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SUMMARY

Geotechnical structures and natural soil deposits are massive multi-phase particulate systems characterized
by the development of localized response mechanisms under extreme loading conditions. Identification and
analysis of such systems based on inverse boundary value problem formulations and sparse measurements
are generally indeterminate. This paper presents an alternative local inverse problem technique. Point-wise
identification analyses of the constitutive behaviour of water-saturated geotechnical and geophysical
systems are performed using acceleration and pore pressure records provided by a cluster of closely spaced
sensors. The developed novel technique does not require the availability of boundary condition
measurements, or solution of an associated boundary value problem. The constitutive behaviour at a
specific location of a soil-system is analysed independently of adjacent response mechanisms or material
properties. Numerical simulations and centrifuge tests of a soil-retaining wall system are used to
demonstrate the capabilities of the developed technique. Copyright # 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Geotechnical structures and natural soil deposits are massive systems which have distributed
parameters and state. Some deposits are in fact semi-infinite and have no well-defined
boundaries. Geotechnical systems generally exhibit a broad range of response patterns when
subjected to dynamic loading conditions [1–3]. Some of these patterns reflect local mechanisms
associated with the particulate nature of soils, and others are related to abrupt changes in
properties. Soil constitutive models have reached high levels of refinement and sophistication
e.g. Reference [4] in view of drastic improvements in computational tools over the last decades.
However, these models generally have limited predictive capabilities for severe loading
conditions if they have not been properly benchmarked [5]. Soil sample experiments (e.g. triaxial
tests) have been widely used to calibrate the constitutive relations of geotechnical systems.
Nevertheless, because of limitations in reproducing in situ stress and pore-fluid conditions, the
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consensus is that these experiments may not fully reflect reality. System identification and
inverse problem analyses using seismic records of full-scale systems as well as centrifuge models
are starting to play an important role in development as well as calibration and validation of soil
models.

Early monitoring efforts of the seismic response of soil systems consisted of measuring
accelerations along a free surface and when possible at an input boundary. Vertical (downhole)
array instrumentation have been employed to monitor level sites since the 1950s in the United
States and Japan. A significant number of sites and embankments has been instrumented with
such arrays over the last 2 decades, and some of these arrays included pore pressure sensors
[6–8]. The current state-of-the-art in centrifuge model testing also relies on vertical arrays of
acceleration and pore-pressure sensors [2]. Such instrument configurations monitor a soil-system
response at sparse locations. Identifying and calibrating models of the dynamic constitutive
response of a system using experimental data provided by sparse arrays is a challenging task,
especially when the behaviour of this system is marked by the development of localized
mechanisms (e.g. liquefaction or formation of shear bands). The problem is complicated further
in the absence of well-defined boundary conditions, such as for semi-infinite systems.
Historically, the complexity of soil behaviour and scarcity of adequate data had hindered the
adoption of system identification methods in geotechnical model development and calibration,
and only a limited number of studies has been undertaken in this regard e.g. Reference [9].

The particulate non-cemented characteristic of soil deposits allows easy instrumentation of
new and existing geotechnical systems with dense arrays of a new generation of miniature
accelerometer, inclinometer, and pore-water pressure transducers (some of which are micro-
electro-mechanical system or MEMS [10,11]). In view of their small size, these sensors may be
installed virtually at any location within a system and along its boundaries without
compromising its structural integrity. Nevertheless, a thorough monitoring of massive
geotechnical and geophysical systems is generally unpractical and costly. Furthermore, the
boundary conditions of semi-infinite systems (such as sites) subjected to earthquake excitations
will only be partially available at best. This paper presents a point-wise system identification
technique for analyses of the dynamic response of distributed soil systems using local arrays of
acceleration and pore-water pressure sensors. The developed technique is particularly
advantageous in investigations of semi-infinite soil systems or in the presence of local response
mechanisms. In the following sections, a general formulation of the identification approach is
described for cohesionless and cohesive soils. Results of the conducted identification analyses
are presented thereafter.

