
Fatigue Life Prediction using 2-Scale Temporal
Asymptotic Homogenization

Caglar Oskay and Jacob Fish
Civil and Environmental Engineering Department

Rensselaer Polytechnic Institute, Troy, NY, 12180, USA

Abstract

In this manuscript, fatigue of structures is modeled as a multiscale phenomenon in time do-
main. Multiple temporal scales are introduced due to the fact that the load period is orders of
magnitude smaller than the useful life span of a structural component. The problem of fatigue
life prediction is studied within the framework of mathematical homogenization with two tem-
poral coordinates. By this approach the original initial boundary value problem is decomposed
into coupled micro-chronological (fast time-scale) and macro-chronological (slow time-scale)
problems. The life prediction methodology has been implemented in ABAQUS and validated
against direct cycle-by-cycle simulations.

Keywords: fatigue life prediction, crack propagation, temporal homogenization, brittle dam-
age, cohesive model

1 Introduction

Fatigue of structures is a multiscale phenomenon in space and time. It is multiscale in space
because a crack (or microcrack) size may be of several orders of magnitude smaller than a structural
component of interest. It is multiscale in time because the load period could be in the order of
seconds whereas the component life may span years. Given this tremendous disparity of spatial
and temporal scales, life predictions pose a great challenge to mechanics and materials science
communities.

Fatigue life prediction methods range from experimentation, to modeling and computational
resolution of spatial scales. The basic design tool today is primarily experimental, based on so
called S-N curves, which provide the component life versus cyclic stress level. Since there is
a scatter of fatigue life data, a family of S-N curves with probability of failure known as S-N-
P plots are often used. Fatigue experiments are generally limited to specimens or small structural
components, and therefore, boundary and initial conditions between the component or interconnect
of interest and the remaining structure involves some sort of modeling. Typically finite element
analysis is carried out to predict the ”far fields” acting on the critical component or interconnect.
These types of calculations do not take into account force redistribution caused by accumulation
of damage taking place in the critical components or interconnects.

Paris law [1] represents one of the first attempts to empirically model fatigue life. It states
that under ideal conditions of high cycle fatigue (or small scale yielding) and constant amplitude
loading, the growth rate of long cracks depends on the amplitude of the stress intensity factors.
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Models departing from these ideal conditions have also been documented (e.g., [2, 3, 4, 5, 6]).
Various crack growth ”laws” are being used in conjunction with multiple spatial scales methods
which allow for propagation of arbitrary discontinuities in a fixed mesh (e.g., [7, 8]).

An attempt to resolve the temporal scales, i.e., to carry out cycle-by-cycle simulation, in con-
junction with a cohesive law crack model based on unloading-reloading hysteresis has been re-
cently reported by Nguyen et al. [9]. Cycle-by-cycle simulation, however, may not be feasible for
large scale systems undergoing high cycle fatigue. Nevertheless, an attractive feature of this ap-
proach is that it allows for a unified treatment of long and short cracks and the effects of overloads.

The first multiscale computational technique in the time domain, known as the ”cycle jump”
technique [10, 11], has been proposed in the context of continuum damage mechanics. By this
approach a single load cycle is used to compute the rate of fatigue damage growth at each spatial
integration point and then to construct an ordinary differential equation [12]:

dω(xa)
dN

= ωK (xa)−ωK−1(xa) (1)

whereω(xa) is the damage variable at the integration pointa; N is the cycle variable;K is the cycle
count; and,ωK andωK−1 are the states of the damage variable at the end ofKth and(K−1)th cycles,
respectively. Adaptive integrators have been used to control the accuracy of the integration [12].
Unfortunately, while advancing the state variables (damage variables) the constitutive equations
are violated requiring adjustment of governing equations, which may not be unique.

In this paper we present a new paradigm for multiscale modeling of fatigue based on multiple
temporal scale asymptotic analysis. The proposed methodology hinges on the hypothesis of local
periodicity in the time domain - the concept that serves the foundation of the spatial homogeniza-
tion theory [13]. In the temporal homogenization proposed here, both the applied loads and the
response fields are assumed to depend on a slow time coordinate,t (slow degradation of material
properties due to fatigue), as well as on the fast time coordinate,τ (due to locally periodic load-
ing). The concept of local periodicity implies that at the neighboring points in the time domain
(samet), homologous by periodicity (sameτ), the value of the function is the same, but at points
homologous by periodicity but separated int, the value of the function can be different. In case
of overloads, temporal scales cannot be separated, and thus, the solution has to be resolved in the
portion of the time domain where the overloads are present, while elsewhere in the time domain
the temporal homogenization theory developed here can be exercised.

The theory is developed for the case of accumulation of distributed damage (microvoids or
microcracks) and propagation of macrocracks up to failure. For the latter, a cohesive crack model
in the form of continuum damage mechanics exhibiting unloading-reloading hysteresis developed
by Fish and Yu [12] is adopted. Classical crack growth models cannot be applied to direct cycle-
by-cycle simulation due to the nondissipative nature of these models for subcritical cyclic loading.
Crack closure is enforced by selecting appropriate parameters within the damage model that effec-
tively serve as a penalty function. In the case of distributed damage, continuum damage mechanics
exhibiting unloading-reloading hysteresis [12] is employed. Damage evolution in the form of a
power law along the lines of viscoplasticity is used as a regularization of local softening behavior.

2 Problem statement for solids undergoing fatigue damage

In the present study, multiple temporal scales are introduced to model slow degradation of ma-
terial properties due to fatigue, as well as to resolve the deformation within a single load cycle.
The macro-chronologicalscale is denoted by the intrinsic time coordinate,t, while themicro-
chronologicalscale is denoted by the fast time coordinate,τ. A local periodicity (τ-periodicity)
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assumption is made for field variables (unless otherwise stated), similar to Y-periodicity in spa-
tial homogenization theory. The two scales defined above are related by a small positive scaling
parameter,ζ:

τ =
t
ζ

; ζ¿ 1 (2)

The periodic response fields,φ, are defined to accommodate the presence of multiple temporal
scales:

φζ(x, t) = φ(x, t,τ(t)) (3)

wherex represents the spatial coordinates. Time differentiation in the presence of multiple tempo-
ral scales is given by the chain rule:

φ̇ζ(x, t) = φ,t(x, t,τ)+
1
ζ

φ,τ(x, t,τ) (4)

in which a comma followed by a subscript coordinate denotes partial derivative, and superposed
dot denotes the total time derivative.

