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Abstract

This manuscript presents a new methodology for the identification of optimal reduced
order models for the inelastic and failure response of heterogeneous materials. The proposed
methodology employs the eigendeformation-based reduced order homogenization approach.
The identification of the optimal reduced order model is posed as an integer optimization
problem and the genetic algorithm method is used to evaluate the optimization problem. A
second optimization problem is posed to ensure that the errors associated with the optimal
reduced order model are minimized through scaling of the failure parameters. The performance
and capabilities of the optimal reduced order models identified based on the proposed approach
are demonstrated by comparing model predictions with the computational homogenization
method with full resolution of the material microstructure. Numerical simulations conducted
using unidirectional reinforced matrix microstructures reveal that the reduced order models
accurately describe the response characteristics of the composite material for a wide range of
loading regimes.

Keywords: Reduced order modeling, Multiscale modeling, Heterogeneous materials, Optimiza-
tion, Genetic algorithm.

1 Introduction

Computational homogenization is emerging as a powerful modeling and simulation tool for
structures made of composite and heterogeneous materials. The computational homogeniza-
tion method is based on the mathematical homogenization theory pioneered by Babuska [1],
Bensoussan [2], Suquet [3], and Sanchez-Palencia [4]. The key characteristic of this method is
that the macroscopic constitutive behavior of the heterogeneous material is provided by the
numerical solution of a boundary value problem defined over the representative volume of the
microstructure. The computational homogenization method has been successfully applied to
evaluate the mechanical and functional behavior of materials with complex microstructures
that include inelastic, viscous and damage effects [5, 6], geometric nonlinearities [7, 8] and
multiphysics response [9, 10]. Recently, significant research is ongoing to extend the com-
putational homogenization approach to model failure and cracking phenomena in composite
materials [11–13].
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One of the main challenges of computational homogenization is the computational com-
plexity involved in solving boundary value problems at two (or more) scales. The issue of
computational complexity is addressed using parallel implementation strategies, reduced or-
der modeling at the coarse scale using high order (i.e., plate and shell) theories or reduced
order modeling at the fine scales to efficiently evaluate the microscale response, as well as
a combination of these three approaches. Parallelization of the computational homogeniza-
tion [12, 14, 15] is natural and domain decomposition is readily applicable due to the local
character of the microscale boundary value problems that are typically evaluated at the in-
tegration points of the macroscale grid. Model reduction at the coarse scale is achieved by
exploiting the characteristics of the macroscopic domain. For instance, plate and shell theories
have been recently employed to evaluate the response of thin structures with heterogeneous
microstructure [16–19].

The third approach to reducing the computational cost of the computational homogeniza-
tion method is to approximate the microscale boundary value problem with a reduced order
representation. This approach finds its roots in the effective medium theory [20], which pro-
vides analytical or semi-analytical approximation to the microscale problem. More recently,
computational reduced order models have been proposed to address complex microstructural
topologies and nonlinear behavior. Major progress in reduced order modeling has been made
using the boundary element method [21], the Voronoi cell method [22], the method of cells [23],
the fast Fourier transforms [24], the network approximation method [25], the proper orthogonal
decomposition [26] and the proper generalized decomposition [27]. Eigendeformation-based re-
duced order homogenization method has been shown to be another effective approach that can
be applied to problems involving material nonlinearities [28–30], as well as interface decohesion
at the microstructural scale [31, 32]. This approach employs the transformation field analy-
sis [33, 34] and evaluates the nonlinear microscale problem using only a small set of unknowns
through construction of microstructural influence functions and localization operators that are
pre-computed using linear elastic microscale problems. Many reduced order approaches rely
on representing the nonlinear response using a small number of functions spanning a basis
with dimensions much smaller than the full scale microscale boundary value problem. Choos-
ing the appropriate basis, as well as the order that can represent the fine scale response is
therefore the critical question. The basis functions are typically reduced from the response of
fully resolved microstructure problems subjected to a small number of load scenarios that the
overall structure is expected to undergo. In nonlinear problems, the microstructure loading
may significantly change through the course of the loading due to load redistribution. While
the reduced order models are accurate in the load conditions at which they are derived, their
performance at full load spectrum is not always accurate.