2. FORWARD PROBLEM

Saturated geotechnical systems consist of mixtures of mineral particles, forming a porous
matrix, and fluids (water and possibly others) filling the pores. These systems exhibit a broad
range of response patterns depending on confining pressure and level of deformation, as well as
pore fluid pressures [2,3]. Continuum models based on the mixture theory or Biot’s formulations
have been used to describe the response of granular soils. These models result in a full coupling
of the pressure and velocity fields of the water (fluid) phase with the displacement and
deformation fields of the solid skeleton. This study is based on the simplified, u–p model which
presumes that the effects of the fluid motion relative to the solid particles are negligible. Such a

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2003; 27:967–987

M. ZEGHAL AND C. OSKAY968



model is adequate for the relatively low frequency input motions which prevail during seismic
excitations. The coupled 2-phase model is given by [4,12]

Field equations: ð8x 2 OÞ

ðr0 þ pwdÞ:$þ rg ¼ r.uu ð1Þ

ðrwKgÞ:$þ grw ’ee : dþ
’ppw

Q

� �
¼ ðKðpw$þ rw .uuÞÞ:$ ð2Þ

dr0 ¼ dr0ðde;d’ee; . . .Þ ð3Þ

Boundary conditions:

uðx; tÞ ¼ %uuðx; tÞ ð8x 2 GuÞ ð4Þ

r:n ¼ %ssðx; tÞ ð8x 2 GsÞ ð5Þ

pwðx; tÞ ¼ %ppwðx; tÞ ð8x 2 GpÞ ð6Þ

Initial conditions: ð8x 2 OÞ

uðx; 0Þ ¼ u0ðxÞ ð7Þ

’uuðx; 0Þ ¼ ’uu0ðxÞ ð8Þ

pwðx; 0Þ ¼ pw0ðxÞ ð9Þ

in which t is time variable (a superposed dot denotes a material time derivative), x ¼ fx1; x2; x3g
T

refers to location within a Cartesian co-ordinate system, $ ¼ f@=@x1; @=@x2; @=@x3g
T is vector

differential operator, pw is pore-water pressure, r0 is effective stress tensor, e is strain tensor, d is
Kronecker delta unit tensor, u is displacement vector of the solid phase, g is gravity force vector
(g is gravitational acceleration), K is permeability tensor, Q is equivalent (soil–water) bulk
modulus, r and rw are mass densities of the saturated soil and water, respectively, %uu is prescribed
boundary displacement (input motion), %ss is prescribed boundary traction, n is unit outward
normal vector, %ppw is prescribed boundary water pressure, u0 and ’uu0 are initial displacement and
velocity, pw0 is initial pore-water pressure distribution, O is a geometrical model of the soil-
system domain (Figures 1 and 2), Gu and Gs are displacement and traction boundaries, and Gp is
pore-water pressure boundary. The forward boundary value problem of the dynamic response
of soil systems (represented by Equations (1)–(9)) have been widely solved numerically using the
finite element method e.g. Reference [4].

3. LOCAL IDENTIFICATION

Identification of the non-linear constitutive behaviour of massive soil systems based on inverse
analyses of the above boundary value problem (Equations (1)–(9)) is a significant analytical and
computational challenge. Geotechnical systems are generally stratified deposits with local
variabilities in stiffness and strength properties. Under severe loading conditions these systems
may exhibit localized response mechanisms, such as liquefaction or formation of shear bands (as
shown schematically in Figures 1 and 2). Earthquake case histories and centrifuge experiments
strongly suggest that such local variations in properties and mechanisms may have significant
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impact on the global behaviour and performance of massive soil systems [2,3]. A substantially
large number of sensors would generally be needed to fully monitor the global and local
response mechanisms of the solid and fluid phases as well as the boundary conditions of such
systems. The problem is even more complex for semi-infinite systems where the seismic source
and associated boundaries are unknown. Adequate monitoring of the boundary conditions of
these systems (when subjected to seismic excitations) remains an unresolved issue.

Global identification analyses of the seismic response of distributed systems using boundary
value problem formulations and information provided by a limited number of sensors (installed
at sparse locations within the system and along the boundary) are commonly indeterminate.
Data recorded by these sensors are generally sufficient to estimate only the global response
features, and do not provide enough information to identify a unique and physically realistic
model capable of accurately describing all involved response mechanisms. Consequently, global
identifications usually fail to capture local properties and response mechanisms, and average
their effects over the whole system domain. The problem was therefore addressed using an
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Figure 1. Schematic of the forward problem of a soil-system subjected to seismic excitations.
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Figure 2. Schematic of a semi-infinite soil system showing a range of conditions which may be analysed
advantageously using local identification techniques.
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alternative local approach. A novel point-wise identification methodology and technique were
developed to analyse the response of soil-systems locally using the motions and pore-pressures
recorded by multi-dimensional dense arrays (clusters) of accelerometers and pressure sensors.
The developed technique does not require recordings of boundary conditions or solution of an
associated boundary value problem. The identification problem of saturated
2-phase soils is reduced to a single solid phase analysis by using the concept of effective
stresses and local measurements of pore-water pressure (in addition to acceleration).