2.1 Failure by accumulation of distributed damage

The failure mechanism of some brittle materials, such as ceramics and concrete, is characterized by
only minor plastic flow, and is dominated by degradation of material properties due to nucleation,
growth and coalescence of microcracks [14, 15]. Furthermore, the resulting propagation of large
cracks usually takes place at a significantly higher rate and constitutes a small portion of the fatigue
life. Continuous damage mechanics (CDM) provide a theoretical framework to model this type
of failure [16]. In CDM, a continuous tensorial quantity,M , is defined to represent the state
of damage, and introduced into the constitutive laws using the thermodynamics of irreversible
processes. The order ofM generally depends on the properties of the material as well as the
structure and geometry of the microdefects [14]. In the case of isotropy, the state of damage may
be represented by a scalar variable,ωζ = ω(x, t,τ) ∈ [0,1), such thatM = (1−ωζ)I , in which I is
the fourth order identity tensor. Damage process may be introduced by considering the free energy
density,ψζ, of the form [17]:

ψζ(ωζ,εεεζ) = (1−ωζ)ψζ
e(εεε

ζ) (5)

whereψζ
e is elastic free energy density. For small elastic deformations:

ψζ
e =

1
2

εεεζ : L : εεεζ (6)

where,εεεζ is the strain tensor, andL is the fourth order elastic isotropic constitutive tensor. For
an isothermal process (i.e., constant temperature), the Clausius-Duhem inequality takes the form;
ψ̇ζ ≥ σσσζ : ε̇εεζ. Differentiating (5) and using the Clausius-Duhem inequality, the following constitu-
tive equation and the condition of irreversible damage is obtained:

σσσζ =
∂ψζ(ωζ,εεεζ)

∂εεεζ
= (1−ωζ)L : εεεζ; ω̇ζψζ

e≥ 0 (7)

in which σσσζ is the stress tensor.
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The initial boundary value problem (IBVP) for a continuous damage process may then be
expressed as:

Equilibrium equation: ∇ ·σσσζ + b(x, t,τ) = 0 on Ω× (0, to)× (0,τo) (8a)

Constitutive equation: σσσζ = (1−ωζ)L : εεεζ on Ω× (0, to)× (0,τo) (8b)

Kinematic equation: εεεζ =
1
2

(∇uζ +uζ∇) on Ω× (0, to)× (0,τo) (8c)

Initial condition: uζ = ũ(x) on Ω (8d)

Boundary conditions: uζ = ū(x, t,τ) on Γu× (0, to)× (0,τo) (8e)

σσσζn = f (x, t,τ) on Γ f × (0, to)× (0,τo) (8f)

in which ∇ is the vector differential operator given by∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3) in Cartesian
coordinate system;b is the body force;uζ is the displacement vector;to is the observation time
in macro-chronological (slow) time coordinate;τo is the load period in micro-chronological (fast)
time coordinate;Ω andΓ are the spatial problem domain and its boundary, respectively;ũ is the
initial displacement field;̄u andf are prescribed displacements and tractions on the boundariesΓu

andΓ f , respectively, whereΓ = Γu∪Γ f andΓu∩Γ f =0.
When monotonic loading is considered, the evolution of the isotropic continuum damage vari-

able,ωζ, is chosen to be a function of a history variable,κ, which is characterized by the Kuhn-
Tucker conditions:

κ̇≥ 0, υζ−κ≤ 0, κ̇(υζ−κ) = 0 (9)

in which damage equivalent strain,υζ, is generally taken to be some measure of strains. Equa-
tion (9) represents the sufficient conditions of the irreversible damage accumulation. For locally
periodic loading, unloading-reloading cycles at subcritical load levels also contribute to the accu-
mulation of damage and must be reflected in the description of damage variable,ωζ. Such a model,
previously developed by Fish and Yu [12] was adopted in this study.

The viscoplasticity like damage evolution model [12] represents the accumulation of fatigue
damage due to cyclic loading:

ω̇ζ (x, t) =





0 υζ < υini(
θζ

ωζ

)γ ∂θζ

∂υζ
〈υ̇ζ〉+ υζ ≥ υini

(10)

where〈·〉+ = [(·) + | · |]/2 are MacCauley brackets;| · | denote the absolute value operator;υini

is a threshold value ofυζ which represents a domain in strain space where no damage can be
accumulated regardless of the loading path;γ is a material parameter representing sensitivity to
cyclic loading, andθζ is a function of damage equivalent strain, which determines the evolution of
damage. In this study, a smooth damage evolution model [12] was adopted:

θζ (x, t) =
arctan

[
α

(〈υζ−υini〉+
υo

)
−β

]
+arctanβ

π
2

+arctanβ
(11)

whereα, β andυo are material constants, andυζ is the damage equivalent strain defined as the
square root of the energy release rate [17]:

υζ =

√
1
2

εεεζ : L : εεεζ (12)

4



Tensile loading generally leads to a higher rate of damage accumulation when compared to com-
pression loading [18]. This effect may be modeled by introducing a weighting tensor,Fζ, and by
altering (12) such that:

υζ =

√
1
2

(
Fζε̂εεζ

)
L̂

(
Fζε̂εεζ

)
(13)

whereε̂εεζ is the principal strain vector;̂L ≡ L̂ςη = Lςςηη is the elastic isotropic constitutive ten-
sor projected onto the principal directions (ς,η = 1,2,3 and no summation is implied for Greek
indices). The strain weighting matrix,Fζ, is defined as:

Fζ =




hζ
1 0 0

0 hζ
2 0

0 0 hζ
3


 (14)

hζ(ε̂εεζ) =
1
2

+
1
π

arctan
[
a1(ε̂εεζ−a2)

]
(15)

in which hζ is a vector composed of the diagonal components ofFζ, anda1 anda2 are material
parameters.

A bifurcation analysis was conducted to study the localization characteristics of the fatigue
damage cumulative law under subcritical periodic loading conditions. The analysis, described
in Appendix B, shows that the proposed model acts as a localization limiter when the material
parameter,γ, is taken to be a function of the strain tensor and the loading history.

2.2 Failure by crack propagation

The response of quasi-brittle and ductile materials is generally dominated by the propagation of
a distinct macrocrack [19]. Cohesive theories of fracture have been applied to describe such pro-
cesses under monotonic (e.g., [20]) as well as cyclic (e.g., [9]) loading. In this paper such a cohe-
sive law was used to model the propagation of macrocracks under fatigue loads. The direction of
propagation is predefined and only small-scale yielding is considered. Under these conditions, the
IBVP may be posed by replacing the constitutive equation, (8b), by a linear elastic law (σσσζ = L : εεεζ)
and considering a predefined cohesive zone;Γc.