In this manuscript, we provide a methodology to identify optimal reduced order homoge-
nization models for efficiently approximating the inelastic and failure response of heterogeneous
materials. The reduced order modeling approach taken in this study is the eigendeformation-
based reduced order homogenization method [31]. The identification of the optimal reduced
order model lends itself as an integer optimization problem, which is evaluated using the
genetic algorithm optimization technique. In particular, this manuscript addresses (1) how
to identify the best reduced order basis for a given model order; (2) the effect of increasing
the model order on the overall accuracy of the microscale computations; and, (3) the accu-
racy characteristics of the optimal reduced order models across a full load spectra beyond the
loading directions at which the reduced order models are developed.

The remainder of the manuscript is organized as follows: The macroscale and microscale
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Figure 1: Macro- and microscopic structures.

problems in the context of the computational homogenization method is described in Section
2. Section 3 provides the reduced order model based on the eigendeformation-based reduced
order homogenization method. In Section 4, the problem statement for the identification of
the optimal reduced order model is provided. The solution methodology based on genetic
algorithm and the details of the implementation of the identification problem is described.
The numerical examples are discussed in Section 5. Section 6 provides the conclusions and
future research in this area.

2 Computational Homogenization

We seek to model the inelastic deformation of a macroscopic domain, Ω, with a heterogeneous
microstructure as illustrated in Fig. 1. The domain of the representative microstructure, Θ,
consists of c ≥ 2 constituent phases. The macroscopic domain is formed by the repetition
of the microstructure. The macroscopic and microscopic domains are parameterized by the
position vectors, x and y, respectively. The response fields (e.g., displacement, strain, stress)
are taken to be periodic with respect to Θ. The macro- and microscale position vectors are
related by the small positive scaling parameter ζ (i.e., 0 < ζ � 1), such that y = x/ζ.

The mathematical homogenization theory with multiple scales [2] is employed to formulate
coupled boundary value problems that describe the response of an equivalent homogeneous do-
main (i.e., the macroscale problem) and the representative volume element (i.e., the microscale
problem). To this extent, the displacement field is decomposed using a two-scale asymptotic
expansion:

ui (x,y, t) = ūi (x, t) + ζu1
i (x,y, t) (1)

in which, ūi and u1
i are the macroscopic and microscopic displacement fields, respectively. The

two-scale decomposition of the displacement field is substituted in the governing equations of
equilibrium and asymptotic analysis is employed to decompose the governing equations into
the macro- and microscale counterparts [31].
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2.1 Macroscale problem

Applying the two-scale asymptotic decomposition into the equilibrium equations, considering
the O(1) terms and averaging over the representative volume element (RVE) leads to the
following macroscale equilibrium equation defined over the macroscopic domain, Ω:

σ̄ij,xj (x, t) + b̄i (x, t) = 0 (2)

in which, σ̄ij and b̄i denote the macroscopic stress tensor and body force, respectively, which
are volume-averaged over the domain of the RVE, Θ:

σ̄ij (x, t) = 〈σij〉 (3)

b̄i (x, t) = 〈bi〉 (4)

where, the Macaulay brackets are defined as:

〈·〉 =
1

|Θ|

∫
Θ

(·)dy (5)

|Θ| is the volume of the RVE.
The stress field is expressed as:

σij (x,y, t) = Lijkl (y)
[
ε̄kl (x, t) + u1

(k,yl)
(x,y, t)− µkl (x,y, t)

]
(6)

where, Lijkl is the fourth order tensor of elastic moduli that vary within the RVE due to
material heterogeneity. Lijkl is taken to be symmetric and strongly elliptic. ε̄ij = ū(i,xj)

is the macroscopic strain tensor; a subscript comma denotes differentiation, parentheses in
the subscript denotes a symmetric differentiation. Small strain kinematics with additive split
of the strain tensor is assumed: εij = εeij − µij , where εeij is the elastic strain and µij is
the history-dependent inelastic strain tensor present due to one or a combination of plastic,
viscous, damage and thermal processes, described in terms of internal state variables. In this
manuscript, the inelastic processes are modeled using a scalar continuum damage mechanics
model for simplicity. The evolution equations for the damage model are explained below. The
boundary conditions of the macroscale problem are defined as:

ūi (x, t) = gi (x, t) ; x ∈ Γu (7)

σ̄ij (x, t)nj = ti (x, t) ; x ∈ Γt (8)

in which, gi is the boundary displacement data prescribed on Γu ⊂ ∂Ω; and, ti is the boundary
traction data prescribed on Γt ⊂ ∂Ω, such that Γu ∩Γt = ∅ and Γu ∪Γt = ∂Ω. The prescribed
boundary conditions are taken to vary with respect to the macroscopic scale only and are
constant with respect to the microscopic coordinates.