3.1. Algorithm

The developed local identification technique consists of: (1) estimation of strain tensor time
histories (Section 3.2) using the motions recorded by a cluster of instruments (arranged in
appropriate multidimensional configurations), (2) evaluation of stress tensors corresponding to
the estimated strains employing a pre-selected class of constitutive models of soil response
(Section 3.3), (3) computation of accelerations associated with the estimated stresses and
recorded pore-water pressures utilizing the equilibrium equations (Section 3.4), and (4)
evaluation and calibration of an optimal model of soil response by minimizing the discrepancies
between recorded and computed accelerations (Section 3.5). In steps (1) and (3), discrete
differentiation tools were employed to evaluate strain tensor-time histories from displacement
records, and to obtain accelerations corresponding to the computed stresses. Figure 3 displays a
flowchart of the developed algorithm.

3.2. Evaluation of strains

For small deformations, the strain tensor, e; is given by

e ¼ 1
2
ðu$þ $uÞ ð10Þ

When a soil system is monitored by an array consisting of a cluster of closely spaced
accelerometers, estimates of the strain field may be evaluated within the instrumented zone using

and
Model Update
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Pore Pressures

Strains Constitutive
Model

Computed
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Optimization
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Figure 3. Algorithm of proposed local identification technique of saturated soil systems (using
a u–p formulation).
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displacements obtained through double time integration of acceleration records along with finite
differentiation [13] or other interpolation techniques. The accuracy of these strain estimates is a
function of spacing, number of measurements used in interpolations, and involved motion
wavelengths (Section 4.2). For a 3-D analysis, second order accurate estimates may be obtained
utilizing the 3-D motions provided by a group of 7 accelerometers appropriately distributed
along the x1; x2; and x3 directions, as shown in Figure 4. For instance, the strain tensor at the
ðp; q; rÞ instrument location of Figure 4 may be estimated using a central difference scheme:

eðp;q;rÞ ¼ 1
2ðu$

ðp;q;rÞ þ $ðp;q;rÞuÞ ð11Þ

in which p; q and r refer to a 3-index position numbering, and $ðp;q;rÞ is a discrete counterpart of
the differential operator $ at the ðp; q; rÞ location:

$ðp;q;rÞð:Þ ¼

ð:Þðpþ1;q;rÞ�ð:Þðp�1;q;rÞ

2Dx1

ð:Þðp;qþ1;rÞ�ð:Þðp;q�1;rÞ

2Dx2

ð:Þðp;q;rþ1Þ�ð:Þðp;q;r�1Þ

2Dx3

8>>>><
>>>>:

9>>>>=
>>>>;

ð12Þ

Equation (12) presumes constant instrument spacings, Dx1; Dx2; and Dx3 in the x1; x2; and x3
directions, respectively. Alternative expressions may be employed with nonuniform spacings
[13,14]. A larger number of sensors is needed to achieve higher order accuracies (13 are required
for a 4th order accurate 3-D analysis). Within the developed local identification technique, the
strain estimates are employed along with a class of constitutive soil models to evaluate the
associated stresses (Section 3.3). These stresses are subsequently used to compute the
corresponding accelerations, as described in Section 3.4. Thus, a minimum of 19 accelerometers
distributed within an orthogonal (3-by-3-by-3) parallelepiped arrangement are required to
evaluate the strains at the 6 central locations of the configuration facets using 2nd order
accurate forward and backward difference approximations (Fig. 4). The stresses corresponding
to these strains are then used to evaluate accelerations at the central ðp; q; rÞ location of the

x1

2x

x3
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(p,q,r-1)

(p,q-1,r) (p,q,r)

(p-1,q,r)

(p,q,r+1)

(p,q+1,r)

Figure 4. Basic orthogonal configuration of accelerometers required to evaluate second order accurate
strains at a ðp; q; rÞ location based on the classical central difference technique.
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cluster (Fig. 4). For saturated cohesionless soils, six additional sensors are required to monitor
the pore pressure at the central locations of the configuration facets (where strains are
estimated). Such an identification procedure was found to be quite sensitive to errors associated
with forward and backward differentiations. Furthermore, installing pore pressure sensors and
accelerometers at the same exact locations (facet central points) may not be technically possible.