Following Ortiz and Pandolfi [21] a free energy density in the cohesive zone takes a general
form (for an isothermal process):

ψζ
c = ψζ

c(dζ,ωζ) (16)

wheredζ is the crack opening displacement at the cohesive zone. We assume a linear dependence
betweenωζ andψζ

c:

ψζ
c =

1
2

(1−ωζ)k(dζ)2 (17)

dζ = ‖dζ‖ (18)

in whichk is the initial loading stiffness, and‖·‖ is the Euclidean norm. Using the Clausius-Duhem
inequality and arguments presented in the previous section, it can be shown that:

tζ =
∂ψζ

c

∂dζ
(19)

wheretζ is the traction alongΓc. Inserting (17) into (19) we obtain the constitutive equation at the
cohesive zone:

tζ =
1
dζ

∂ψζ
c

∂dζ
dζ (20)
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The evolution of damage is modeled using a fatigue cumulative damage law, similar to that
presented in the previous section. In this case, the damage equivalent strain is expressed in terms
of the crack opening displacement:

υζ
c =

√
1
2

k
(
hdζ

n +wdζ
s
)2

(21)

wheredζ
n = dζn; dζ

s = dζ − dζ
nn; n is the unit normal toΓc; h(dζ

n) andw(dζ
s) are the weighting

functions (similar to (15)) of crack opening and sliding modes, respectively.

3 Two-scale temporal asymptotic analysis of solids subjected to
periodic loading

We start by representing the displacement field,uζ, using a two-scale asymptotic expansion:

uζ = ∑
m=0,1,...

ζmum(x, t,τ) (22)

whereum are periodic functions. Using (22) and the chain rule, strain and strain rate fields may be
expressed as:

εεεζ = ∑
m=0,1,...

ζmεεεm(x, t,τ) ; εεεm =
1
2

(∇um+um∇) (23)

ε̇εεζ = ∑
m=0,1,...

ζm−1ε̇εεm−1(x, t,τ) ; ε̇εε−1 = εεεo
,τ, and ε̇εεm = εεεm

,t + εεεm+1
,τ (24)

The fatigue damage variable,ωζ, and the stress field,σσσζ, are also approximated using expansions
in the form of (22):

ωζ = ∑
m=0,1,...

ζmωm(x, t,τ) , σσσζ = ∑
m=0,1,...

ζmσσσm(x, t,τ) (25)

Considering failure by accumulation of distributed damage and inserting the asymptotic represen-
tations of the strain and stress fields, and damage variable into (8b), various orders of the constitu-
tive equation are obtained (m= 0,1, . . .):

O(ζo) : σσσo = (1−ωo)L : εεεo (26)

O
(
ζm+1) : σσσm+1 = (1−ωo)L : εεεm+1−

m+1

∑
s=1

ωsL : εεεm+1−s (27)

Alternatively, the constitutive equations may be represented in the rate form by using (24) and the
time derivatives of (26-27). The leading order constitutive equation becomes:

O
(
ζ−1) : σσσo

,τ = (1−ωo)L : εεεo
,τ−ωo

,τL : εεεo (28)

and higher order equations may be written in the following form:

O(ζm) : σσσm
,t = L : εεεm

,t −
m

∑
s=0

ωsL : εεεm−s
,t −

m

∑
s=0

ωs
,tL : εεεm−s (29a)

σσσm+1
,τ = L : εεεm+1

,τ −
m+1

∑
s=0

ωsL : εεεm+1−s
,τ −

m+1

∑
s=0

ωs
,τL : εεεm+1−s (29b)
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Various orders of the equilibrium equation are obtained by substituting the expanded stress field
into (8a):

O(1) : ∇ ·σσσo +b(x, t,τ) = 0 on Ω× (0, to)× (0,τo) (30)

O
(
ζm+1) : ∇ ·σσσm+1 = 0 on Ω× (0, to)× (0,τo) (31)

Similarly, the initial and boundary conditions may be described using the expanded representations
of displacement and stress fields along with (8d-8f):

O(1) : uo(x, t = τ = 0) = ũ(x) on Ω (32)

uo = ū(x, t,τ) on Γu× (0, to)× (0,τo) (33)

σσσon = f (x, t,τ) on Γ f × (0, to)× (0,τo) (34)

The initial and boundary conditions for higher order problems are trivial.
The equilibrium and constitutive equations, along with the initial and boundary conditions of

equal orders are sought to be decomposed into micro- and macro-chronological IBVPs. A temporal
smoothing operator is, therefore, introduced [22]:

〈·〉=
1
τo

∫ τo

0
· dτ (35)

The decomposition of the displacement, strain and stress fields are evaluated using the temporal
smoothing operator:

um(x, t,τ) = 〈um〉(x, t)+χχχm(x, t,τ) (36a)

εεεm(x, t,τ) = 〈εεεm〉(x, t)+ΨΨΨm(x, t,τ) (36b)

σσσm(x, t,τ) = 〈σσσm〉(x, t)+ΦΦΦm(x, t,τ) (36c)

in which〈·〉 denote the macro-chronological fields;χχχm, ΨΨΨm, ΦΦΦm represent the micro-chronological
portion of the displacement, strain and stress fields, respectively. Damage variable,ωζ, is cumu-
lative and irreversible in nature and, therefore, notτ-periodic (〈ωm

,τ〉 6= 0). Each unload-reload
cycle (hence, eachunit cell in time) increases the value of the damage variable. It is convenient to
introduce a somewhat different decomposition to the damage variable:

ωm(x, t,τ) = ω̃m(x, t)+Λm(x, t,τ) (37)

in which ω̃m andΛm are macro- and micro-chronological strain induced damage variables, respec-
tively, to be subsequently described.

The micro-chronological portion of theO(1) constitutive equation may then be obtained by
applying the strain, stress, and damage variable decompositions, (36b-37) to (28). At a given
instant of the slow time coordinate,t:

ΦΦΦo
,τ = (1−Λo)L : ΨΨΨo

,τ−Λo
,τL : ΨΨΨo− ω̃oL : ΨΨΨo

,τ−Λo
,τL : 〈εεεo〉 on Ω× (0,τo) (38)

The macro-chronological portion of theO(1) constitutive equation is obtained by applying the
averaging operator on (29a) and exploiting the definitions given in (36b-37):

〈σσσo〉,t = (1− ω̃o)L : 〈εεεo〉,t − ω̃o
,tL : 〈εεεo〉−〈ΛoL : εεεo〉,t on Ω× (0, to) (39)

The last term in (39) may be evaluated using a Taylor expansion in fast time coordinate ,τ:

〈Λo(x, t,τ)L : εεεo〉= Λo(x, t,τ1)L : 〈εεεo〉+Λo
,τ (x, t,τ1)L : 〈(τ− τ1)εεεo〉+ . . . (40)
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Figure 1: Schematic interpretations of the micro- and macro-chronological strain induced damage
variables.

whereτ1 ∈ (0,τo). Furthermore for purely tensile or compressive loading; i.e., when:

εεεo(
x, t,τ+)

εεεo(
x, t,τ−

)≥ 0 ∀τ ∈ (0,τo) (41)

whereτ±= τ±ξ andξ¿ 1 is a small positive constant. Using mean value theorem, it can be shown
that there exists aτ1 for which 〈(τ− τ1)εεεo〉 = 0 (τ1 = τo/2 in case of symmetry). Inserting (40)
into (39) and using the above argument:

〈σσσo〉,t = (1− ω̃o−Λo(x, t,τ1))L : 〈εεεo〉,t −
(
ω̃o

,t +Λo
,t (x, t,τ1)

)
L : 〈εεεo〉 (42)

Figure 1 displays the graphical interpretations of the micro- and macro-chronological strain in-
duced damage variables.

