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Abstract

This manuscript presents a multiscale modeling methodology for failure analysis of composites
subjected to cyclic loading conditions. Computational homogenization theory with multiple spatial
and temporal scales is employed to devise the proposed methodology. Multiple spatial scales address
the disparity between the length scale of material heterogeneities and the overall structure, whereas
multiple temporal scales with almost periodic fields address the disparity between the load period and
overall life under cyclic loading. The computational complexity of the multiscale modeling approach
is reduced by employing a meso-mechanical model based on eigendeformation based homogenization
with symmetric coefficients in the space domain, and an adaptive time stepping strategy based on a
quadratic multistep method with error control in the time domain. The proposed methodology is em-
ployed to simulate the response of graphite fiber-reinforced epoxy composites. Model parameters are
calibrated using a suite of experiments conducted on unidirectionally reinforced specimens subjected
to monotonic and cyclic loading. The calibrated model is employed to predict damage progression in
quasi-isotropic specimens. The capabilities of the model are validated using acoustic emission testing.

Keywords: Multiscale modeling; Computational homogenization; Composites; Fatigue; Damage me-
chanics.

1 Introduction

Composite materials provide tremendous potential as high performance structural components in
aerospace applications and in other industries due to high specific strength, stiffness, and low weight.
Composites also show good durability to cyclic loading with high fatigue limits. Despite favorable
fatigue properties, the failure of composite structures is often sudden and catastrophic with few visible
signatures. This leads to conservative designs strategies to contain failure events. Accurate modeling
of failure processes in composite structures subjected to cyclic loading provides the potential to extend
the applicability of composites in high performance applications.

A plethora of experimental investigations in the past few decades have shed light into the failure
mechanisms in fiber reinforced composites subjected to cyclic loading (e.g., [1, 2], among many oth-
ers). From the modeling perspective, continuum damage mechanics and fracture mechanics models are
typically employed to describe failure under cyclic loading. Fracture mechanics based approaches rely
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on incorporation of distinct cracks at the scale of the structure [3], at the scale of the constituents [4],
or both [5]. A fracture mechanics based crack propagation criteria (e.g., Paris law) and a numerical
methodology for crack propagation such as mesh refinement [6], virtual crack closure [7], cohesive
zone [8], or the extended finite element method [9] are employed to describe fracture events within
the composite material. In the continuum damage mechanics approach, failure is described as the ini-
tiation and growth of diffuse damage (e.g., microcrack density) typically represented using internal
state variables. The evolution of diffuse damage as a function of loading history is modeled within the
nonlinear, path-dependent constitutive modeling context by employing micromechanically-informed
damage evolution models such as the critical element model [10, 11] and others [12–14].

Modeling complex failure mechanisms and their interactions in composite structures subjected to
cyclic loading is a multiscale problem in space and time. Multiple spatial scales exist since many failure
mechanisms initiate and grow at the scale of the composite constituents defined by the representative
volume of the composite, whereas the overall failure is assessed at the scale of the structure or structural
component. Multiple temporal scales exist because of the disparity between the characteristic loading
period, which may be on the order of seconds, and the overall life of the structure which may be
on the order of years. The computational homogenization method [15, 16] based on mathematical
homogenization theory [17–20] is a powerful multiscale modeling approach, which has been applied to
nonlinear solid mechanics problems involving multiple spatial scales including the failure of composite
materials.

Straightforward application of the computational homogenization-based modeling to evaluate the
cyclic response of composite structures is prohibitive due to the tremendous computational cost asso-
ciated with solving a two-scale nonlinear problem in space for large number of time steps necessary to
evaluate life under cyclic loading. This difficulty is addressed using two approaches: (a) by introducing
reduced order (meso-mechanical) models that can represent the small-scale response at a fraction of the
cost without significantly compromising the solution accuracy; and, (b) by introducing cycle-stepping
methodologies that eliminate the need to resolve to resolve each load cycle throughout the life of the
structure or structural component. Reduced-order models based on transformation field analysis [21],
proper orthogonal decomposition [22], eigenstrains [23], and others [24–26] have brought significant
progress to reduced-order modeling in the presence of multiple spatial scales. More recently, Oskay
and coworkers [27, 28] proposed a reduced order computational homogenization framework based on
the eigendeformation idea which provides (a) the ability to model multiple failure mechanisms at the
microstructure including matrix and fiber cracking, and interfacial debonding; and, (b) a hierarchy of
reduced order models that can be adapted to meet accuracy needs. The tyranny of temporal scales is
addressed by employing cycle-jump technique [29] or computational homogenization-based temporal
multiscale modeling [30–32] that has been employed in the context of single spatial scale continuum
damage mechanics and damage-plasticity models. More recently, Fish and coworkers applied cycle-
jump techniques to investigate the fatigue life of composites [33, 34]. Despite progress, computational
multiple spatio-temporal scale modeling for accurate, efficient and reliable prediction of failure in
composite structures subjected to cyclic loading conditions remains to be a challenge.

In this manuscript, a new multiple spatio-temporal scale model for prediction of cyclic failure in
composite materials is presented. The capabilities of the proposed model are demonstrated using a
suite of experiments conducted on graphite fiber reinforced epoxy composites. The proposed model is
devised using the computational homogenization theory with multiple spatial and temporal scales. The
idea of almost periodicity of the response fields at the temporal scales [30] is employed to account for
the presence of irreversible damage fields that violate the commonly assumed periodicity conditions of
the response fields. The proposed model employs a reduced order modeling approach at the spatial do-
main using the eigendeformation based homogenization with symmetric coefficients, and an adaptive

2



 

x 1 

x 2 

y1

y2

y = x / 
representative volume

t

time
structure

loading history

load cycle

Figure 1: Multiple spatial and temporal scales.

time stepping strategy based on the modified multistep method to efficiently evaluate the response of a
structural component by resolving only a fraction of the total number of cycles to failure. The proposed
multiscale model is calibrated based on a suite of experiments conducted on graphite fiber reinforced
epoxy (IM7/977-3) composite specimens under monotonic and cyclic loads, and validated against an
independent set of experiments. The novel contributions of this manuscript are two-fold: To the best of
the authors’ knowledge, this manuscript is the first attempt to concurrently employ computational ho-
mogenization method with multiple temporal and spatial scales for failure modeling of heterogeneous
materials subjected to cyclic loading. The second-order adaptive time stepping methodology proposed
for adaptive error control in time provides improvements in accuracy compared to the first order time
stepping approaches commonly employed in the context of cycle jump and temporal homogenization.