This paper presents two alternative procedures in which arrays of 7 and 19 accelerometers
uniformly distributed within a general skew-rectilinear (or orthogonal) parallelepiped
configurations (Figure 5) are used to achieve first and second order accurate 3-D analyses,
respectively. The strains are evaluated at 6 of the 8 intermediate central locations ðp � 1

2
;

q� 1
2; r �

1
2Þ to ðp þ 1

2; qþ
1
2; r þ

1
2Þ of the accelerometer array (Figures 5 and 6). For saturated

cohesionless soils, the identification technique requires pore pressure measurements at these six
intermediate central locations. Figure 7 displays the sensor configuration scheme for first and
second order accurate 2-D analyses (the strains are evaluated and pore-water pressures are
measured at the four intermediate locations ðp � 1

2
; q� 1

2
Þ to ðp þ 1

2
; qþ 1

2
Þ).

First order accurate estimate of the strain tensor at the ðp þ 1
2
; qþ 1

2
; r þ 1

2
Þ intermediate

central location, for instance, may be evaluated in a x0i skew rectilinear co-ordinate system
(Figure 5) using the finite difference operator:

$
ðpþ1

2
;qþ1

2
;rþ1

2
Þ

x0 ð:Þx0 ¼

ð:Þðpþ1;q;rÞ
x0

�ð:Þðp;q;rÞ
x0

Dx0
1

ð:Þðp;qþ1;rÞ
x0

�ð:Þðp;q;rÞ
x0

Dx0
2

ð:Þðp;q;rþ1Þ
x0

�ð:Þðp;q;rÞ
x0

Dx0
3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð13Þ
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Figure 5. Skew-rectilinear configuration of accelerometers used in first and second order
accurate local 3-D identification analyses.
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and the motions recorded by the instruments at ðp; q; rÞ; ðp þ 1; q; rÞ; p; qþ 1; rÞ; and ðp; q; r þ 1Þ
locations of Figure 5. Analogous expressions may be used to evaluate the strain at other
intermediate locations. Second order accurate strains were evaluated in terms of the skew
rectilinear co-ordinates xi ði ¼ 1; 2; 3Þ shown in Figure 6. For example, strains at the
intermediate ðp þ 1

2
; qþ 1

2
; r þ 1

2
Þ location were estimated using the motion recorded by the ðp þ

1; q; rÞ; ðp; qþ 1; rÞ; ðp; q; r þ 1Þ; ðp þ 1; qþ 1; rÞ; ðp; qþ 1; r þ 1Þ; and ðp þ 1; q; r þ 1Þ instru-
ments. At these intermediate locations, the strain tensor is given by [15]

e ¼ Ux�xexU
�1
x�x ð14Þ

in which ex is strain tensor in the skew rectilinear co-ordinate system xi (Figure 6):

ex ¼ 1
2
ðux$x þ $xuxÞ ð15Þ
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Figure 6. Detailed view of sensors used to estimate strains at the ðp þ 1
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Figure 7. Instrument array configuration for first and second order accurate 2-D analyses.

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2003; 27:967–987

M. ZEGHAL AND C. OSKAY974



In Equations (14) and (15), ux and $x ¼ f@=@x1; @=@x2; @=@x3g
T are displacement and differential

vectors expressed in the skew co-ordinate system xi; and Ux�x is the transformation tensor from
the skew rectilinear to the Cartesian co-ordinate system [15]:

½Ux�x�ij ¼
@xj
@xi

; i; j ¼ 1; 2; 3 ð16Þ

The corresponding stresses obtained at these same intermediate locations (Section 3.3) are then
used to evaluate second order accurate accelerations (Section 3.4) at the central location of the
cluster (Figure 5).

3.3. Constitutive modelling and estimation of stresses

Non-parametric estimates of stresses may be computed directly from recorded accelerations
only for simple systems and loading conditions, such as a level site subjected to vertical seismic
wave propagation [16]. Conversely, distributed soil-systems are generally statically indetermi-
nate, and constitutive modelling is necessary to evaluate stress tensors corresponding to the
strains estimated in Section 3.2. Two classes of visco-elasto-plastic stress–strain models were
therefore selected to idealize soil dynamic response. A Drucker–Prager model was used to
describe the pressure dependent behaviour of granular cohesionless soils, while a Von-Mises
model was used in analyses of short term response of clayey media. A multi-surface plasticity
technique was used to model the non-linear, hysteretic and path dependent stress–strain
response of soils and address the problem of load reversal associated with dynamic excitations
[17]. The elasto-plastic constitutive model for a saturated cohesionless granular soil is given by
[18]