Taking a total time derivative of the asymptotic expansion of the damage variable given in (25)
yields:

ω̇ζ = ∑
m=0,1,...

ζm−1ω̇m−1(x, t,τ); ω̇−1 = ωo
,τ and, ω̇m = ωm

,t +ωm+1
,τ (43)

Similarly,

θζ = ∑
m=0,1,...

ζmθm(x, t,τ) , υζ = ∑
m=0,1,...

ζmυm(x, t,τ) (44)

υ̇ζ = ∑
m=0,1,...

ζm−1υ̇m−1(x, t,τ); υ̇−1 = υo
,τ and, υ̇m = υm

,t +υm+1
,τ (45)

Using the above approximations, the asymptotic expansion of the damage evolution law presented
in (10) can be expressed as (for a damage process; i.e.,υo≥ υini, υ1≥ 0 andυo

,τ > 0):

ω̇ =
1
ζ

ωo
,τ +ωo

,t +ω1
,τ +O(ζ) =

[(
θo

ωo

)γ
+ζγ

(
θo

ωo

)γ (θ1

θo −
ω1

ωo

)
+O(ζ2)

]
·

[
1
ζ

∂θo

∂υoυo
,τ +

∂θo

∂υoυo
,t +

∂θ1

∂υoυo
,τ +

∂θ1

∂υ1υ1
,τ +O(ζ)

] (46)
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where the material parameterγ is assumed to be constant. The equation is trivial for unloading
and elastic loading (i.e., whenυo < υini or υ1 < 0 or υo

,τ < 0). The fatigue damage model of order
O(ζ−1) may then be approximated by matching lowest order terms in (46):

Λo
,τ (x, t,τ) = ωo

,τ (x, t,τ) =





0 υo < υini(
θo

ωo

)γ ∂θo

∂υo〈υo
,τ〉+ υo≥ υini

(47)

Furthermore, orderO(1) fatigue model may be obtained similarly. For a damage process, matching
the orderO(ζ−1) terms in (46):

ωo
,t +ω1

,τ =
(

θo

ωo

)γ (
θo

,t +θ1
,τ
)
+ γ

(
θo

ωo

)γ (θ1

θo −
ω1

ωo

)
θo

,τ (48)

where;

θo
,t =

∂θo

∂υoυo
,t , and θ1

,τ =
∂θ1

∂υoυo
,τ +

∂θ1

∂υ1υ1
,τ (49)

To solve for (48), we assume the following decomposition for the higher order damage term,ω1:

ω1 =
(

θo

ωo

)γ
θ1 (50)

Substituting (50) into (48) the higher order terms of the above equation are eliminated. Further-
more, in the absence of micro-chronological loading, (48) reduces to:

ω̃o
,t =

(
θo

ω̃o

)γ ∂θo

∂υ̃o υ̃o
,t (51)

whereυ̃o≡ υ̃o(〈εεεo〉) has the same form as in (13).
Various orders of the damage equivalent strain may be obtained by the asymptotic expansion

of (13). Exploiting the symmetry of̂L :

[
υo +ζυ1 +O(ζ2)

]2
=

1
2

[
Foε̂εεo +ζ(Foε̂εε1 +F1ε̂εεo)+O(ζ2)

]
L̂ ·

[
Foε̂εεo +ζ(Foε̂εε1 +F1ε̂εεo)+O(ζ2)

] (52)

The first two orders ofυζ may then be given as:

O(1) : υo =

√
1
2

(
Foε̂εεo) L̂

(
Foε̂εεo) (53a)

O(ζ) : υ1 =
1

2υo

(
Foε̂εε1 +F1ε̂εεo

)
L̂

(
Foε̂εε1 +F1ε̂εεo

)
(53b)

The diagonal components of the strain weighting matrix,Fζ, may be expressed in terms of vectors
hm. For instance:

ho =
1
2

+
1
π

arctan
[
a1(ε̂εεo−a2)

]
, h1 =

ε̂εε1/π

1+
(
a1ε̂εεo−a2

)2 (54)
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Expressions forθm can be obtained by the asymptotic expansion of (11) (whenυo ≥ υini, and
υm≥ 0):

θo +ζθ1 +O(ζ2) =
arctan

[
α

(
υo +ζυ1 +O(ζ2)−υini

υo

)
−β

]
+arctanβ

π
2

+arctanβ
(55)

Matching the equal order terms in (55):

O(1) : θo =
arctan

[
α

(〈υo−υini〉+
υo

)
−β

]
+arctanβ

π
2

+arctanβ
(56a)

O(ζ) : θ1 =


 αυo

π
2

+arctan(β)


 υ1

υ2
o +[α(υo−υini)−βυo]

2 (56b)

The higher order terms ofυζ, hζ andθζ may be evaluated using a similar algebra.
The corresponding equilibrium equation, initial and boundary conditions of orderO(1) macro-

chronological IBVP are obtained by averaging (30, 32-34) over one load cycle using (35). The
macro-chronological problem may then be posed as follows:

Equilibrium equation: ∇ · 〈σσσo〉+ 〈b〉(x, t) = 0 on Ω× (0, to) (57a)

Constitutive equation: 〈σσσo〉,t = (1− ω̃o−Λo(x, t,τ1))L : 〈εεεo〉,t−(
ω̃o

,t +Λo
,t (x, t,τ1)

)
L : 〈εεεo〉 on Ω× (0, to)

(57b)

Initial condition: 〈uo〉(x, t = 0) = ũ on Ω (57c)

Boundary conditions: 〈uo〉= 〈ū〉(x, t) on Γu× (0, to) (57d)

〈σσσo〉n = 〈f〉(x, t) on Γ f × (0, to) (57e)

The equilibrium equation, initial and boundary conditions of the micro-chronological problem
may be obtained by subtracting those of the macro-chronological problem from (30, 32-34), re-
spectively. The micro-chronological IBVP of orderO(1) at a given instant of slow time coordinate,
t, may then be posed as follows:

Equilibrium equation: ∇ ·ΦΦΦo +b−〈b〉= 0 on Ω× (0,τo) (58a)

Constitutive equation: ΦΦΦo
,τ = (1−Λo)L : ΨΨΨo

,τ−Λo
,τL : ΨΨΨo−

ω̃oL : ΨΨΨo
,τ−Λo

,τL : 〈εεεo〉 on Ω× (0,τo)
(58b)

Initial condition: χχχo = 0 on Ω (58c)

Boundary conditions: χχχo = ū(x, t,τ)−〈ū〉 on Γu× (0,τo) (58d)