The remainder of this manuscript is organized as follows: Section 2 describes the multiple spatio-
temporal problem setting. In Section 3, the computational approach used modeling cyclic failure
behavior of composites is formulated. Section 4 and 5 provide the implementation details and the
verification of the proposed modeling approach, respectively. Section 6 describes the experiments for
calibration and validation of the computational approach, the calibration procedure of the material pa-
rameters based on the experimental data, and the validation of the model. Conclusions and future work
are discussed in Section 7.

2 Problem Statement

We consider the progressive failure of a composite structure subjected to cyclic loading conditions.
Let Ω⊂ Rd be the domain of a heterogeneous body, where d = 1,2 or 3 denotes the number of space
dimensions. Ω is composed of the repetition of a small periodic representative volume element (RVE),
θ⊂ Rd , composed of two or more distinct constituent materials as illustrated in Fig. 1. The governing
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equations describing the failure of the heterogeneous body are defined as (x ∈Ω and t ∈ [0, t f ]):

∇ ·σζη (x, t)+bζ (x) = 0 (1)

σζη (x, t) =
[
1−ω

ζη (x, t)
]

Lζ (x) : εζη (x, t) = Lζ (x) :
[
εζη (x, t)−µζη (x, t)

]
(2)

εζη (x, t) = ∇
suζη (x, t) (3)

ω̇
ζη (x, t) = f ζη

(
σζη,εζη,sζη

)
(4)

where, uζη denotes displacement field; σζη the Cauchy stress; εζη the total strain; ωζη ∈ [0,1) the
scalar damage variable; µζη = ωζηεζη the inelastic strain tensor; bζ the body force; and Lζ the tensor
of elastic moduli obeying the conditions of symmetry and positivity. The evolution of ωζη is typically
nonlinear and history-dependent, and is provided in the functional form as a function of strain, stress
and additional state variables, sζη. A superposed dot denotes the material time derivative; x the position
vector parameterizing the domain of the structure; t the time coordinate; and, ∇ · (·), ∇(·) and ∇s(·)
the divergence, gradient and symmetric gradient operators, respectively. The boundary conditions
prescribed on the body consist of slowly varying and oscillating components as illustrated in Fig. 1.

uζη

i (x, t) = ûη (x, t) ; x ∈ Γu; t ∈ [0, to] (5)

σζη ·n = t̂η (x, t) ; x ∈ Γt ; t ∈ [0, to] (6)

where, û and t̂ are the prescribed displacements and tractions on the boundaries Γu and Γt , respectively
(Γ = Γu ∪Γt and Γu ∩Γt = /0); and, n is the unit normal to Γt . The period of oscillations is taken
to be slow enough that inertial forces are insignificant and the response remains quasi-static. The
superscripts ζ and η indicate that the response fields fluctuate in space and time, respectively. Double
superscript indicates a response field that fluctuates in both time and space. The spatial fluctuations
arise due to the fluctuating material properties within the RVE, whereas temporal fluctuations are due to
the fast oscillatory component of the loading. The fluctuating spatio-temporal response is represented
by introducing microscopic and microchronological scales parameterized by y = x/ζ and τ = t/η,
respectively; and, 0 < ζ� 1 and 0 < η� 1 are scaling parameters. The original response fields that
fluctuate in space and time are expressed as:

φ
ζη (x, t) = φ(x,y(x), t,τ(t)) (7)

where, φ denotes an arbitrary response field. The macroscopic spatial derivatives of a response field
are obtained through the chain rule:

∇φ
ζ (x) = ∇xφ(x,y)+

1
ζ

∇yφ(x,y) (8)

in which, ∇x(·) and ∇y(·) are gradient operators with respect to macroscopic and microscopic coordi-
nates, respectively. All response fields are assumed to be locally periodic with respect to the micro-
scopic coordinates within the RVE throughout the deformation process: φ(x,y) = φ(x,y+kŷ), where,
ŷ denotes the periods of the microstructure; and k is a d×d diagonal matrix with integer components.
We consider the following spatial homogenization operator:

φ̄≡ 〈φ〉y =
1
|Θ|

∫
Θ

φdy (9)

where, |Θ| denotes the volume of the RVE.
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The macrochronological derivative of a response field is expressed using the chain rule as:

φ̇
η (t) = φ̇(t,τ) = φ,t (t,τ)+

1
η

φ,τ (t,τ) (10)

where, a comma followed by a subscript variable t and τ denotes the partial time derivative with respect
to the macrochronological and microchronological coordinates, respectively. In contrast to spatial vari-
ability, local periodicity is not a valid assumption for the response fields that vary in time. This is due
to the presence of irreversible mechanisms associated with damage accumulation during a load cycle.
The response fields are therefore assumed to be almost periodic, which implies that at neighboring
points in a temporal domain homologous by the load period, the change in the value of a response
function is small but does not vanish [31, 32]. Let:

〈φ〉
τ
=

1
τ0

∫
τ0

0
φ(x,y, t,τ)dτ (11)

denote the temporal averaging operator; and, τ0 denote the period of scaled cyclic load (τ ∈ [0,τ0]). In
the rate form, the almost periodic temporal homogenization operator is [30]:

˙̃
φ(t)≡M (φ),t = φ̃,t(t)+φap(t) (12)

which satisfies the weak convergence property with respect to an arbitrary homogenization operator,
˜(·); and, φap = 〈φ,τ〉τ/η. Following the ideas of spatial homogenization theory, the natural choice for

the temporal homogenization operator is the temporal averaging operator provided in Eq. 11. From
the computational perspective, it is more convenient to choose a fixed-point operator that has the dis-
tributive property (i.e., φ = ψξ→ φ̃ = ψ̃ξ̃) as evidenced by the ensuing formulation. In this study,
φ̃(x,y, t) = φ(x,y, t,0) is adopted.

3 Computational Model

This section describes the multiscale spatio-temporal modeling approach to evaluate the failure re-
sponse of heterogeneous bodies subjected to cyclic loading governed by Eqs. 1-6. The eigendeformation-
based homogenization method with symmetric coefficients [28] is employed to address the multiple
spatial scales, whereas temporal homogenization with almost periodic fields is employed to efficiently
predict the life of a structure without resorting to full cycle-by-cycle analysis. The cyclic damage
evolution law employed to idealize the failure response of composite constituents is presented.