Yield function:

f ðr;a;MÞ ¼ 3=2ðS0 � p0aÞ : ðS0 � p0aÞ � ðMp0Þ2 ¼ 0 ð17Þ

Flow rule:

dep ¼ hdLiP ð18Þ

Hardening rule:

da ¼ hdLial ð19Þ

dM ¼ hdLib ð20Þ

in which S0 ¼ r0 � p0d is deviatoric effective stress tensor, p0 ¼ 1
3
traceðr0Þ is mean effective

confining pressure, a and M are plastic internal variables defining location and size of the yield
surface, ‘:’ denotes the scalar product of two second order tensors, dep is plastic strain tensor, P
is a symmetric second order tensor giving the direction of plastic deformations, a is kinematic
hardening parameters, l is second order tensor defining the direction of kinematic hardening
[17], b is isotropic hardening parameter (a purely kinematic hardening rule was used in this
study), h i are Mac-Cauley brackets (hdLi ¼ dLH ðdLÞ; with H the heaviside step function), and
dL is plastic loading function increment: dL ¼ Q : dr0=Hp (in whichQ is outward normal to the
yield surface, and Hp is plastic modulus). The visco-elasto-plastic constitutive equation may then
be expressed as [4,17]

dr0 ¼ E�
ðE : PÞðQ : EÞ

Hp � H0

� �
: deþ zd’ee ð21Þ
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in which E is elastic constitutive tensor (as a function of the soil elastic shear modulus, G0 and
Poisson’s ratio, n), H0 ¼ Q : E : P; and z is viscous damping factor. A viscous damping
mechanism was used to supplement the purely hysteretic (material) energy dissipation which
commonly fails to account for soil low-strain damping observed in case history investigations
[19]. The deviatoric plastic flow is selected to be associative, while a non-associative rule is used
for the volumetric component to accommodate both contractive and dilative behaviours [4,18].
The volumetric flow rule suggested in Reference [18] was adopted in this study:

traceðPÞ ¼
3S0 : S0 � 2ð%ZZp0Þ2

3S0 : S0 þ 2ð%ZZp0Þ2
ð22Þ

in which %ZZ is material parameter associated with the transition from a contractive to a dilative
behaviour.

The short term yield conditions of clayey soils are independent of confining pressures,
and may be expressed in terms of total stress tensor r using the Von-Mises criterion:
f ðr;a; kÞ ¼ 3=2ðS� aÞ : ðS� aÞ � k2 ¼ 0 (in which S is deviatoric stress tensor and k is plastic
internal variable defining the size of the yield surface). Under short term loading conditions,
clayey materials exhibit mostly an associative flow rule (P ¼ Q). The corresponding constitutive
equation is similar to Equation (21), and given in terms of total stresses.

3.3.1. Recognition of the most consequential parameters. The number of variables which may be
estimated with a reasonable resolution is limited in identification analyses by the information
contained in the experimental or observational data. Recognition of the most consequential
parameters is therefore essential. The selected model parameters consist of: (1) material elasticity
coefficients of shear modulus and Poisson’s ratio (G0 and n), and (2) plasticity variables
(f ;M ;a; a;l;P; and Hp). The initial conditions may reasonably be considered to correspond to
rest, and the mass density may be measured accurately in laboratory or in situ. The boundary
conditions are not required in local identifications using the developed technique.

Analyses of uniaxial constitutive relations suggest that the elastic and plastic moduli are the
most consequential phenomenological parameters that control a stress–strain response.
Furthermore, an accurate description of the plastic modulus upon unloading and reloading
in a different direction, is essential in modelling a dynamic constitutive behaviour. The modulus
Hp; which may be expressed as follows (by combining the flow rule and loading function):

Hp ¼
Q : dr0

P : dep
ð23Þ

plays the role of plastic modulus for multidimensional stress conditions. This modulus is also
given by [18]:

Hp ¼ �
a@f=@a : lþ b@f=@M

jj@f=@rjj
ð24Þ

These two equations show clearly that the variations of the plastic modulus are a direct function
of the yield relationship, the plastic internal variables, the flow rule, and hardening rules of the
plastic internal variables. Calibration of a constitutive model using the plastic modulus as main
parameter is basically equivalent to an identification analysis based the yield, flow and
hardening parameters. The former is only more convenient.
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The plastic modulus, Hp; of the soil models described above is directly related to the usual
soil shear modulus. For clayey soils, this modulus reduces to: Hp ¼ 2ð1=G� 1=G0Þ

�1; where G0

and G are elastic and tangent shear moduli. Similarly, for a cohesionless soil under triaxial
loading conditions with constant effective confining pressure, p0 ¼ pc; the plastic modulus is
given by

Hp ¼ 2
1

G
�

1

G0

� �
1þ

S0 : S0

3p2
c

� �� ��1

ð25Þ

The elastic and tangent shear moduli, G0 and G; and the damping factor, z; along with the
volumetric flow relation (Eq. (22)) for cohesionless media, are therefore the set of fundamental
phenomenological parameters that control the behaviour of soils. Poisson’s ratio variations
were assumed to be insignificant under short term dynamic loading conditions.