ΦΦΦon = f−〈f (x, t,τ)〉 on Γ f × (0,τo) (58e)

The constitutive equations of the micro- and macro-chronological problems clearly show a
two-way coupling. Hence, the micro-chronological initial boundary value problem defined by
(38), (58c-58e) has to be solved at every time step of the macro-chronological problem. Compu-
tational aspects and solution procedures of the orderO(1) IBVPs are discussed in the following
section.
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The higher order initial boundary value problems may be obtained using a scheme similar to
the formulation of orderO(1) problems. The macro-chronological IBVP of orderO(ζm+1) is given
as:

Equilibrium equation: ∇ · 〈σσσm+1〉= 0 on Ω× (0, to) (59a)

Constitutive equation: 〈σσσm+1〉,t = L : 〈εεεm+1〉,t −
m+1

∑
s=0

ωs(x, t,τ1)L : 〈εεεm+1−s〉,t−
m+1

∑
s=0

ωs
,t (x, t,τ1)L : 〈εεεm+1−s〉 on Ω× (0, to)

(59b)

whereωm(x, t,τ1) = ω̃m+ Λm(x, t,τ1). Initial and boundary conditions for higher order macro-
chronological problems are trivial.

The micro-chronological IBVP of orderO(ζm+1) at a given instant of slow time coordinate,t,
is expressed as:

Equilibrium equation: ∇ ·ΦΦΦm+1 = 0 on Ω× (0,τo) (60a)

Constitutive equation: ΦΦΦm+1
,τ = L : ΨΨΨm+1

,τ −
m+1

∑
s=0

(ω̃s+Λs)L : ΨΨΨm+1−s
,τ −

m+1

∑
s=0

Λs
,τL : ΨΨΨm+1−s−

m+1

∑
s=0

Λs
,τL : 〈εεεm+1−s〉 on Ω× (0,τo)

(60b)

Similar to the macro-chronological problem, the initial and boundary conditions are trivial. The
higher order problems defined in (59) and (60) are fully coupled in addition to the contributions
from the lower order terms.

In this section, a two scale asymptotic analysis was conducted to resolve the temporal scales for
the failure processes with accumulation of distributed damage. Asymptotic analysis of the failure
mechanisms with propagation of macrocracks is somewhat similar and will be skipped.

4 Computational issues

Finite element models of orderO(1) micro- and macro-chronological problems were implemented
and details of the implementation are discussed herein. The constitutive equations of the micro-
and macro-chronological problems ((58b) and (57b), respectively) were shown to be coupled in
the previous section. In this study, these two problems where evaluated in a staggered manner.
Figure 2 displays a sketch of the general structure of the algorithm. An external batch file controls
the execution of the algorithm which in turn invokes a conventional finite element program. The
entire micro-chronological IBVP, which represents a single cycle of loading, is evaluated prior to
the execution of each time step of the macro-chronological problem. The state variable information
transfer between the two problems is conducted through external files stored on a hard disk. This
specific structure of the algorithm is selected to accommodate the use of commercial finite element
packages along with the appropriate user supplied subroutines (e.g., UMAT in ABAQUS).

4.1 Stress update procedure

4.1.1 Micro-chronological problem

Given: Strain and stress tensors,τΨΨΨo and τΦΦΦo, respectively; micro-chronological strain incre-
ment,δΨΨΨo, micro-chronological damage variable,τΛo, at the beginning of the time step; macro-

11
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Solve entire

0~ω

0

∆t

Figure 2: Schematic of the program architecture for the multi-scale fatigue life prediction analysis.

chronological strain tensor and damage variable,〈εεεo〉 andω̃o, respectively.τ(·) andτ+δτ(·) denote
the state of field variables at the beginning of the time step and their current values, respectively.
For simplicity we will often omit the subscript for the current values; i.e.,(·)≡ τ+δτ(·).

Compute: Stress and strain tensors,τ+δτΨΨΨo and τ+δτΦΦΦo, respectively, and micro-chronological
strain induced damage variable,τ+δτΛo.

The stress update procedure for the micro-chronological problem is outlined below:

1. Update strain tensor:ΨΨΨo = τΨΨΨo +δΨΨΨo

2. Compute the current total strains,εεεo = τ+δτΨΨΨo + 〈εεεo〉, and project the total strain tensor to
the principle frame.

3. Compute the damage equivalent strain,τ+δτυo, using (53a) along witĥL andε̂εεo.

4. In caseτ+δτυo > τυo andτ+δτυo ≥ υini , update,Λo using (47). An implicit backward Euler
algorithm was used to integrate the fatigue damage law:

Ξ≡ τ+δτΛo− τΛo−
τ+δτ

(
θo

Λo + ω̃o

)γ

τ+δτ

(
∂θo

∂υo

)
(τ+δτυo− τυo) = 0 (61)

where,

∂θo

∂υo =


 αυo

π
2

+arctanβ


 1

(υo)2 +[α(υo−υini)−βυo]2
(62)
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The above equation was solved forτ+δτΛo using Newton method:

i+1Λo = iΛo−
[(

∂Ξ
∂Λo

)−1

Ξ

]∣∣∣∣∣
iΛo

(63)

where,
∂Ξ
∂Λo = 1+

(
γ

Λo + ω̃o

)(
θo

Λo + ω̃o

)γ (∂θo

∂υo

)
(τ+δτυo− τυo) (64)

5. In caseτ+δτυo≤ τυo or τ+δτυo < υini , no damage is accumulated at the current step:

τ+δτΛo = τΛo (65)

6. Compute the stress incrementδΦΦΦo using (38) and update stress tensor:

τ+δτΦΦΦo = τΦΦΦo +δΦΦΦo (66)

4.1.2 Macro-chronological problem

Given: Strain and stress tensors,t〈εεεo〉 and t〈σσσo〉, respectively; macro-chronological strain incre-
ment,∆〈εεεo〉, micro- and macro-chronological strain induced damage variables,tΛo(τ1) andtω̃o,
respectively; macro-chronological time step,∆t, which is computed adaptively.t(·) and t+∆t(·)
denote the state of field variables at the beginning of the time step and their current values, respec-
tively. Similar to the previous section, quantities without left subscript denote the current values;
i.e.,(·)≡ t+∆t(·).

Compute:Stress and strain tensors,t+∆t〈εεεo〉 and t+∆t〈σσσo〉, respectively, and current micro- and
macro-chronological strain induced damage variables,t+∆tΛo(τ1) andt+∆tω̃o, respectively.

The stress update procedure for the macro-chronological problem is summarized below:

1. Update strain tensor:〈εεεo〉= t〈εεεo〉+∆〈εεεo〉
2. Update the micro-chronological strain induced damage variable. In this study,Λo is taken to

be a piecewise linear function of the slow time coordinate,t:

t+∆tΛo(τ1) = tΛo(τ1)+mo∆t (67)

wheremo = [tΛo(τo)− tΛo(0)]/τo, is the rate of micro-chronological damage growth and is
computed during the evaluation of micro-chronological problem.