3.1 Multiple Scale Model

We start by expressing the displacement field of the heterogeneous body using a two-scale asymp-
totic expansion:

u(x,y, t,τ) = ū(x, t,τ)+ζu1 (x,y, t,τ) (13)

in which, ū and u are the macroscopic and microscopic displacement fields, respectively. The govern-
ing equations are decomposed into macroscopic and microscopic problems through asymptotic analysis
of the governing equations, which consists of substituting Eq. 13 into Eqs. 1-6, and collecting the same
order terms of the resulting decompositions. The two leading order equilibrium equations are:

O(ζ−1) : ∇y ·σ (x,y, t,τ) = 0 (14)

O(1) : ∇x ·σ (x,y, t,τ)+∇y ·σ1 (x,y, t,τ)+b(x,y) = 0 (15)
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where, ∇x ·(·) and ∇y ·(·) are divergence operators with respect to macroscopic and microscopic spatial
coordinates, respectively; and, the body forces are assumed to remain constant in time for simplicity.
The first and second order stress fields are:

σ (x,y, t,τ) = [1−ω(x,y, t,τ)]L(y) :
[
ε̄(x, t,τ)+∇

s
y(u

1)(x,y, t,τ)
]

(16)

σ1 (x,y, t,τ) = [1−ω(x,y, t,τ)]L(y) :
[
∇

s
x(u

1)(x,y, t,τ)
]

(17)

in which, ∇s
x(·) and ∇s

y(·) are symmetric gradient operators with respect to the macroscopic and mi-
croscopic spatial coordinates, respectively; and, ε̄= ∇s

x(ū) is the macroscopic strain tensor.
Applying Eq. 10 to the damage evolution equations and collecting the same order terms yield:

O(η−1) : ω,τ = f 0 (σ,ε,s) (18)

O(1) : ω,t = f 1 (σ,ε,s) (19)

where, the evolution functions f 0 and f 1 are derived based on the prescribed evolution law f .
The boundary data applied to the heterogeneous body is composed of a slowly varying and a peri-

odic oscillatory component:

ûη (x, t) = û0 (x, t)+ û1 (x,τ) (20)

t̂η (x, t) = t̂0 (x, t)+ t̂1 (x,τ) (21)

Applying spatial averaging (Eq. 9) to the O(1) equilibrium equation (Eq. 15), exploiting the local
periodicity of the stress fields in space, and applying the almost periodic temporal homogenization
operator yields the macroscale equilibrium equation. The resulting equilibrium equation along with
the spatio-temporally homogenized first order stress field, and the boundary conditions provide the
macrochronological-macroscopic boundary value problem.

Macrochronological - Macroscopic Problem: Given: average body force, b̄, boundary data û0 and t̂0,
and the solution of the macrochronological-microscopic problem; Find the macroscopic displacement
field, ˜̄u, such that (t ∈ [0, t f ]):

∇x · ˜̄σ (x, t)+ b̄(x) = 0; x ∈Ω (22a)
˜̄σ (x, t) =

〈
(1− ω̃)L(y) :

[
˜̄ε+∇

s
y(ũ

1)
]〉

y ; x ∈Ω (22b)

˜̄u = û0(x, t); x ∈ Γu (22c)
˜̄σ(x, t) ·n = t̂0(x, t); x ∈ Γt (22d)

Applying the temporal homogenization operator to the O(ζ−1) equilibrium equations (Eq. 14) along
with the constitutive equation for the leading order stress (Eq. 16), and employing periodic boundary
conditions for the microscale displacement field, the macrochronological-microscopic boundary value
problem is obtained.

Macrochronological-Microscopic Problem: At a fixed macroscale material point x̆ ∈ Ω; Given:
macroscale strain, ˜̄ε, and the tensor of elastic moduli, L; Find the displacement field, ũ1, such that:

∇y ·
{
(1− ω̃)L(y) :

[
˜̄ε+∇

s
y(ũ

1)
]}

= 0; y ∈ θ (23a)
˙̃ω(x̆, t) = f 1 (σ̃, ε̃, s̃)+ωap(x̆, t); y ∈ θ (23b)

ũ1 periodic on y ∈ ∂θ (23c)

6



The macro- and microscopic problems associated with the fast time scale at a fixed slow time
coordinate, t, are obtained based on similar algebra, but without applying the temporal homogenization
operator to the governing equations and considering the damage evolution equation with respect to the
fast time scale (i.e., Eq. 18). The resulting microchronological - macroscopic and microchronological
- microscopic problems are stated as follows:

Microchronological - Macroscopic Problem: At a fixed macrochronological time t̆ ∈ [0, t f ], Given:
average body force, b̄, boundary data, û and t̂, and the solution of the microchronological-microscopic
problem; Find the macroscopic displacement field, ū, such that (τ ∈ [0,τ0]):

∇x · σ̄ (x, t̆,τ)+ b̄(x) = 0; x ∈Ω (24a)

σ̄ =
〈
(1−ω)L(y) :

[
ε̄+∇

s
y(u

1)
]〉

y ; x ∈Ω (24b)

ū = û(x, t̆,τ); x ∈ Γu (24c)

σ̄ ·n = t̂(x, t̆,τ); x ∈ Γt (24d)

Microchronological-Microscopic Problem: At a fixed macroscale material point x̆ ∈ Ω and a fixed
macrochronological time t̆ ∈ [0, t f ]; Given: macroscopic strain, ε̄, and the tensor of elastic moduli, L;
Find the microscopic displacement field, u1, such that:

∇y ·
{
(1−ω)L(y) :

[
ε̄+∇

s
y(u

1)
]}

= 0; y ∈ θ (25a)

ω,τ(x̆,y, t̆,τ) = f 0 (σ,ε,s) ; y ∈ θ (25b)

u1 periodic on y ∈ ∂θ (25c)

The macrochronological and microchronological problems are coupled through the almost periodic
rate operator that defines the evolution of the temporally homogenized response fields (i.e., Eq. 23b).
Therefore, the evolution of the macrochronological fields at each macrochronological time coordinate
requires the solution of the microchronological problem associated with that time coordinate. The
macroscale problems at the macrochronological and microchronological time scales are coupled with
the respective microscale problems through the constitutive relationship (Eq. 24b). The evaluation of
the macroscopic stress at each macroscopic material point requires the solution of the microscopic RVE
problem associated with that material point. When the finite element method is employed to evaluate
the macroscale problem, a nonlinear microscale problem must be evaluated to update the stress at each
integration point for each increment and iteration of every time step of the loading history. This is a
significant computational burden.

3.1.1 Reduced Order Spatial Homogenization

We employ the eigendeformation-based reduced order homogenization method with symmetric co-
efficients (sEHM) to reduce the computational cost associated with evaluating the coupled nonlinear
micro- and macroscopic problems. sEHM is introduced in Ref. [28] and a brief summary is provided
herein. The premise of sEHM is to devise a low-cost approximation to the nonlinear microscale bound-
ary value problem defined over the representative volume elements based on the idea of precomputing
certain microstructural information (e.g., concentration tensors, localization operators, influence func-
tions) through linear elastic simulations prior to the analysis of the macroscale structure.