2.2 Microscale problem

Applying the two-scale asymptotic decomposition into the equilibrium equations, considering
the O(ζ−1) terms leads to the following microscale equilibrium equation defined over the RVE
domain, Θ:

σij,yj (x,y, t) = 0 (9)
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where, σij is given in Eq. 6. Equation 9 is evaluated for the microscale displacement field,
u1
i , where the macroscopic strain, ε̄ij acts as the loading function for the microscale problem.

The boundary condition of the microscale problem is taken to be periodic. For a rectangular
cuboidal shaped RVE domain, the boundary is split into nsd subdomains denoted by Γξ, where
nsd = 2 or 3 is the number of spatial dimensions. Each boundary subdomain is a pair of parallel
faces of the RVE boundary. The periodic boundary conditions are expressed as:

u1
i (y, t) = u1

i (y − lζnξ, t) ; y ∈ Γξ; ξ = 1, . . . , nsd (10)

in which, nξ is the unit outward normal on Γξ, and lξ is the length of the RVE along nξ. Zero
microscale displacement is imposed at the vertices of the RVE domain to restrict rigid body
motion.

3 Reduced Order Homogenization

When solving linear problems, the linearity of the microscale displacement field with respect
to the macroscopic strains is exploited to pose the microscale problem in terms of a third
order influence function, Hikl (i.e., u1

i (x,y) = Hikl (y) ε̄kl (x)). The macroscale stress is then
a function of Hikl. The influence function is computed numerically and then employed in the
evaluation of the macroscale problem. In nonlinear problems, the microscale displacement
field is a nonlinear and typically history-dependent function of the macroscale strain field.
Therefore, a separate microscale problem is assigned to each integration point of a macroscale
problem and evaluated for every load increment and iteration of a macroscale analysis. The
computational burden in this approach is tremendous in case of large structural simulations
or when the microstructure is complex. We employ the eigendeformation-based reduced order
homogenization approach [31, 32] to develop a reduced order model for efficiently solving for
the microscale response. The microscopic displacement field is expressed as:

u1
i (x,y, t) = Hikl (y) ε̄kl (x, t) +

∫
Θ
hikl (y, ŷ)µkl (x, ŷ, t) dŷ (11)

The inelastic influence function, hikl, consists of the particular solutions of the RVE and is
approximated by numerical solutions of the linear elastic RVE problems [31].

The inelastic strain field is expressed as:

µij (x,y, t) =

n∑
α=1

N (α) (y)µ
(α)
ij (x, t) (12)

where, N (α) are the mesomechanical shape functions; n is the order of discretization (also

referred to as the model order in this manuscript), and µ
(α)
ij are the microscopically nonlocal

inelastic strain coefficients:

µ
(α)
ij (x, t) =

∫
Θ
ϕ(α) (y)µij (x,y, t) dy (13)

in which, ϕ(α) are mesomechanical weight functions. Employing Eqs. 11, 12, and 1, a kine-
matic relationship between the nonlocal inelastic strain coefficients and nonlocal total strain
coefficient is obtained:

ε
(α)
ij (x, t) = A

(α)
ijklε̄ (x, t) +

n∑
β=1

P
(αβ)
ijkl µ

(β)
kl (x, t) (14)

5



where, ε
(α)
ij is defined analogous to Eq. 13, and:

A
(α)
ijkl = Iijkl +

∫
Θ
ϕ(α) (y)Gijkl (y) dy (15)

P
(αβ)
ijkl =

∫
Θ

∫
Θ
ϕ(α) (y) gijkl (y, ŷ)N (β) (ŷ) dŷdy (16)

in which, Gijkl = H(ikl,yj) and gijkl = h(ikl,yj) are elastic and inelastic polarization tensors,
respectively; and, Iijkl the fourth order identity tensor. The evolution of the inelastic strains
is modeled in terms of the nonlocal variables. In the functional form:

µ̇
(α)
ij = f

(
µ

(α)
ij , ε

(α)
ij , σ

(α)
ij ,h

(α)
)

(17)

where, σ
(α)
ij is the nonlocal stress coefficients defined analogous to Eq. 13 and using Eq. 6, and

h(α) denotes additional internal state variables defining the evolution of the inelastic process.