3. Compute the principal components of the macro-chronological strains,〈εεεo〉.
4. Compute the damage equivalent straint+∆t υ̃o using an Euler Backward algorithm and (51),

along withL̂ and〈ε̂εεo〉.
5. In case,t+∆t υ̃o > t υ̃o and t+∆t υ̃o ≥ υini, update macro-chronological damage variable,ω̃o

using a similar implicit backward Euler algorithm outlined in the stress update procedure of
the micro-chronological problem, by replacing fast time coordinateτ with t, andΛo with ω̃o

(except for the term with power,γ, whereΛo is omitted).
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6. In caset+∆t υ̃o≤ t υ̃o or t+∆t υ̃o < υini, no damage is accumulated at the current step:

t+∆tω̃o = tω̃o (68)

7. Compute the stress increment∆〈σσσo〉 using (42) and update stress tensor:

t+∆t〈σσσo〉= t〈σσσo〉+∆〈σσσo〉 (69)

4.2 Consistent tangent stiffness

The constitutive equations of the first order micro- and macro-chronological IBVPs were presented
in the previous sections ((38) and (42), respectively). The consistent tangent stiffness matrices are
developed herein.

4.2.1 Micro-chronological problem

Constitutive equation of the micro-chronological problem may be rewritten in the following form:

ΦΦΦo
,τ = (1−Λo− ω̃o)L : ΨΨΨo

,τ−Λo
,τL : (ΨΨΨo + 〈εεεo〉) (70)

In the case of an elastic process, (υo < υini) or unloading (〈υo
,τ〉+ = 0), no damage is accumu-

lated (Λ,τ=0). Therefore, (70) reduces to:

ΦΦΦo
,τ = (1−Λo− ω̃o)L : ΨΨΨo

,τ (71)

For a damage process (i.e.,υo ≥ υini and〈υo
,τ〉+ > 0), Λo

,τ may be expressed in terms of micro-
chronological strains,ΨΨΨo

,τ, using the cumulative damage law defined in (47):

Λo
,τ = S : ΨΨΨo

,τ (72)

whereS is a second order tensor. Details of the derivation of (72) is presented in Appendix A.
Inserting (72) into (70) and rearranging the terms yields:

ΦΦΦo
,τ = P : ΨΨΨo

,τ (73)

and;
P = L : [(1−Λo− ω̃o)I − (ΨΨΨo + 〈εεεo〉)⊗S] (74)

in which P is the tangent stiffness tensor for a damage process in the micro-chronological scale,
and,⊗ represents a tetradic product of two second order tensors (e.g.,Ai jkl = Bi jCkl for cartesian
coordinate system).

4.2.2 Macro-chronological problem

The constitutive equation of the first order macro-chronological problem may be written in the
following form:

〈σσσo〉,t = (1−ωo(x, t,τ1))L : 〈εεεo〉,t −ωo
,t (x, t,τ1)L : 〈εεεo〉 (75)

In the case of an elastic process and unloading in the slow time scale,ωo
,t (x, t,τ1) = 0 and consti-

tutive equation reduces to:
〈σσσo〉,t = (1−ωo(x, t,τ1))L : 〈εεεo〉,t (76)
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When the macro-chronological loading is at the inelastic range (damage process):

ωo
,t (x, t,τ1) = R : 〈εεεo〉,t (77)

whereR is a second order tensor. The derivation ofR is much similar to the derivation ofS, and
details are presented in Appendix A. Substituting (77) into (75) and rearranging the terms yields:

〈σσσo〉,t = K : 〈εεεo〉,t (78)

and,
K = L : [(1−ωo(x, t,τ1)) I −〈εεεo〉⊗R] (79)

whereK is the tangent stiffness tensor for a damage process in the macro-chronological scale.

4.3 Evaluation of macro-chronological step size,∆t

The accuracy of the proposed two-scale evaluation of fatigue damage evolution depends on the size
of the time incrementation of the macro-chronological problem. Selection of an appropriate time
step size is a trade-off between the resolution of the damage variable or the crack growth rate, and
computational cost. We address this problem by employing an adaptive Modified Euler algorithm
with maximum damage control. By this approach, the time step for the macro-scale problem is
partly computed during the micro-chronological analysis.

Let Λo|t be the micro-chronological strain induced damage variable, at slow time instant,t.
The increment ofΛo per one load-cycle may be expressed as:

δΛo|Nt
= Λo|Nt+1−Λo|Nt (80)

whereNt denotes the load cycle number;Λo|Nt = Λo(t,0) andΛo|Nt+1 = Λo(t,τo) are the state of
damage variable at the beginning and end of the micro-chronological problem, respectively. Using
the modified Euler integrator [23], micro-chronological damage variable,Λo|Nt+∆Nt

, at load cycle,
Nt +∆Nt , may be defined as:

Λo|(Nt+∆Nt ;∆Nt) = Λo|Nt
+

∆Nt

2

(
δΛo|Nt

+ δΛo|Nt+∆Nt

)
(81)

whereδ and∆ refers to the quantities related to the micro- and macro-chronological scales, respec-
tively. δΛo|Nt+∆Nt

may be obtained by substitutingNt +∆Nt for Nt in (80):

δΛo|Nt+∆Nt
= Λo|Nt+∆Nt+1−Λo|Nt+∆Nt (82)

where a first approximation ofΛo|Nt+∆Nt−1 is obtained using a forward Euler scheme:

Λo|Nt+∆Nt = Λo|Nt
+∆Ntδ Λo|Nt

(83)

The value of macro-chronological step size∆t is a linear function of∆Nt (∆t = τo∆Nt), and
∆Nt is selected heuristically to control accuracy. For instance, the value of∆Nt must be sufficiently
small when the rate of increase ofΛo or the crack length is high, and vice versa. This condition may
be achieved by constraining the maximum damage accumulation within the macro-chronological
time step,∆t at all integration points:

∆Nt = int

[
δΛo

all

‖ δΛo|Nt
‖k

]
; k = 1 or ∞ (84)
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in which δΛo
all is the maximum allowable accumulation of damage within a micro-chronological

problem.
The adaptive scheme for the macro-chronological step size evaluation is summarized below:

Prior to thet th step of the macro-chronological problem:

1. Carry out the micro-chronological IBVP, as described in Section (4.1.1) to obtainΛo|Nt+1.
Compute the change in damage variable per cycle,δΛo|Nt

using (80) at each integration
point of the mesh.

2. Compute the initial block size∆Nt using (84).

3. Set the block size to∆Nt and computeΛo|(Nt+∆Nt ;∆Nt) using modified Euler algorithm defined
in (80-83).

4. Set the block size to∆Nt/2 and computeΛo|(Nt+∆Nt ;∆Nt/2) by two successive invocation
of the modified Euler algorithm (note that steps 3 and 4 require the evaluation of micro-
chronological model three additional times prior to every macro-chronological step).