The microscale displacement field is expressed as:

u1 (x,y, t,τ) = H(y) : ε̄(x, t,τ)+
∫

Θ

h(y, ŷ) : µ(x, ŷ, t,τ)dŷ (26)
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in which, H is the elastic influence function (a third-order tensor) obtained by substituting Eq. 26 into
the microscale problem, and evaluating the microscale problem in the absence of damage; and h is the
phase damage induced influence function provided by the particular solutions to the RVE problems
obtained by substituting Eq. 26 into the microscale problem, and solving the microscale problem in
the presence of phase damage (i.e., µ). The governing equations and the discrete approximations of
the elastic and phase damage induced influence functions are provided in Ref. [27]. Meso-mechanical
shape functions are employed to discretize damage and damage induced inelastic strain fields:

{ω,µ}(x,y, t) =
n

∑
γ=1

N(γ) (y)
{

ω
(γ),µ(γ)

}
(x, t,τ) (27)

in which, N(γ) are the phase shape functions. We consider a partitioning of the RVE domain into n
non-overlapping subdomains, θ(γ), such that θ(γ) ∩ θ(∆) = /0 if γ 6= ∆. The phase shape functions are
taken to be piecewise constant functions forming a partition of unity within the RVE:

N(γ)
ph (y) =

{
1 if y ∈ θ(γ)

0 elsewhere
(28)

and, ω(γ) and µ(γ) are damage variable and inelastic strains averaged over the partition, θ(γ). Substi-
tuting Eqs. 26-28 into the microscale problem (Eqs. 25), and considering variational arguments (see
Ref. [28]), the governing equation of the microscale problem is reduced to the following algebraic
form:

n

∑
∆=1

{[
1−ω

(∆)
][

Â(α∆) : ε̄+
n

∑
γ=1

B̂(α∆γ) : µ(γ)

]}
= 0 ∀α = 1,2, . . . ,n (29)

in which, Â(α∆) and B̂(α∆γ) are coefficient tensors computed as a function of the influence functions, H
and h as well as the elastic properties, L. The macroscopic stress tensor is expressed in terms of the
partition average damage variable and inelastic strains as:

σ̄ =
n

∑
∆=1

[
1−ω

(∆)
][

L̄(∆) : ε̄ +
n

∑
α=1

P̄(∆α) : µ(α)

]
(30)

in which, L̄(∆) and P̄(∆α) are coefficient tensors. The expressions for the coefficient tensors are provided
in Ref. [28]. The macrochronological counterparts of the reduced order microscopic equilibrium and
macroscopic stress are obtained by applying the almost periodic temporal homogenization operator to
Eqs. 29 and 30.

3.2 Cyclic Damage Model

Continuum damage mechanics (CDM) is employed to describe the evolution of damage within a
phase partition (i.e., ω(γ)). In contrast to monotonic CDM models, the evolution law is allowed to
accumulate damage at subcritical loading levels to permit sensitivity to cyclic loading. Such a model
previously employed in Refs. [30, 33], is adopted in this study:

ω̇
(γ) = gp dΦ

(
υ(γ)
)

dυ(γ)

〈
υ̇
(γ)
〉
+

where 0≤ g =
Φ
(
υ(γ)
)

ω(γ)
≤ 1; γ = 1,2, . . . ,n (31)

where, p is the cyclic damage sensitivity parameter; 〈·〉+ denotes MacCauley brackets; Φ the damage
evolution law under monotonically increasing loads; and υ(γ) the damage equivalent strain:

υ
(γ) =

√
1
2
ε(γ) : L(γ) : ε(γ) (32)
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Figure 2: Effect of the cyclic damage sensitivity parameter, p, on the cyclic stress-strain rela-
tionship.

in which, L(γ) is the tensor of elastic moduli of the constituent occupying θ(γ); and, ε(γ) is the average
strain within partition, γ. The damage evolution under monotonic conditions is idealized based on a
smooth evolution law:

Φ

(
υ
(γ)
)
=

arctan
(
a(γ)υ(γ)−b(γ)

)
+ arctan

(
b(γ)
)

π

2 + arctan
(
b(γ)
) (33)

where, a(γ) and b(γ) are material parameters associated with the constituent occupying domain θ(γ).
The cyclic damage sensitivity parameter, p, which controls the rate of damage accumulation with

respect to a load cycle as illustrated in Fig. 2, is taken to be of the form:

p(γ) = c(γ)0 + c(γ)1 υ
(γ)
max + c(γ)2 (υ

(γ)
max)

2 (34)

c(γ)0 , c(γ)1 , and c(γ)2 are parameters that account for the sensitivity of fatigue strength to the maximum
applied loading. A quadratic form is chosen to model the fatigue behavior observed in the experiments.
υ
(γ)
max is the maximum value of the damage equivalent strain during the history of the material point as

defined below.
υ
(γ)
max(t) = max

T

{
υ
(γ)(T ) | 0≤ T ≤ t

}
(35)

Applying the chain rule in the time domain (Eq. 10) to the damage evolution equation (Eq. 31),
collecting the terms based on the order of the temporal scaling parameter, η, and applying the temporal
homogenization operator to the O(1) equation yields:

ω
(γ)
,τ = f 0 = gp dΦ

(
υ(γ)
)

dυ(γ)

〈
υ
(γ)
,τ

〉
+

(36)

ω̃
(γ)
,t = f 1 = gp dΦ

(
υ̃(γ)
)

dυ̃(γ)

〈
υ̃
(γ)
,t

〉
+

(37)

4 Computational Implementation

Boxes 1 and 2 summarize the microchronological- and macrochronological-reduced order multi-
scopic problems, respectively. Given the coupling terms, the micro- and macrochronological prob-
lems are evaluated using the nonlinear finite element method. A commercial finite element software
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Microchronological Problem:
Given: Coefficient tensors, L̄(∆), P̄(∆α), Â(α∆) and B̂(α∆γ); average body force, b̄, boundary data û
and t̂
Find: at a fixed macrochronological time t̆ ∈ [0, t f ] the macroscopic displacement field, ū, which
satisfies (τ ∈ [0,τ0]):

Equilibrium : ∇x · σ̄ (x, t̆,τ)+ b̄(x) = 0; x ∈Ω

Constitutive Equation: σ̄ =
n

∑
∆=1

[
1−ω

(∆)
][

L̄(∆) : ε̄ +
n

∑
α=1

P̄(∆α) : µ(α)

]
n

∑
∆=1

{[
1−ω

(∆)
][

Â(α∆) : ε̄+
n

∑
γ=1

B̂(α∆γ) : µ(γ)

]}
= 0 ∀α = 1,2, . . . ,n

Damage Evolution: ω
(γ)
,τ = f 0 = gp dΦ

(
υ(γ)
)

dυ(γ)

〈
υ
(γ)
,τ

〉
+

Boundary conditions: ū = û(x, t̆,τ); x ∈ Γu

σ̄ ·n = t̂(x, t̆,τ); x ∈ Γt

Box 1: The microchronological system of equations for evaluation of a single load cycle.