3.4. Estimation of accelerations

The computed stresses and recorded pore pressures were employed, along with the equilibrium
equations, to evaluate the accelerations, .uuðmÞ; associated with the selected class of constitutive
models:

.uuðmÞ ¼
1

r
ðr0 þ pwdÞ � $þ g ð26Þ

A discrete counterpart of Equation (26) within the xi skew rectilinear co-ordinate system was
used to evaluate the accelerations at the ðp; q; rÞ central location of a parallelepiped instrument
configuration (Figures 4 and 6), which correspond to the computed stresses rx ¼ U�1

x�xrUx�x at
the intermediate locations ðp � 1

2
; q� 1

2
; r � 1

2
Þ to ðp þ 1

2
; qþ 1

2
; r þ 1

2
Þ:When a cluster is larger than

3-by-3-by-3 accelerometers, accelerations may be evaluated at the location of all interior sensors
(not located on an edge or a corner).

3.5. Model calibration

The selected class of models were calibrated utilizing a simple deterministic approach. Stiffness
and damping parameters of the models described above were estimated using generalized
(weighted) least-squares optimality criteria [20–22], so as to minimize the discrepancy between
observed (recorded) acceleration time histories, .uuðoÞ; and those predicted by the selected models,
.uuðmÞ; at the central location ðp; q; rÞ: The optimality criterion is given by

O ¼
Z T

0

jj.uuðoÞ � .uuðmÞjjW dt þ jjp� pðaÞjjWp
ð27Þ

in which T is time length of observations, jj.uuðoÞ � .uuðmÞjjW refers to the weighted Euclidean
norm of .uuðoÞ � .uuðmÞ; W is a positive definite weighting matrix which takes into account the
available information regarding the model performance [22], p refers collectively to the stiffness
and damping parameters described above, pðaÞ is a priori estimate of p; and Wp is an associated
weighting matrix. The term jjp� pðaÞjjWp

reflects the uncertainty and confidence level in the
a priori parameter estimates, and is used to improve the problem conditioning [22,23].
The model optimal parameters are then given by: minp>0 O: This deterministic approach, which
was adopted in view of its simplicity, does have an underlying equivalent probabilistic
model [24].
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A general functional was pre-selected for the shear modulus based on expected variations for
soil media [25]:

GðcÞ ¼
G0 � Gp

ð1þ ð gg0Þ
nÞðnþ1Þ=n

þ Gp ð28Þ

in which G0 and Gp are initial and large-strain moduli and, g0 and n are parameters defining the
variations as a function of shear strain amplitude, g: Thus, the identification is reduced to an
estimation of G0; Gp; g0; n; %ZZ; and z: The numerical evaluation of optimal parameters was
performed using quasi-Newton non-linear optimization techniques [26,27]. Non-constrained
algorithms were employed using a logarithmic change of variables.

4. COMPUTER SIMULATIONS AND VERIFICATION

Analytical investigation of convergence and accuracy of the developed identification technique
is feasible only for the simple case of linear elastic systems. For these systems, uniqueness of the
identification problem solution may be demonstrated for noise free acceleration and pore
pressure records. Such analyses are not possible for a more realistic elasto-plastic 2-phase soil
model (Eq. (21)). The proposed identification technique was therefore assessed using computer
simulations. The conducted investigations were specifically aimed at analysing convergence
properties and impact of discretization errors. Finite difference and finite element computational
simulations were used to generate synthetic seismic records of the soil-retaining wall system of
Figure 8. Soil behind the retaining-wall consisted of water saturated cohesionless granular
strata, which are characterized by the constitutive model given by Equations (17)–(22) and
marked by the presence of a weak layer. The synthetic accelerations of this layer in the retaining-
wall vicinity and the free-field (Fig. 8) were used to demonstrate the developed technique
capabilities in capturing local response characteristics and properties.

x tu  (  ,   )

5 
m

4 
m

6 
m

1-D array for analysis
of local free-field behavior

1
1 2 3

3

2

Rigid base 2-D array for analysis
of a local behavior

Soft Soil Layer

Retaining wall

Accelerometer Pore pressure sensor Transmitting boundary

Figure 8. Configuration of soil-retaining wall model used in numerical simulations.