Equation 17 along with Eq. 14 are evaluated to obtain µ
(α)
ij for a prescribed macroscopic strain

state. The computed inelastic strain field satisfies the microscale equilibrium a-priori via the

influence functions. The evaluation of µ
(α)
ij therefore provides an approximation to the solution

of the microscale problem. The specific form of the evolution equations (Eq. 17) requires
that the nonlocal inelastic strain coefficients describe the inelastic processes at a subdomain
occupied by a single constituent phase. Let Θi ⊂ Θ denote the domain of phase i (1 ≤ i ≤ c)

within the RVE. Each phase is decomposed into ni non-overlapping parts: Θi = ∪nj

j=1Θ
(j)
i ,

where Θ
(j)
i ∩ Θ

(k)
i = ∅ if j 6= k. We further define a part of the RVE, Θ(α) = Θ

(j)
i such that

α = j +
∑i−1

k=1 nk. The mesomechanical shape and weight functions are taken to be piecewise
constant within the RVE domain:

N (α) (y) =

{
1 if y ∈ Θ(α)

0 elsewhere
(18)

ϕ(α) (y) =
1∣∣Θ(α)
∣∣N (α) (y) (19)

where,
∣∣Θ(α)

∣∣ is the volume of part Θ(α). This set of shape functions clearly forms an orthonor-
mal basis and satisfies the partition of unity property of the reduced order basis.

3.1 Continuum damage mechanics model

In this study, the evolution of the inelastic strain is modeled using a scalar continuum damage
mechanics model:

µ
(α)
ij = ω(α)ε

(α)
ij (20)

in which, ω(α) ∈ [0, 1) is the damage variable with ω(α) = 0 and ω(α) → 1 indicate the states
of no damage and complete loss of load carrying capacity within part Θ(α), respectively. The
evolution of the damage variable follows:

ω(α) (x, t) = Φ
(
κ(α) (x, t)

)
;

∂Φ
(
κ(α)

)
∂κ(α)

≥ 0 (21)

where,

κ(α) (x, t) = max
{
υ(α) (x, τ)

∣∣∣ τ ≤ t} (22)
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υ(α) is the nonlocal damage equivalent strain defined based on the strain-based damage the-
ory [35] as:

υ(α) (x, t) =

√
1

2
ε
(α)
ij L

(α)
ijklε

(α)
kl (23)

L
(α)
ijkl is the tensor of elastic moduli of the constituent phase occupying Θ(α). By strong ellip-

ticity of L
(α)
ijkl, the nonlocal damage equivalent strain is non-negative.

The evolution of phase damage as a function of the phase deformation function follows the
arctangent law [28]

Φ(α) =
atan

(
a(α)κ(α) (x, t)− b(α)

)
+ atan

(
b(η)
)

π/2 + atan
(
b(α)
) (24)

in which, a(α) and b(β) are material parameters.
Considering the particular form of the scalar damage model (Eq. 20), combining with Eq. 14

and using the shape and weight functions defined as in Eqs. 18 and 19, the nonlocal inelastic
strain coefficients are expressed in the following algebraic form (∀α = 1, 2, . . . , n):

n∑
β=1

[
δαβIijkl − P

(αβ)
ijkl ω

(α) (x, t)
]
µ

(β)
kl (x, t)− ω(α) (x, t)A

(α)
ijklε̄kl (x, t) = 0 (25)

where, δαβ is Kronecker delta.

4 Identification of Optimal Reduced Order Model

In this section, we formulate the problem of identifying the optimal reduced order models and
provide the solution strategy for the identification problem based on optimization with the
genetic algorithm. A separate optimization problem is posed to scale the parameters of the
optimal reduced order models and minimize the modeling errors.