(Abaqus) along with the user material subroutine utility (UMAT) is employed to solve these prob-
lems. In this section, we focus on the implementation details of the coupling between the micro-
and macrochronological problems. The proposed solution strategy is implemented with an adaptive
macrochronological time stepping methodology.

The overall solution strategy for the evaluation of the coupled multiscale system is illustrated in
Fig. 3. Consider a discretization of the macrochronological time domain,

{
t0 = 0, . . . , ti−1, ti, ti+1, . . . , tk = t f

}
in which ti denotes the ith macrochronological time step:

ti =
i

∑
j=1

∆t j ≤ t f (38)

where, ∆ti = ti− ti−1 and t0 = 0. A driver program (implemented in the Python programming language
for compatibility with Abaqus) controls the execution of the solution procedure. At each macrochrono-
logical time step, the time step size as well as the almost periodic damage field are estimated and passed
to the macrochronological - multiscopic problem, which is evaluated for macrochronological response
fields. The macrochronological response fields provide the initial state of the microchronological -
multiscopic problem at fixed time ti due to the particular choice of the temporal homogenization opera-
tor. The point-wise value of the almost periodic damage field, ω

(γ)
ap , at the current time step is computed

and passed to the driver routine for computation of the next time step size.

4.1 Adaptive Macrochronological Time Stepping

The proposed solution algorithm outlined in Fig. 3 requires the resolution of k cycles throughout
the loading history, which are evaluated by the microchronological problem (Box 1). The accuracy and
efficiency of the proposed approach is based on the appropriate selection of the macrochronological
time steps, as well as the accurate approximation of the evolution of the almost periodic component of
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Macrochronological Problem:
Given: coefficient tensors, L̄(∆), P̄(∆α), Â(α∆) and B̂(α∆γ); average body force, b̄, boundary data, û0

and t̂0; the almost periodic damage function, ωap.
Find: the displacement field, ˜̄u, which satisfies (t ∈ [0, t f ]):

Equilibrium : ∇x · ˜̄σ (x, t)+ b̄(x) = 0; x ∈Ω

Constitutive Equation: ˜̄σ =
n

∑
∆=1

[
1− ω̃

(∆)
][

L̄(∆) : ˜̄ε +
n

∑
α=1

P̄(∆α) : µ̃(α)

]
n

∑
∆=1

{[
1− ω̃

(∆)
][

Â(α∆) : ε̄+
n

∑
γ=1

B̂(α∆γ) : µ̃(γ)

]}
= 0 ∀α = 1,2, . . . ,n

Damage Evolution: ˙̃ω(x, t) = f 1 +ωap = gp dΦ
(
υ̃(γ)
)

dυ̃(γ)

〈
υ̃
(γ)
,t

〉
+
+ωap(x, t); y ∈ θ

Boundary conditions: ˜̄u = û0(x, t); x ∈ Γu

˜̄σ(x, t) ·n = t̂0(x, t); x ∈ Γt

Box 2: The macrochronological system of equations for evaluation of a macroscale time step.

the damage field. In this study, the almost periodic damage fields are approximated based on a modified
quadratic multistep method [35], whereas the macrochronological time step size is chosen adaptively
based on a maximum damage accumulation criterion. It is assumed that damage accumulation is
primarily due to cyclic loading and slow loading component remain smooth during the loading history.

Let D′(t) be a matrix of almost periodic damage rate fields:

D′(t) =


ω
(1)
ap (x1, t) · · · ω

(n)
ap (x1, t)

...
. . .

...
ω
(1)
ap (xng , t) · · · ω

(n)
ap (xng , t)

 (39)

in which, ng denotes the total number of integration points within the macroscopic domain; xg de-
notes the value of the function at integration point g. Considering a smooth damage growth between
macrochronological steps i− 1 and i+ 1, the evolution of D′(t) is approximated by a linear function
around ti:

D′(ti +∆t)≈ Pi(∆t)≡ bi + ci∆t; ∆t ∈ [−∆ti,∆ti+1] (40)

The coefficients of the linear approximations are obtained by imposing the following conditions on Pi:

Pi(0) = D′(ti) (41)

Pi(−∆ti) = D′(ti−1) (42)

Substituting Eqs. 41, and 42 into Eq. 40, the rate of the almost periodic damage fields is obtained as:

D′(ti+1)≈ P(∆ti+1) = D′(ti)+
∆ti+1

∆ti

(
D′(ti)−D′(ti−1)

)
(43)

Let ∆Di+1 define the matrix of cyclic loading induced damage accumulated between time ti and
ti+1. Employing the linear approximation provided by Eq. 40 yields:

∆Di+1 ≈
∫

∆ti+1

0
Pi(∆t)d∆t = ∆ti+1D′(ti)+

∆t2
i+1

2∆ti

(
D′(ti)−D′(ti−1)

)
(44)
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Python Driver

Compute: 

for each macrochronological
time step,    

Macrochronological - 
Multiscopic Problem

Microchronological - 
Multiscopic Problem

Compute: ˜̄σ, ˜̄ε, ˜̄u, ω̃(η)

σ̄(x, ti, τ),

ε̄(x, ti, τ), ū(x, ti, τ),

ω(η)(x, ti, τ)

˜̄σ, ˜̄ε, ˜̄u, ω̃(η)

Compute:

ω(η)
ap (x, t)

ω(η)
ap (x, t)

ω(η)
ap (x, t)

ti−1 ≤ t < ti∆ti

ti

Figure 3: Implementation strategy of the coupled micro- and macro-chronological problems.