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2003; 27:967–987

M. ZEGHAL AND C. OSKAY978



4.1. Verification

Numerical investigations were employed first to examine the consistency of the developed
discrete (finite difference) local analysis algorithm (Sections 3.2–3.4) with the associated
boundary value problem (Section 2). Using the actual soil model and properties, estimates
of the weak layer accelerations using the developed local technique (Equation (26)) were
found, as expected, to be identical to those that were evaluated based on a finite-difference
solution of the global boundary value problem of the soil-retaining wall system (Equations
(1)–(9)).

Thereafter, local 2-D identification analyses of the weak layer were conducted using the
synthetic response of a finite element model. The records (synthetic response) provided by an
array of a 3-by-3 accelerometers (separated by 2 m laterally and vertically), and 4 pore pressure
sensors (at the intermediate central locations of the accelerometer array, Figure 8) were
employed to identify soil response properties behind the retaining wall. The synthetic
accelerations along the central vertical array (i.e. at locations ð2; 1Þ; ð2; 2Þ and ð2; 3Þ) and pore
pressure at the intermediate central points ð21

2
; 11

2
Þ and ð21

2
; 21

2
Þ are displayed in Figure 9. The

recorded (simulated) and identified accelerations at the central location ð2; 2Þ of the instrument
array were found to be in good agreements (Figure 10). Close agreements were also obtained
between the estimated and actual shear modulus variations with strain amplitude. Note that no
a priori information was used in these analyses as Wp was set to the zero matrix. Errors were
generally of the order of 1.5% or less for the shear modulus variables (Equation (28)) and less
than 0.5% for the dilation parameter %ZZ (Equation (22)). These errors reflected the impact of
discretization errors associated with the finite element (used in generating synthetic data) and
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Figure 9. Recorded (simulated) accelerations and pore water pressure ratios (ru) of the soil-
retaining wall system of Figure 8.
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finite difference (used in local identification) techniques. Figure 11 shows the optimal shear
stress–strain history at the ð212; 1

1
2Þ location of the employed 2-D array behind the retaining wall

(Figure 8), and corresponding history at the nearest finite element integration point. These two
histories present the same response patterns. The observed discrepancies are associated mostly
with the difference in induced strains at these 2 different locations (which are separated by a
distance of about 0:4 m).
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time histories, Fourier amplitude spectra (FAS), and shear moduli at the ð2; 2Þ central instrument location.
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4.2. Accuracy

Accuracy of the developed identification technique depends on the characteristics of involved
system response and implementation details of the algorithm.

Permanent deformation. The response of soil systems is often marked by the appearance of
permanent displacements and deformation when subjected to moderate or strong dynamic
excitations. However, double time integration of acceleration records usually provides accurate
estimates of only cyclic displacements. A number of numerical simulations were conducted to
assess the impact of using only the cyclic component of strains (Section 3.2) on the proposed
local identification analyses. These simulations revealed that neglecting the permanent
components does not lead to significant errors in identified constitutive parameters if the
amplitude of permanent strains is of the same order or less than that of cyclic components. New
miniature sensing devices capable of measuring permanent displacements will be available in the
near future e.g. Reference [28], and the evaluation of permanent strains will become a non-issue.

Response wave-length. The conducted analyses revealed that the solution to the identification
problem exhibits sensible errors when the accelerometer spacings become significant.
Discrepancies due to aliasing lead to sensible errors in strain estimates, unbalanced stresses,
and a drift in computed accelerations when these spacings are higher than about 1=20 of
involved wave lengths (i.e. higher than about 4 m for the system of Figure 8). These errors are
reduced substantially when higher order interpolations or discrete differentiations are employed
(e.g. using a 5-by-5 array of instruments for a 2-D analysis).

Algorithm. Alternative implementation schemes of the local identification technique were
employed to assess the impact of the central acceleration records (of the instrument array) which
are used in strain evaluation (Section 3.2) as well as in model calibration (Section 3.5). Figure 12
sketches a scheme (for a 2-D analysis) that uses the motion recorded by the central
accelerometer only in model calibration. Identifications using this scheme were found to be in
close agreement with those conducted using the original algorithm (Figure 7). Slight
discrepancies were observed, and reflected the impact of instrument spacing and location on
the evaluated strains (Section 3.2) and accelerations (Section 3.4) using finite differentiation
techniques.
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Figure 11. Optimal shear stress–strain history at the ð21
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Þ location behind the retaining wall of Figure 8

and corresponding history at the nearest finite element integration point.
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5. CENTRIFUGE MODEL ANALYSES AND VALIDATION

