastic

constitutive equation may then be expressed as [5,6]:

ds ¼ E 2
ðE : PÞðQ : EÞ

Hp 2 H0

 !
: d1 ð10Þ

in which ‘:’ denotes the scalar product of two tensors, E is

the elastic constitutive tensor (as a function of the soil shear

modulus G and Poisson’s ratio n ), Q is unit outward normal

to the yield surface, H0 ¼ Q:E:P, and Hp is the plastic

modulus. Under short term conditions, clayey materials

exhibit mostly an associated flow rule (P ¼ Q). Thus, the

variations of the elastic and plastic moduli, H0 and Hp, are

direct functions of the initial and elasto-plastic shear moduli

[5], G0 and G:

H0 ¼ 2G0 and
1

Hp

¼
1

2G
2

1

2G0

: ð11Þ

A purely hysteretic material energy dissipation commonly

does not account for soil damping observed at low-strains.

Therefore, material damping is supplemented by a viscous

dissipation mechanism:

dsvep ¼ dsþ hd _1 ð12Þ

in which s is given by Eq. (10), and h is a viscous damping

factor.

2.2.1. Recognition of the most consequential parameters

The number of variables which may be estimated in

identification analyses is limited by the observational data,

and recognition of the most consequential parameters is

therefore essential. The model variables consists of the

constitutive equation parameters, which are the material

elasticity parameters, G0 and n, and plasticity parameters, f,

a, k, a, and m. The mass density can be measured accurately

in laboratory or in situ.

Analyses of uniaxial constitutive relations suggest that

the elastic and plastic moduli are the most phenomenolo-

gical parameters that control a stress–strain response. The

modulus Hp, which may be expressed as:

Hp ¼
Q : ds

P : d1p
ð13Þ

plays the role of the plastic modulus for multi-dimensional

stress conditions. Furthermore, the plastic modulus vari-

ations are directly related to the dependence of the yield

surface f on the plastic internal variables a and k and on

evolution rules of these two internal variables [5]. There-

fore, selecting the yield surface and associated internal

variables or the plastic modulus as main parameters are

basically equivalent, and it is only a matter of convenience.

In view of Eq. (11), the identification analyses were limited

to evaluation of the initial and elastoplastic shear moduli, G0

and G. Variations of the Poisson’s ratio of clayey soils were

assumed to be not significant under short term dynamic

conditions.

2.3. Estimation of accelerations

For a total stress formulation, the system acceleration and

stress tensor are related through the equilibrium equations:

€u ¼
1

r
7·sþ b ð14Þ

where b is body force (i.e. gravity). A discrete counterpart

of Eq. (14) within the skew rectilinear coordinate system

was used to evaluate the acceleration corresponding to the

computed stresses ŝ ¼ F21sF (Eq. (12)). For a 2D setting

and when the instrument array consists of 9 (3 £ 3) 2D
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instruments (as shown in Fig. 4), the accelerations are

computed at the central point ðp; qÞ using the computed

stresses at the intermediate locations ðp 2 1=2; q 2 1=2Þ;

ðp þ 1=2; q 2 1=2Þ; ðp 2 1=2; q þ 1=2Þ; and ðp þ 1=2; q þ

1=2Þ: When a cluster is larger than 3 £ 3 instruments,

accelerations may be evaluated at the location of all interior

accelerometers (not located on an edge or a corner). The

evaluated accelerations are then transformed from the skew

rectilinear coordinate system to the Cartesian one:

€uðxÞ ¼ F €̂uðjÞ ð15Þ

2.4. Model calibration

The selected class of models were calibrated using a

simple deterministic approach. Stiffness and damping

parameters of the models described earlier were esti-

mated using a generalized (weighted) least-squares

optimality criterion [7], so as to minimize the difference

between observed acceleration time histories, €uðoÞ; and

those predicted by the selected models, €uðmÞ: The

optimality criterion is given by:

O ¼
ðT

0
k €uðoÞ 2 €uðmÞkwdt þ kG 2 GðaÞkwG

þ kh2 hðaÞkwh
ð16Þ

in which k €uðoÞ 2 €uðmÞkw refers to the weighted Euclidean

norm of €uðoÞ 2 €uðmÞ; W is a positive definite weighting

matrix which takes into account the available information

regarding the model performance, G and h refer

collectively to the shear stiffness and damping parameters

described below, G (a ) and h (a ) are a priori estimates of

G and h, and WG and Wh are associated weighting

matrices. The term kG 2 GðaÞkwG
þ kh2 hðaÞkwh

reflects

the uncertainty and confidence level in the a priori

parameter estimates and are used to improve the problem

conditioning [8].

The model optimal parameters are then given by:

min
G.0;h.0

O ð17Þ

This deterministic approach, which was adopted because of

it simplicity, does have an underlying equivalent probabil-

istic model [9]. A general functional was pre-selected for the

shear modulus based on expected variations for soil media

[10]:

GðgÞ ¼
G0 2 Gp

1 þ
g

g0


 �n
 �ðnþ1Þ=n
þ Gp ð18Þ

in which G0 and Gp are initial and large-strain moduli, g0

and n are parameters defining the variations as a function of

shear strain amplitude, g. Thus, the identification was

reduced to the estimation of G0, Gp, g0, n, and h.

The numerical evaluation of optimal parameters was

performed using quasi-Newton nonlinear optimization

algorithms [11]. Nonconstrained identifications were

employed using logarithmic change of variables.