5. Compute maximum error at each integration step and compare to the predefined error toler-
anceetol

k such that:

‖ Λo|(Nt+∆Nt ;∆Nt)− Λo|(Nt+∆Nt ;∆Nt/2) ‖k ≤ etol
k ; k = 1 or ∞ (85)

using the values computed at all integration points.

6. If (85) holds, set the macro-chronological problem step size at timet to ∆t = τo∆Nt and
set the micro-scale contribution of damage,Λo|(Nt+∆Nt) = Λo|(Nt+∆Nt ;∆Nt/2). Print damage
information into external transfer files and exit adaptive algorithm. If (85) does not hold, set
∆Nt = ∆Nt/2 and go back to step 3.

Remark:An analogous adaptive algorithm can be applied in the macro-chronological problem to
control the growth of the macro-chronological strain induced damage,ω̃o.

5 Numerical examples

5.1 Four-point bending beam

A four-point bending problem with a configuration defined in Fig. 3 is considered for analysis
of fatigue failure mechanisms by accumulation of distributed damage. The beam is made of an
isotropic brittle material. Microdefects are assumed to be homogeneously distributed along the
beam and fatigue damage evolution law is applied to the entire geometry. The material properties
used to conduct the numerical simulations are outlined in Table 1. Nodal loads are applied at the
crossheads of the beam (Fig. 3):

f̄ = Fτ sin(ωt)+Ft [1−exp(−t/td)] (86)

in which Fτ andFt are the amplitudes of the periodic and smooth loads, respectively;ω is circular
frequency; andtd is a constant in the order of the characteristic length of the macro-chronological
scale. The values used in our simulations are presented in Table 2.
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Figure 3: Configuration and the finite element mesh of 4-point bending beam model.

Table 1: Material properties used in 4-point bending beam analysis.
Material property Value

Young’s modulus,E 50 GPa
Poisson’s ratio,ν 0.3

υo 0.05
υini 0.0
α 8.2
β 10.2
γ 4.5
a1 1e7
a2 0.0

Figure 4 illustrates the evolution of damage variable,ωo computed using the proposed adap-
tive multi-scale algorithm and cycle-by-cycle (reference solution) approach. In cycle-by-cycle ap-
proach, each cycle of the loading is resolved and evaluated by a direct numerical algorithm based
on a backward Euler scheme. The depicted damage history is at an integration point at the mid-
span of the mesh. Figures 5-7 show the damaged configurations of the beam for multi-scale and
reference algorithms after 1000 load cycles. Stress, strain and damage variable histories revealed
a close agreement between the proposed multi-scale and the reference solutions.

5.2 Beam under periodic loading

Failure evolution by propagation of macrocracks is investigated on a beam problem as shown in
Fig. 8. Cohesive elements are placed at the midsection, and an initial flaw is introduced at the
center bottom of the beam. The material properties used to conduct the numerical simulations
are summarized in Table 3. Plane strain conditions are considered and the beam is subjected to
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Table 2: Loading parameters used in 4-point bending beam analysis.
Loading parameter Value

Fτ 4
Ft 35
ω 20 π rad/hr
td 3.2 hr
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Figure 4: Fatigue damage accumulation at the midspan of the beam.
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Figure 5: Damage distribution at the failure stage in the four-point bending beam problem.
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Figure 6: Stress distribution at the failure stage in the four-point bending beam problem.
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Figure 7: Strain distribution at the failure stage in the four-point bending beam problem.
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Figure 8: Configuration and the finite element mesh of the beam under periodic loading.

periodic displacements (Fig. 8):

ū =
uτ
2

(1+cos(ωt−π)) (87)

whereuτ is amplitude of the periodic prescribed displacements, andω is circular frequency. The
values used in our simulations are presented in Table 4.

Figure 9 illustrates a close agreement between the fatigue life curves evaluated using the pro-
posed multiscale and the reference (cycle-by-cycle) approach. The stress distributions along the
beam after 40,000 cycles (when the crack is 15 mm long) and after 150,000 cycles (when the crack
is 33 mm long) are presented in Fig. 10. As can be observed from this figure, a compressive region
develops along the path of the crack due to force redistribution along the beam. This compressive
region causes the crack arrest shown in Fig. 9.
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7 Conclusion

This paper presented a new multiscale approach to the prediction of structural fatigue life based on
asymptotic analysis with multiple temporal scales. This approach attempts to resolve the scale dis-
parity between the time span of the period of loading and life span of a structural component. The
theory was developed to analyze the failure mechanisms with the accumulation of distributed dam-
age, and propagation of macrocracks up to failure based on the assumption of small scale yielding.
The effects of the plastic deformations near the crack tip will be addressed in a future publica-
tion. The proposed methodology was implemented using a commercial finite element package
(ABAQUS) and validated against cycle-by-cycle approach.
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Table 3: Material properties used in the beam under periodic loading example.
Material property (Γc ) Value
Young’s modulus,E 5 GPa

Poisson’s ratio,ν 0.3
υo 0.05
υini 0.0
α 8.2
β 10.2
γ 4.5
a1 1e7
a2 0.0
w 0.0

Material property (Γ∼ Γc ) Value
Young’s modulus,E 70 GPa

Poisson’s ratio,ν 0.3

Table 4: Loading parameters used in the beam under periodic loading example.
Loading parameter Value

uτ 2.5×10−4

ω 20 π rad/hr
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Figure 9: Fatigue life curve of the beam under periodic loading.
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(Ave. Crit.: 75%)
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Figure 10: Stress distribution at the crack tip of the beam under periodic loading.
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A Consistent tangent stiffness

In this appendix, the details of the derivation of (72) is presented. The macro-chronological
damage evolution equation is expressed using (47). In case of a damage process (i.e.,υo≥ υini and
υo

,τ > 0), υo
,τ may be defined as (exploiting the symmetry ofL̂ ):

υo
,τ =

1
2υ

(
Foε̂εεo) L̂

(
Foε̂εεo)

,τ (88)

where,
(
Foε̂εεo)

,τ = (ho
ς ε̂o

ς),τ =
(∂ho

ς

∂ε̂o
ς

ε̂o
ς +hς

) ∂ε̂o
ς

∂τ
; ς = 1,2,3 (89)

in the cartesian coordinate system. Double indices do not imply summation convention in the
above equation (and whenever Greek letters are used as indices). Differentiating (15) with respect
to principal strain components:

∂ho
ς

∂ε̂o
ς

=
a1/π

1+a2
1(ε̂

o
ς −a2)2

(90)

The derivative of principal components of total strain tensor with respect to fast time coordi-
nate,τ, may be computed using Hamilton’s Theorem:

(ε̂o
ς)