Centrifuge tests of a soil-retaining structure system were conducted in a rigid box under a 50 g
gravity field (Figure 13) at Rensselaer. Soil consisted of a water saturated Georgia Kaolinite clay
layer (with a Plasticity Index PI ¼ 10%) overlying well-compacted wet Nevada sand (having a
relative density Dr ¼ 70%). One-dimensional lateral shaking was imparted along the model base
using an electro-hydraulic shaker. The 2-D response of the clayey soil was monitored at 15
locations behind the retaining structure using a 5� 3 array of accelerometers (Figure 13). The
recorded accelerations provided ample experimental data to locally assess the constitutive
stress–strain relationship of the clay layer using the developed second order accurate algorithm.
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Figure 13. Configuration of analysed soil-retaining wall centrifuge model.
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Figure 12. Alternative scheme of the local identification technique which uses the motion recorded by the
central accelerometer in model calibration only (Section 3.5).
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Fig. 14 shows the recorded and computed (optimal) acceleration time histories as well as
Fourier amplitude spectra at the (4,2) location within the clay layer when subjected to a low
amplitude excitation. This excitation induced mostly a linear response, and the estimated low-
strain shear modulus (G0 ¼ 3:3 MPa) was found to be in close agreement with the modulus
estimated based on a non-parametric 1-D shear stress–strain [16] analysis (G0 ¼ 3:6 MPa) using
only the lateral motion of the vertical array composed of accelerometers at the ð4; 1Þ; ð4; 2Þ; and
ð4; 3Þ locations.

The soil-retaining wall system was thereafter subjected to a series of base excitations with
increasing amplitudes. Figure 15 exhibits soil accelerations recorded by the second and fourth
vertical arrays (of accelerometers at the ð2; 1Þ; ð2; 2Þ; and ð2; 3Þ; and ð4; 1Þ; ð4; 2Þ; and ð4; 3Þ
locations) under a base acceleration having a peak amplitude of the order of 0:4 g: The identified
accelerations at ð4; 2Þ are shown in Figure 16, along with the corresponding shear modulus
variation with strain amplitudes. Good agreements were obtained between computed and
recorded accelerations at this ð4; 2Þ location, as well as at ð2; 2Þ and ð3; 2Þ: The estimated low
strain viscous damping was of the order of 3%, which is within the general range of values
obtained for clayey soils based on sample testing [29].

Figure 17 depicts the optimal stress strain histories at the ð4; 11
2
Þ and ð2; 11

2
Þ locations along

with the corresponding histories obtained using an approximate non-parametric 1-D stress–
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Figure 14. Local identification of the soil-retaining wall centrifuge model of Figure 13 when
subjected to a low-amplitude shaking: acceleration time histories and Fourier amplitude

spectra (FAS) at the ð4; 2Þ instrument location.
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strain analysis [16]. This approximate analysis neglects the normal lateral stresses and assumes
that the soil lateral response is fully described by a shear beam idealization. Significant
discrepancies in stresses and stiffness properties are observed between these two estimates. The
non-parametric 1-D stress–strain analysis was therefore modified to take into account the
impact of lateral normal stresses. The simple shear beam idealization was coupled with a
Winkler spring model with a stiffness coefficient estimated using a simple 1-D analysis of lateral
normal wave propagations (more details are provided in Reference [30]). The stress–strain
histories provided by this modified approach are found to be in good agreements with those
identified using the developed local algorithm. The variations of shear moduli evaluated based
on these two techniques were consistent (Figure 16).

6. CONCLUSIONS

A local system identification technique was developed to investigate the constitutive behaviour
of distributed geotechnical and geophysical systems. Local mechanisms of soil response were
analysed using acceleration and pore pressure records provided by a cluster of closely spaced
instruments. The developed technique does not require the availability of boundary condition
measurements, or solution of a boundary value problem associated with an observed system.
Such an approach is particularly advantageous in investigations of the seismic response of semi-
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infinite systems, as well as in the presence of local mechanisms. Global identifications based on
boundary value problem formulations generally smear the effects of local mechanisms and may
lead to erroneous results. Computer simulations and centrifuge tests of a soil-retaining wall
system were used to assess the capabilities of the developed technique. The conducted analyses
showed that local system identification provides an effective means to analyse the constitutive
behaviour of a complex distributed soil system at specific locations independently of adjacent
response mechanisms or material properties.
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