3. Computer simulations and convergence properties

Analytical and mathematical analyses of the conver-

gence and accuracy characteristics of the developed

identification technique are feasible only for the simple

cases of elastic constitutive behaviors, and are not

possible for the more realistic nonlinear inelastic soil

models. Computer simulations were therefore conducted

to assess the capabilities of the developed identification

algorithm. The performed analyses were specifically

aimed at analyzing the impact of discretization errors

on the convergence characteristics of the developed

identification algorithm. Finite element models were

used to generate simulated acceleration records of a

hypothetical quay wall–soil system (Fig. 5). Shear wave

velocity profile of soil behind the quay wall was marked

by the presence of a weak soil layer. Simulated recorded

response of this weak layer in the vicinity of the quay

wall (Fig. 5) was used to demonstrate the algorithm

capabilities in capturing local response characteristics and

properties.

The simulation analyses revealed that when the

spacing between accelerometers is equal to the finite

element dimensions, the inverse problem solution exhi-

bits sensible errors. These errors decrease when the

spacing between accelerometers is two or more times the

dimensions of the finite elements and reflect the impact

of using two different discretization techniques in the

forward problem finite element solution and the inverse

problem finite difference algorithm. Such errors have

little relevance to the identification of real system. Fig. 6

shows a close agreement between the simulated recorded

motion and optimal accelerations identified using instru-

ments separated by distances equal to four times the

finite element dimensions (2.0 m £ 2.0 m). Close

agreements were also obtained between the estimated

Fig. 5. Model configuration for numerical simulations.
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and actual variations of the shear modulus (Fig. 6).

Errors were of the order of 2% or less.

When the spacing between accelerometers becomes

significant (i.e. higher than 1/5 of involved wave lengths)

the optimal solution was characterized by sensible errors

in strain estimates leading to unbalanced stresses and a

drift in computed accelerations. This drift is reduced

significantly if higher order interpolations (e.g. 5 point

approximations) are used.

4. Centrifuge model tests

A series of centrifuge tests of a soil–quay wall model

was conducted in a rigid box, as shown in Fig. 7. Stiff and

soft clays were used for the soil. The models were built and

instrumented at 1g (g ¼ acceleration of gravity) with

transducers installed to capture the 2D (lateral and vertical)

clayey soil response. Because of technical constraints (e.g.

number of channels for data acquisition) the accelerations

Fig. 6. Local identification of a soil–quay wall finite element simulation model (Fig. 5) subjected to a strong shaking: acceleration time histories, Fourier

amplitude spectra, and shear moduli at the central instrument station (next to the wall).
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were measured only at nine locations (Fig. 7), providing

experimental data to assess the constitutive stress–strain

relationship at one single location. In fact, the conducted

analyses were based on the assumption that the soil and the

rigid box or the quay wall have identical accelerations at the

interface. The discrepancies between these accelerations are

thought to have only minor effects on the conducted

analyses. 1D shaking was imparted along the model base

using an electro-hydraulic shaker. Because of the model

geometry and the presence of noise, the recorded vertical

accelerations behind the quay wall were sensible.

Fig. 8 show the recorded and computed acceleration

time histories and Fourier amplitude spectra at the central

recording location within a stiff clay layer for a low

amplitude shaking. This shaking induced mostly a linear

response, and the estimated low-strain shear modulus

(G0 ¼ 29 MPa) was found to be in close agreement with

the modulus estimated using 1D nonparametric stress–

strain analysis (G0 ¼ 25 MPa) using a vertical array

composed of the three central accelerometers [3].

Reasonably good agreement were also obtained between

computed and recorded accelerations for a strong shaking

Fig. 7. Configuration of soil–quay wall centrifuge test model.

Fig. 8. Local identification of the soil–quay wall centrifuge model of Fig. 7 subjected to a low-amplitude shaking: acceleration time histories and Fourier

amplitude spectra at the central instrument station.

M. Zeghal, C. Oskay / Soil Dynamics and Earthquake Engineering 22 (2002) 985–993 991



of a weaker clay layer as shown in Fig. 9. The associated

shear modulus variations are also displayed in this figure.

These variations were found to be consistent with the

trend obtained from a 1D nonparametric stress–strain

analysis [3]. The relatively lower quality of fitness for

the vertical accelerations reflects the higher noise-to-

signal ratio in this direction and the fact that the above

assumption regarding soil accelerations at the interface

with the box and the quay wall is more valid for the

lateral direction than for the vertical one.

5. Conclusions

This paper presents a multi-dimensional local system

identification technique of soil systems. Local mechanisms

of soil response are analyzed using accelerations recorded

by a cluster (2D array) of closely spaced instruments. This

technique does not use or require the availability of

recordings or measurements of boundary conditions, nor

the solution of the boundary value problem associated with

an observed system. Such an approach is particularly

Fig. 9. Local identification of the soil–quay wall centrifuge model in Fig. 7 subjected to a strong shaking: acceleration time histories, Fourier amplitude spectra,

and shear moduli at the central instrument station.
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advantageous when a system behavior is affected by local

mechanisms such as at the interface of soil and structural

elements. Global identification approaches based on bound-

ary value problem formulations will generally fail to capture

the effects of local mechanisms. Computer simulations and

analysis of centrifuge tests of a soil quay system showed that

the proposed technique provides an effective tool to identify

local characteristics and properties of soil system response.
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