4.1 Problem statement

Consider a finite element discretization of the RVE domain, Λ = {e1, e2, . . . , enel
}, where ei

denotes a finite element; and, nel the total number of finite elements. A reduced order model
of order n is represented by an index set (i.e., individual) X = {X1, X2, . . . , Xnel

} such that
Xi = α if ei ⊂ Θ(α).

Let σref and σX be the response metrics computed using the computational homogenization
method (i.e., reference model) with full resolution of the microstructure and using the reduced
order model, X of order n, respectively. The identification of the optimal reduced order model
consists of minimizing the discrepancy between the response metrics computed by the reference
and the reduced order models:

Find X∗ ∈ χn ≡ {X | 1 ≤ Xi ≤ n}, which satisfies:

F(X∗) = min
X∈χn

‖σref − σX‖(·) (26)

where χn is a set of all possible individuals that define a reduced order model with model
order, n, and X∗ is the optimal reduced order model. In this manuscript, the macroscopic

7



   Generate 
initial population

Evaluate
     fitness of individuals

Select elite
individuals

Populate next
   generation

Mutation
operation

No Select parent
      pairs

    Check
convergence

Yes      Terminate
genetic algorithm

Cross-over
 operation

Figure 2: Structure of the identification strategy using genetic algorithm.

stress-strain response when subjected to nload loading conditions are taken as the response
metric. The objective function becomes:

F(X∗) = min
X∈χn

nload∑
κ=1

∥∥∥σ̄(κ)
ref (ε̄ij)− σ̄(κ)

X (ε̄ij)
∥∥∥

2
(27)

where ‖ · ‖2 denotes L2 norm, σ̄
(κ)
ref and σ̄

(κ)
X are the histories of the macroscopic Von-Mises

stress under the load case, κ, computed using the reference model and the reduced order model,
respectively.

Each individual in the space χn represents a reduced order model of order n but the rep-
resentation is non-unique: multiple individuals may represent the same reduced order model.
This difficulty is alleviated by ordering of the parts, Θ(α). An example is the ascending order
of the parts such that the element with the smallest label in each part Θ(α) increases with α:
Let Λ(α) = {ei | ei ∈ Θ(α); 1 ≤ i ≤ nel} be the set of the finite elements spanning the part
Θ(α) ordered such that Λ(α)(i) > Λ(α)(i − 1); 2 ≤ i ≤ nel. We reorder the parts such that
Λ(1)(1) < Λ(2)(1) < . . . < Λ(n)(1).

The model order of n is ensured by assigning at least one element to each part. By this
constraint a model of order m cannot be represented by a model of a higher order n > m.

4.2 Genetic algorithm

The optimal reduced order models are identified using the genetic algorithm optimization
method. Identification of the optimal reduced order model is an integer optimization problem,
since each individual in the search space, χn, is represented using an integer set. The gradient-
based optimization methods [36], commonly employed in many engineering problems, are
typically for real valued problems and therefore not applicable. Evolutionary (e.g., genetic)
algorithms provide an effective approach to solving nonlinear integer optimization problems
[37–39], since they are based on function evaluations only (no gradient information is needed
or convexity required), they are global optimizers (local minima do not necessarily compromise
the solution) and represent the search space digitally, naturally fitting integer representations.
The literature in evolutionary algorithms is vast and they have been successfully employed in
a variety of problems [39, 40]. Genetic algorithms typically consist of: (a) creation of a set of
individuals (i.e., population) by random sampling of the search space; (b) assessment of the
fitness of the individuals within the population based on objective function evaluation, where
the fitness of an individual is inversely proportional to the corresponding objective function;
and, (c) creation of a set of new individuals from the previous population (i.e., generation)
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based on the fitness of the individuals. Assessment of the fitness and creation of subsequent
generations are repeated until an individual with the desired fitness (i.e., the extremum of the
objective function) is achieved up to the chosen tolerance.

The structure of the genetic algorithm employed in this manuscript is illustrated in Fig. 2.
The algorithm is initiated by creating the initial population of individuals (P = {X1, X2, . . . ,
Xnpop}), where Xi denotes an individual; and, npop the total number of individuals in the
population. The initial population is randomly generated. The fitness of each individual in
the population is computed, where the fitness is defined as the inverse of the objective function
provided in Eq. 27.