The macrochronological step size (∆ti+1) is chosen such that the maximum damage accumulation
within a step does not exceed a threshold value:

‖∆Di+1‖max ≤ ∆Dmax (45)

where, ∆Dmax is the damage accumulation threshold, and ‖·‖max denotes the matrix max norm.
The loss of load carrying capacity during a microchronological problem following a long macrochrono-

logical step indicates a possible underestimation of damage accumulation during the macrochronolog-
ical time step. This is due to the deviation of the damage accumulation from the piecewise quadratic
approximation within the time step. When failure is observed, the previous macrochronological step
size is shortened, and the previous macrochronological time step is repeated. The time step shortening
is repeated until desired accuracy of the time-to-failure is achieved. The overall algorithm is presented
below:

1. Initialize algorithm: i = 0.

2. Evaluate macrochronological step (Box 2).

3. Evaluate microchronological problem at t = 0 (Box 1).

4. Set i = 1; ∆t1 = ητ0, where ητ0 is the duration of one load cycle; D′(t1) = D′(0).

5. Evaluate macrochronological step.

6. Evaluate microchronological problem at t = t1.

7. Set i = 2

8. While i≤ k:

(a) Calculate ∆ti using Eq. 45.
(b) Calculate D′(ti) using Eq. 43.
(c) Evaluate macrochronological step.
(d) Evaluate microchronological problem at t = ti.
(e) If {failure event & ∆ti/ti ≥ tol }:

i. ∆ti←max(ητ0,c∆ti) and go to step (b).
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(f) Else if {failure event & ∆ti/ti < tol }:
i. Structural failure: Stop algorithm.

(g) i← i+1

9. End.

The proposed algorithm is initiated by evaluating two macrochronological time steps and two mi-
crochronological problems that corresponds to the first two load cycles, noting that a single load period
is denoted by ητ0. The almost periodic field is taken to vary linearly between the first and second load
cycles, and quadratically between the remaining macrochronological time steps. 0 < c < 1 is the step
cutback factor when a failure event is detected. The failure event is defined as a loss of load carrying
capacity of the structure, detected as lack of convergence that occurs during the evaluation of the mi-
crochronological problem. The macrochronological time step size cannot be smaller than a single load
period (= ητ0). Structural failure is taken to occur when the failure event is detected, and the ratio of
the current macrochronological time step size and the current macrochronological time is less than a
specified tolerance (tol) value. The cutback iterations when a failure event is detected are controlled
by the Python driver program, which employs the restart capability of Abaqus to iterate the evaluation
of macro- and micro-chronological problems until convergence.

5 Model Verification

The proposed adaptive macrochronological time stepping strategy is verified by comparing the
performance with direct cycle-by-cycle simulations. In the direct cycle-by-cycle analysis, each load
cycle throughout the loading is resolved, without resorting to the multiple temporal scale strategy. The
simulations were conducted on a unidirectionally fiber-reinforced matrix unit cell. The fiber is taken to
remain elastic throughout the loading period, whereas the damage accumulates within the matrix as a
function of loading cycles. The failure response in the matrix phase is approximated using a 4-partition
reduced-order model. A uniform tensile strain is applied transverse to the reinforcement direction. The
strain amplitude is varied between zero and the maximum strain throughout the loading history.

Figure 4 illustrates the variation of the damage variables within the unit cell as a function of ap-
plied loading cycles. Only two of the four matrix partitions show appreciable damage. The proposed
model simulations are conducted by setting ∆Dmax = 0.5%, 1%, and 2%. A cutback factor of 0.5 is
employed (c = 0.5). The proposed adaptive time stepping strategy required 109, 68, and 43 resolved
microchronological load cycles for ∆Dmax = 0.5%, 1%, and 2%, respectively, compared to 900 cycles
resolved in the direct cycle-by-cycle approach. The proposed model captures the failure response with
reasonable accuracy, with excellent accuracy observed for ∆Dmax = 0.5%.

The efficiency of the proposed approach is further illustrated by conducting simulations when the
unit cell is subjected to a slightly smaller loading amplitude . In this analysis, the cycle-to-failure of
the first partition is 677 (in contrast to 377 of the previous simulations). The simulations are con-
ducted for 1800 cycles. Figure 5 illustrates the variation of damage variables within the unit cell as a
function of applied loading cycles as computed by the reference simulations and the multiple spatio-
temporal model with adaptive time stepping methodology. The total resolved cycles of the proposed
adaptive time stepping strategy remain largely the same (∆Dmax = 0.5%, 1%, and 2% are 118, 72 and
47 respectively), pointing to significant computational advantage in high cycle failure conditions.
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Figure 4: Comparison of the cyclic damage accumulation computed using the direct cycle-by-
cycle approach and proposed multiscale model with adaptive time stepping.
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Figure 5: Comparison of the cyclic damage accumulation computed using the direct cycle-by-
cycle approach and proposed multiscale model with adaptive time stepping with smaller loading
amplitude.
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Table 1: IM7/977-3 specimen dimensions

Fiber Number Length Width Thickness
Orientation Of Plies [mm] [mm] [mm]

0◦ 8 250 13 1
90◦ 16 177 25 2

Quasi-Iso. 16 250 25 2

6 Cyclic Response of IM7/977-3 Composites

The capabilities of the proposed multiple spatio-temporal methodology is assessed through the in-
vestigation of graphite fiber-reinforced epoxy composites (i.e., IM7/977-3) subjected to cyclic loading.
This section presents the experiments conducted to study the cyclic response of the composite; cali-
bration of the model parameters based on monotonic and cyclic experiments, and; validation of model
predictions based on acoustic emission testing.

6.1 Experiments

A suite of experiments was conducted to calibrate the material parameters and assess the validity
of the proposed multiscale model. Composite specimens with three separate layups of unidirectional
laminae were tested under uniaxial monotonic and cyclic loading conditions: (a) Zero degree spec-
imens consist of eight unidirectional plies with fibers oriented parallel to the loading direction; (b)
Ninety degree specimens consist of sixteen unidirectional plies with the fibers oriented perpendicular
to the loading direction; and (c) Quasi-isotropic specimens with the layup of [+45,0,−45,90]2s. Spec-
imen configurations are summarized in Table 2. The mean fiber volume fraction of the specimens is
65.6%, which was determined based on acid digestion testing. The results of experiments conducted
on zero and ninety degree specimens are employed in the calibration of the parameters of the proposed
multiscale model, whereas the quasi-isotropic specimens are employed in the validation analyses.

Acoustic emission (AE) was used to detect failure events within the quasi-isotropic layups. In-situ
AE activity was recorded on a Micro-II Digital AE System produced by Physical Acoustics Corpo-
ration. In the AE technique, the stress waves produced by the sudden release of strain energy during
localized failure events are identified and recorded as hits. Appropriate signal conditioning parameters
are identified based on an AE calibration study prior to testing. A threshold wave amplitude of 48 dB
enables the separation of all valid failure events from ambient noise.