3− I1(ε̂o
ς)

2 + I2ε̂o
ς − I3 = 0 (91)

whereI1, I2 andI3 are the invariants of the strain tensor:

I1 = tr(εεεo) = εo
ii (92a)

I2 =
1
2

(
εεεo : εεεo− I2

1

)
=

1
2

(
εo

i j ε
o
i j − εo

ii ε
o
j j

)
(92b)

I3 = det(εεεo) =
1
6

ei jkepqrεo
ipεo

jqεo
kr (92c)

in which tr(·) anddet(·) denote trace and determinant of a second order tensor, respectively, and
ei jk is permutation symbol. Differentiating (91) with respect toτ yields to the following equation:

∂ε̂o
ς

∂τ
=

(∂I1/∂τ)(ε̂o
ς)

2− (∂I2/∂τ)ε̂o
ς +∂I3/∂τ

3(ε̂o
ς)2−2I1ε̂o

ς + I2
(93)

The fast time derivatives of the invariants may be obtained using (92):

∂I1
∂τ

= δkiδk j
∂εo

i j

∂τ
= E[1]

i j

∂εo
i j

∂τ
(94a)

∂I2
∂τ

= (εo
mmδo

kiδ
o
k j− εo

i j )
∂εo

i j

∂τ
= E[2]

i j

∂εo
i j

∂τ
(94b)

∂I3
∂τ

=
(

εo
ikεo

k j− εo
kkε

o
i j −

1
2

εo
mnε

o
nmδikδ jk +

1
2

εo
mmεo

nnδikδ jk

) ∂εo
i j

∂τ
= E[3]

i j

∂εo
i j

∂τ
(94c)

Decomposing the total strain vector using (36b), exploiting the definition that macro-chronological
strain tensor〈εεεo〉 to be independent ofτ, ∂ε̂o

ς/∂τ in (94) may be replaced by∂Ψ̂o
ς/∂τ. Combining

(89, 90, 93) and (94), we obtain:

∂ho
ς ε̂o

ς

∂τ
= Zo

ςi j

∂Ψo
i j

∂τ
; ς = 1,2,3 (95)
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and,

Zo
ςi j =

(
a1/π

1+a2
1(ε̂

o
ς −a2)2

ε̂o
ς +ho

ς

)
E[1]

i j (ε̂o
ς)

2−E[2]
i j ε̂o

ς +E[3]
i j

3(ε̂o
ς)2−2I1ε̂o

ς + I2
(96)

The fast time derivative of the damage equivalent strain,υo, may be expressed by combining
(88, 95) and (96). In the vectorial form:

υo
,τ =

1
2υo

(
Foε̂εεo) L̂Z o : ΨΨΨo

,τ (97)

whereZo is a third order tensor given by (96). Finally, substituting the above equation into (47)
yields:

Λo
,τ = S : ΨΨΨo

,τ (98)

where,

S=
(

θo

ωo

)γ ∂θo

∂υo

[
1

2υo

(
Foε̂εεo) : L̂Z o

]
(99)

The derivation ofR is similar to the derivation ofS and will not be presented separately.R
may be obtained in the same way asS by replacing fast time variable,τ, by t, and evaluating the
invariants of the strain tensor atτ = τ1.
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B Localization

In this appendix, the localization effect on the fatigue damage cumulative law is investigated.
A simple bifurcation analysis outlined by Pan et al. [24] is employed. Given a homogeneously
deformed body subjected to an incrementally applied static loading, an additional solution (alter-
native to the homogeneous one) is sought in which the incremental field quantities such as strain
rate,ε̇εε are discontinuous along a plane with a normal,n. The general condition of bifurcation may
be expressed as [25]:

(D : n⊗n)m = Am = 0 (100)

whereD is fourth order tangent stiffness tensor;m is a unit vector in the direction of the velocity
field, andA(n) is a second order tensor. Localization occurs when the conditions of the above
equation is met.

The constitutive equation of a material with continuous fatigue damage was given previously
as (8b). Rewriting this equation in the rate form (omitting superscriptζ):

σ̇σσ = (1−ω)L : ε̇εε− ω̇L : εεε (101)

In case of damage process,υ̇≥ 0 andυ > υini, the damage law was expressed in rate form using:

ω̇ =
(

θ
ω

)γ ∂θ
∂υ

υ̇ (102)

The damage equivalent strainυ is expressed using (12) or (13) and it is a function of the strain
tensor only. Hence using the chain rule on (102), combining (101) and (102), and exploiting the
symmetry ofL :

σ̇σσ = D : ε̇εε (103)

where,

D = L :

[
(1−ω)I −

(
θ
ω

)γ
εεε⊗ ∂θ

∂εεε

]
(104)

B.1 Analysis of a one-dimensional fatigue model

A simplified analysis is conducted to evaluate the localization characteristics of the fatigue damage
cumulative law. In a simple one-dimensional problem, the rate relation reduces to:

σ̇ = Eε̇





(1−ω) if |ε|< εini(
1−ω−

(
φ
ω

)γ ∂θ
∂|ε| |ε|H(ε̇)

)
if |ε| ≥ εini



 = Et ε̇ (105)

whereσ̇ andε̇ are stress and strain rates, respectively;ε is strain,E andEt are elastic and tangent
stiffnesses, respectively;εini = υini/

√
(.5E) is a threshold strain value, andH(·) is the Heaviside

step function operator. When the spring is subjected to monotonically increasing strain, the fatigue
damage model reduces to a static damage law for a strain softening material. Hence, in this case,
there exists a critical strain level,εs

cr ≥ εini such that the tangent modulus is vanished:

Et =

(
1−ωs

cr−
∂θ
∂ε

∣∣∣∣
εs

cr

εs
cr

)
E = 0 (106)

in which ωs
cr = ω(εs

cr) is damage variable at the critical strain level. It is also worth mentioning
that the ultimate strength of the material for monotonic loading is reached whenε = εs

cr.
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For subcritical periodic loading with a constant strain amplitude,εc
m < εs

cr:

Et

E
≤ ψ≡ 1−ω(N,ε)−

(
φ
ω

)γ ∂θ
∂ε

∣∣∣∣
εc

m

εc
m (107)

whereN is current number of load cycles. In this case, condition of localization reduces toψ = 0
for positive elastic stiffness,E. Noting thatω ∈ [0,1) andφ/ω ≤ 1, and consideringγ ≡ γ(N,ε)
such that:

γ(N,ε) >
ln(1−ω)− ln(cm)

ln(θ)− ln(ω)
; cm =

∂θ
∂ε

∣∣∣∣
εc

m

εc
m (108)

the fatigue damage cumulative law acts as a localization limiter, ifφ < ω. In case,φ = ω, in
addition to (108),θ in (105) is replaced by̆θ such that:

θ̆ = min(tolω,θ) (109)

in which tol ∈ (0,1).
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