The creation of the next generation of the population consists of: (1) the selection of
a number of parent pairs from the current population for the cross-over operation; (2) the
mutation of some individuals in the population; and, (3) the selection of elite individuals for
inclusion in the next generation. The roulette wheel algorithm is employed in the selection
of the parent pairs. In the roulette wheel algorithm, each individual within the population is
assigned a probability of selection that is proportional to its fitness value. The parent pairs are
randomly chosen from the population based on the assigned probabilities [41]. The cross-over
operation consists of the generation of two offsprings from each parent pair using the integer
representation (chromosome) of each individual. The chromosome of each parent is split
into two parts at a randomly selected locus and the chromosome fragments are interchanged
between the two parents to generate two new chromosomes (the offsprings). A number of
offsprings resulting from the cross-over operations are subjected to mutation, which consists of
replacing a targeted gene from the chromosome of an offspring. The selection of the individual
to be mutated, the gene that will be targeted and the new value of the gene are all randomly
chosen. The mutation operation reduces the probability of convergence to a local minimum
by including random individuals into the search space at each generation. A number of elite
individuals with the highest fitness values within the populations are passed on to the next
generation without change.

New generations are created until a convergence criterion is satisfied. Two convergence
criteria are employed in this study. The first criterion indicates convergence when the fitness
of the best individual in the current generation is less than a predefined tolerance. The second
criterion indicates convergence when the change in the average fitness of the population remains
under a specified tolerance for a predefined number of generations (i.e., stall generations).

The genetic algorithm optimization for the identification of the optimal reduced order
model is implemented using Matlab’s global optimization toolbox. The general structure of
the implementation at a given genetic algorithm step is illustrated in Figure 3. The genetic
algorithm is implemented using a parallel solution strategy for computational efficiency. The
computational cost of the identification problem is primarily due to the fitness evaluations,
which consist of solving the multiscale boundary value problems. The population at a gen-
eration is split into p equal subsets (batches). The fitness of the individuals in the batches
are evaluated concurrently using p compute nodes. At each fitness evaluation of an individual
within a batch, the coefficient tensors for the reduced order model represented by the individ-
ual is computed. The genetic algorithm code communicates with a commercial finite element
software (Abaqus) to conduct numerical simulations using the reduced order model. The user
supplied subroutine functionality of Abaqus (UMAT) is used to incorporate the reduced order
model into the Abaqus framework. The reference simulations based on the computational ho-
mogenization method is conducted a-priori, and appropriate data is stored in a file for access
during fitness computation.
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Figure 3: Implementation of the genetic algorithm: (a) parallel execution of the fitness evalua-
tion; and, (b) strategy for evaluating the fitness of an individual.

4.3 Parameter scaling

The predictions of the reduced order models based on eigendeformation-based reduced order
homogenization approach typically overestimate the strength properties. While the optimal
reduced order model identification based on the methodology described above provides the
best model among all possible models of the same order, the accuracy of the model can be
improved by adjusting the model parameters. Let s be a vector of scaling constants associated
with the material parameters of the microstructural constituents. The problem of identifying
the parameter scaled optimal reduced order model is defined as:

Find the scaling constants, s∗, which satisfies:

F(s∗) = min
s

nload∑
κ=1

∥∥∥σ̄(κ)
ref (ε̄ij)− σ̄(κ)

X∗(ε̄ij ; s)
∥∥∥

2
(28)

where σ̄
(κ)
X∗(ε̄ij ; s) is the constitutive response of the optimal reduced order model using the

parameter set, s. The identification problem constitutes nonlinear optimization with real
valued parameters. Gradient based and evolutionary optimization methods are applicable in
the evaluation of this problem.

The continuum damage mechanics model employed in this study includes two parameters
for each microstructural constituent: a(α) and b(α). a(α) controls the degree of brittleness
at a material point at failure, whereas b(α) controls the strength of the constituents. For
a microstructure with two constituents (e.g., fiber and matrix), the parameter set is: s =

{s(m)
a , s

(m)
b , s

(f)
a , s

(f)
b }. In the numerical examples considered in this study, the parameter

scaling (Eq. 28) is evaluated for a single parameter b(m) by employing the Nelder-Mead simplex
method.
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Figure 4: Geometry and discretization of the numerical example. (a) Microstructure;
(b) Macrostructure subjected to biaxial tensile loading; (c) Macrostructure subjected to com-
bined biaxial tensile and shear loading.