The first set of experiments conducted is on unidirectional unnotched tension specimens tested
under monotonic displacement control on an MTS universal testing machine according to ASTM Stan-
dard D3039 [36]. A grip pressure of 500 psi was applied to prevent slipping without crushing the
composite. One axial and one transverse strain gage were mounted on each specimen to determine
Poisson’s ratio. A one-inch extensometer was used to accurately measure the axial stiffness. All
monotonic tests were conducted at a constant displacement rate of 1.27 mm/min. Thirteen zero degree
specimens, seventeen ninety degree specimens, and seven quasi-isotropic specimens were subjected
to uniaxial tension up to failure to ensure repeatibility. A moderate degree of modulus and strength
scatter is observed in the experiments. Figure 6 illustrates the failure patterns, which show destructive
fiber failure in the zero degree specimens, matrix-dominated failure in the ninety degree specimens,
and combined matrix and fiber failure in the quasi-isotropic specimens. All non-zero plies in the quasi-
isotropic specimens showed matrix-dominated failure, while the zero degree plies showed fiber failure.
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(a)

(b)

(c)

Figure 6: Failure profiles when subjected to monotonic loading. (a) Zero-degree specimens;
(b) ninety degree specimens; (c) quasi-isotropic specimens.

Table 2: Calibrated elastic parameters of the composite constituents; observed and simulated
elastic parameters of the overall composite.

Layup Young’s Modulus, E Failure Strength, σf
[GPa] [MPa]

0◦ 158 (13)1 2,841 (296)
90◦ 8.644 (0.712) 63 (14)

Quasi-isotropic 60.7 (2.2) 872 (30)
1 standard deviation in parantheses.

The elastic and strength properties observed in the experiments are summarized in Table 2. A Poisson’s
ratio of 0.316 with a standard deviation of 0.039 was observed by placing a strain gage perpendicular
to the loading on the 0◦ specimens. The shear modulus, G12, was determined to be 4.66 MPa with
a standard deviation of 0.61 using additional tension experiments conducted on composite specimens
with a +/-45◦ layup according to the procedure described in ASTM D3518 [37].

The next set of experiments consisted of constant amplitude load-controlled cyclic tests that were
conducted according to ASTM D3479 [38]. Cyclic testing was performed with a constant maximum
stress amplitude, an R-ratio of 0.1, and a loading frequency of 5 Hz. The maximum applied stress
amplitude for the 90◦ specimens was varied between 45% and 55% of the average monotonic ultimate
stress of the layup configuration. The 90◦ specimens failed by matrix cracking across the width of the
specimen. The quasi-isotropic layup was tested with a maximum applied stress amplitude of 17% of
the ultimate stress of the corresponding layup.
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Figure 7: RVE and partition structure for IM7/977-3.

Table 3: Elastic parameter optimization

Em [GPa] E f
1 [GPa] E f

2 [GPa] Gf
12 [GPa] νm νf

12 νf
23

3.55 263.00 13.00 27.50 0.35 0.32 0.20

Ec
1 [GPa] Ec

2 [GPa] Gc
12 [GPa] νc

12

Experiment 158.00 8.64 4.66 0.316
Model 158.00 8.64 4.66 0.33

Superscript c indicates a composite material property.

6.2 Model Calibration

The domain of the microscopic problem (i.e., RVE) is a unidirectionally fiber reinforced matrix
as illustrated in Fig. 7. The diameter of the fiber is set to ensure that the volume fraction in the RVE
equals the experimentally measured volume fraction of 65.6%. We employ a 4-partition reduced order
model to evaluate the failure response within the composite constituents. The matrix is represented
using three partitions, whereas the fiber response is idealized using a single partition. The domains of
each partition within the RVE are illustrated in Fig. 7.

The elastic response of the 977-3 resin is taken to be isotropic, with the Young’s modulus and
the Poisson’s ratio of the material denoted by Em and νm, respectively. The IM7 fiber is taken to be
transversely isotropic with five elastic parameters: E f

1, E f
2, Gf

12, νf
12, and νf

23, where the 1-direction is
along the fiber length. The Poisson’s ratios were obtained from the literature (νf

12 and νf
23 from [39]

and νm from [2]). The remaining elastic parameters (i.e., Ef
1, E f

2, Gf
12, and Em) were calibrated against

the linear regions of the stress-strain curves recorded in the monotonic experiments. The calibrated
elastic parameters of the composite constituents and the experimentally observed and simulated elastic
parameters of the overall composite are summarized in Table 3.

The damage model employed in this study includes seven parameters. Four of the seven parame-
ters (i.e., αm, βm, αf, and βf) determine the evolution of damage when subjected to monotonic loading
conditions, whereas the remaining three parameters (i.e., cm

0 , cm
1 and cm

2 ) determine the sensitivity of
damage evolution to cyclic loading. Experiments conducted under cyclic tensile conditions indicate
that failure initiates within the matrix. Fibers are taken to be insensitive to cyclic failure at the loading
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Figure 8: The tension experiments are compared to the calibrated model response.

amplitudes considered in this work. The superscripts m and f denote matrix and fiber phases respec-
tively. The matrix parameters are employed in modeling failure in the three matrix partitions, whereas
the fiber parameters are employed in modeling the fiber partition.

αm and αf are regularization parameters that control the abruptness of the ultimate failure within
the matrix and fiber phases, respectively. The values of αm and αf are chosen to avoid numerical
difficulties associated with sudden failure events, while accurately capturing the characteristics of the
stress-strain response. βm and βf are material parameters that control the ultimate strength of the
matrix and fiber, respectively. The experimentally observed stress-strain response of the zero and ninety
degree specimens are employed in the calibration process. The failure in the zero degree specimens is
dominated by fiber failure, whereas matrix cracking dominates failure in the ninety degree specimens
subjected to monotonic loading. βm and βf are identified by minimizing the discrepancy between the
experimental and simulated stress-strain curves. The calibrated model parameters are αm = 0.05, βm =
32.0, αf = 0.05, and βf = 340.0. Figure 8 illustrates the experimentally observed and simulated stress-
strain curves based on calibrated material parameters for zero degree and ninety-degree specimens.
The mean ultimate strength and strain-at-failure for zero degree specimens based on experiments are
2841 MPa and 0.0180, respectively. The mean ultimate strength and strain-at-failure for ninety degree
specimens based on experiments are 63 MPa and 0.00728, respectively. The calibrated model yields
2846 MPa and 0.0186 for zero degree loadings and 67 MPa and 0.00822 for ninety degree loadings,
which are in close agreement with the experiments.