5 Numerical Examples

Numerical verification experiments were conducted to assess the capability of the proposed
approach in identifying reduced order models under biaxial and triaxial loading conditions.
The performance of the optimal reduced order models are compared to the direct numerical
simulations based on the computational homogenization method, which constitutes the best
solution that can be obtained by the reduced order models, since they are derived based on
computational homogenization.

Numerical verification analyses are conducted by considering a unidirectional reinforced
matrix microstructure with geometry, the discretization and the loading conditions are shown
in Fig. 4. The finite element discretization of the unit cell consists of 351 tetrahedra. The
matrix and the reinforcements are discretized using 251 and 98 elements, respectively. A unit
cube discretized using a single hexahedral finite element constitutes the macroscale domain.
The volume fraction of the reinforcement within the unit cell is 40%.

The numerical verifications consist of the identification of the optimal reduced order model
partitioning based on a small number of load cases, which is then followed by parameter scaling
and assessment of model performance using a wider range of loading conditions. A reduced
order model is named based on the load cases employed in the identification step and the
model order, n. Ti and Sij denote uniaxial loading along the i-direction (i = x, y, z) and shear
loading along the ij-direction, respectively. For instance, model Tx-Sxz-4 indicates a model of
order 4 (n = 4) identified based on uniaxial tensile loading in the x-direction and shear loading
in xz-direction (i.e., nload = 2).

The parameters associated with the genetic algorithm are identical for all numerical ex-
periments considered. The population size, npop, is taken to be 100. The predefined tolerance
for convergence due to the fitness of the best individual is taken to be 100. The number of
stall generations is set to 40 and the tolerance for convergence due to stall is set to 1e-6. The
mutation ratio, which is the portion of the population that is mutated at each generation, is
set to 0.01. The identification analyses are conducted using eight parallel compute nodes (p =
8).
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Figure 5: Failure envelopes for models Tx-4, Tx-5 and Tx-8 when subjected to tensile loading
in x- and y-directions.

5.1 Biaxial tensile loading

The performance of the reduced order models are assessed under the condition of biaxial loading
perpendicular to the direction of the reinforcement. The elastic modulus and Poisson’s ratio for
the reinforcements are E(f) = 200 GPa and ν(f) = 0.3, and for the matrix are E(m) = 6 GPa
and ν(m) = 0.3. The reinforcement is taken to be linear elastic, whereas the matrix is modeled
using the continuum damage mechanics model with the material parameters of a(m) = 32.0 and
b(m) = 16.3. Each part within the matrix phase is taken to have the same material parameters.
In all configurations considered, the entire reinforcement phase is taken to be a single part.

Figure 5 illustrates the accuracy of three reduced order models identified under uniaxial
tensile loading in the x-direction. The stress envelopes computed using parameter-scaled
models Tx-4, Tx-5 and Tx-8 display a reasonable match with the failure envelope computed
using the reference computational homogenization method. The parameter scaling constants
for models Tx-4, Tx-5 and Tx-8 are 0.87, 0.93 and 0.93, respectively. The modeling error
after parameter scaling are respectively, 7.4%, 5.6% and 5.4% for the three models considered.
A slight increase in the accuracy is observed with increasing model order for reduced order
models with parameter scaling. The increase in accuracy as a function of model order is more
pronounced in unscaled models with modeling errors of 17%, 11% and 9.7% for models Tx-4,
Tx-5 and Tx-8, respectively, yet the impact of parameter scaling on the model accuracy is
evident.