The cyclic failure of the matrix is characterized by the three remaining parameters: cm
0 , cm

1 and cm
2 .

The calibration of the cyclic loading sensitivity parameters is conducted by employing the stress-life
curves obtained from experiments in which ninety degree specimens are subjected to cyclic loading
in the tensile direction. In the experiments, the maximum amplitude of the cyclic loading was varied
between 360 MPa and 520 MPa, while keeping the R-ratio constant (=0.1). The three parameters
are calibrated by minimizing the discrepancy between the experimental and simulated cycles to failure
under three different loading amplitudes. A least squares nonlinear optimization algorithm is employed
in the identification of the optimal parameters. The calibrated values of c0, c1, and c2 are 8.243, -13.36,
and 7.891, respectively. Figure 9 illustrates the experimentally observed and simulated life curves. The
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Figure 9: Experimentally observed and simulated stress-life curves of the ninety degree speci-
mens.

calibrated model is in close agreement with the experimentally observed mean stress-life curve, which
is expressed in terms of a power law fit. We note that the experiments display a substantial scatter
around the power law fit for this material.

6.3 Model Validation

The capabilities of the proposed multiple spatio-temporal modeling approach are validated by com-
paring the predictions of the calibrated model with experiments conducted on quasi-isotropic spec-
imens subjected to monotonic and cyclic loading conditions. Quarter of the specimen geometry is
discretized due to symmetry with top eight plies explicitly modeled.

Figure 10 illustrates the experimental and simulated stress-strain response of the quasi-isotropic
specimens subjected to monotonic tensile loading. The experimentally-observed mean strength and
strain-to-failure are 872 MPa and 0.0144, respectively. The proposed multiscale model predictions of
the strength and strain-to-failure are 872 MPa and 0.0151, which are in excellent agreement with each
other. The simulations revealed progressive failure within the matrix of individual off-axis plies as a
function of loading. The ultimate failure is due to fiber failure in the 0◦ plies. The predicted failure
pattern is in close agreement with the experimental observations. Figure 11 shows the results of the
acoustic emission testing of a monotonically loaded specimen in terms of hits as a function of applied
stress magnitude. The acoustic emission data shown is indicative of the response of a typical specimen.
The distinct failure events predicted by our simulations are indicated as well. The orientation of the ply
in which the failure event occurs is also shown in Figure 11. All of the failure events were in the matrix
with the exception of the final event. Since the proposed multiscale model is calibrated to the mean
response of all specimens, the provided comparison is qualitative. Despite variations, the progressive
nature of the matrix damage accumulation, as well as the initiation of damage is well captured by the
proposed multiscale model.

We further assessed the validity of the proposed model by comparing the model predictions to ex-
periments on quasi-isotropic specimens subjected to cyclic loading conditions. A sinusoidal load with
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Figure 10: Comparison of experimental and predicted stress-strain curves of the quasi-isotropic
specimens subjected to monotonic tensile loading.

a peak magnitude of 17% of the mean ultimate failure load of the quasi-isotropic specimens (872 MPa)
and an R-ratio of 0.1 is applied. The objective of the investigation is to assess the capability of the pro-
posed model in capturing the distinct failure events that occur within the matrix material as a function
of the applied load cycles. In our simulations, the first four distinct failure events occurred at 11766,
27794, 38817 and 46694 cycles, respectively. Each of these failure events was an individual off-axis
ply losing load carrying capacity due to a matrix crack extending the entire width of the specimen.
The first failure event was in a ninety degree ply, the second and third events were in fourty-five de-
gree plies, and the fourth event was in a minus fourty-five degree ply. Figure 12a shows the acoustic
emission testing results in terms of total hits as a function of the number of loading cycles. The failure
events predicted by the proposed multiscale model are indicated in Fig. 12a. Figure 12b plots the nu-
merical derivative of total hits with respect to the total number of accumulated load cycles. The figures
illustrate that the time-to-failure for major recorded failure events coincide with those predicted by the
simulations. Despite close correlation with the acoustic emission testing, the predictive capability of
the proposed model is qualitative. Additional experimental investigations that quantitatively link the
failure events that occur during the cyclic loading are needed to fully assess the validity of the proposed
approach.

7 Conclusions

A multiscale computational framework for modeling and prediction of failure in composite ma-
terials subjected to cyclic loading conditions is proposed. The reduced-order multiple spatial scale
approach coupled with multiple temporal scale algorithm provides the level of computational effi-
ciency without significant loss of accuracy, which is critical to the prediction of life and failure in
large-scale composite structures. The experimentally calibrated model has the capability to predict the
experimentally-observed early life failure events in carbon-fiber reinforced polymer matrix composite
specimens. A number of challenges remain to be investigated. First, while the proposed multiscale ap-
proach is microscopically nonlocal, the local character of the damage evolution at the macroscale leads
to spurious mesh dependency. Due to the significant associated computational costs, straightforward

20



0 200 400 600 800 1000
0

1

2

3

4

5
x 104

Stress [MPa]

To
ta

l H
its

 

 
Acoustic Emission
Predicted Failure Events

45°

-45°, 45°

-45°, 90°

90° 0° 0°

0° Fiber
Failure

Figure 11: Predicted failure events compared to acoustic emission data of a quasi-isotropic
specimen subjected to monotonic tensile loading. The ply in which the failure occurs is indicated.
All predicted failure events are in the matrix unless indicated otherwise.

0 2 4 6 8
x 104

0

50

100

150

200

250

Cycles

To
ta

l H
its

 

 
Acoustic Emission
Pred. Failure Evnts.

0 2 4 6 8
x 104

0

0.5

1

1.5

2

2.5

Cycles

ΔH
/Δ

n

90° 
45° 

45° 

-45° 

Figure 12: Predicted failure events compared to acoustic emission data of a quasi-isotropic
specimen subjected to cyclic loading. (a) Hits vs. loading cycles; (b) numerical derivative of hits
vs. loading cycles.

21



application of nonlocal damage models is impractical. Enrichment-based nonlocal formulations will
be investigated to eliminate spurious macroscale mesh dependency without the need for high level of
mesh resolution at the macroscale. Second, despite reasonable qualitative agreement of the model pre-
dictions with the experimental analysis of failure events with acoustic emission testing, a more detailed
experimental analysis will provide accurate assessment of the predictive capability of the proposed
multiscale computational framework. A detailed investigation based on image-based micromechanical
analysis of failure events during cyclic loading will be conducted in the near future.
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