Figure 6 shows the failure envelopes of the three additional reduced order models identified
under the combined uniaxial tension in the x- and y-directions (i.e., nload=2) compared to
the reference simulations after (Fig. 6a) and before (Fig. 6b) parameter scaling. The model
errors prior to parameter scaling are 11.2%, 8.2% and 9.1% for Tx-Ty-4, Tx-Ty-5 and Tx-Ty-8,
respectively, whereas the model errors with parameter scaling are respectively, 6.1%, 4.8% and
5.5%. The failure envelopes computed by the unscaled reduced order models clearly show
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Figure 6: Failure envelopes for models Tx-Ty-4, Tx-Ty-5 and Tx-Ty-8 when subjected to tensile
loading in x- and y-directions: (a) after parameter scaling; (b) before parameter scaling.

stiff response compared to the computational homogenization model, despite similar shape
of the envelope and parameter scaling provides a significant improvement on the accuracy
of the models. The errors clearly indicate that the accuracy is a non-monotonic function of
the model order, and Tx-Ty-5 marginally outperforms Tx-Ty-8. Higher model orders do not
include lower orders as subsets as each part is constrained to contain at least a single finite
element. The optimal reduced order model partitions at orders 4, 5, and 8 are shown in
Fig. 7. The model performance of the reduced order models identified using a single load case
is comparable to that with two load cases due to the symmetry of the unit cell with respect to
the loading directions. The ideal failure envelope is circular because of the symmetry of the
microstructure with respect to the loading considered. The failure envelopes computed using
the reference model as well as the reduced order models deviate from the circular shapes due
to the relatively coarse discretization of the microstructure.

Figure 8 illustrates the stress-strain response as computed using the models Tx-Ty-4, Tx-
Ty-5 and Tx-Ty-8, and the computational homogenization model when subjected to uniaxial
loading (Fig. 8a-b) and under the biaxial loading with prescribed displacement ratio of gx/gy =
1.5 (Fig. 8c-d). In addition to accurately capturing the ultimate strength, the reduced order
models capture the entire stress-strain response.

5.2 Combined biaxial tensile and shear loading

In the current example, we develop a reduced order model for laminated unidirectional rein-
forced composites. In laminated composites, the plies are typically subjected to a combined
state of normal stresses along the reinforcement and transverse directions as well as shear
stresses that develop due to the mismatch between neighboring ply orientations. A graphite
fiber (IM-7) reinforced epoxy (977) resin is considered. The elastic modulus and Poisson’s
ratio for the reinforcements are E(f) = 263 GPa and ν(f) = 0.32, and for the matrix are
E(m) = 3.55 GPa and ν(m) = 0.35. Damage is considered in both matrix and fiber phases with
the material parameters of a(m) = 0.1 and b(m) = 65 for the matrix phase and a(f) = 0.1 and
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Figure 8: Von-Mises stress- equivalent strain curves: (a) unscaled models subjected to unaxial
tension in y-direction, (b) parameter scaled models subjected to unaxial tension in y-direction,
(c) unscaled models subjected to biaxial loading, and (d) parameter scaled models subjected
to biaxial loading.
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Figure 9: Failure envelope for model Tx-Sxz-5 when subjected to transverse tensile and shear
loading.

b(f) = 300 for the fiber phase.
We consider the reduced order model Tx-Sxz-5, which is identified under the uniaxial tensile

loading in the transverse direction and shear (nload = 2). A single part is assigned to the fiber
phase since a sudden fiber failure that predominate the strength in the reinforcement direction
is very well captured by a single part. Figure 9 shows the two-dimensional failure envelope
along the combined transverse normal and shear directions as computed using Tx-Sxz-5 and
the reference computational homogenization model. The parameter scaling constants for the
fiber and matrix parts are 1.0 and 0.69, respectively. The reduced order model provides a good
approximation to the reference model. Figure 10 shows the three-dimensional failure envelope
as computed by the reference (Fig. 10a) and the reduced order (Fig. 10b) models for combined
biaxial tensile and shear loading configurations. The predictions of Tx-Sxz-5 for all possible
loading scenarios are satisfactory when compared to the reference solution. The predictions
of the stress-strain response of the reduced order model are compared to the computational
homogenization model in Fig. 11. The stress-strain response when the material is subjected to
loading in the reinforcement direction is naturally dominated by the fiber behavior (Fig. 11a).
More complex matrix dominated failure is observed at loading in the transverse (Fig. 11b),
shear (Fig. 11c) and biaxial loading along the reinforcement and transverse directions with
applied displacement ratio of gx/gz = 0.75 (Fig. 11d).

6 Conclusions

This manuscript presented a strategy for identifying optimal reduced order models for inelas-
tic and failure response in heterogeneous materials. The reduced order modeling approach in
this study is the eigendeformation-based reduced order homogenization method. The identi-
fication of the optimal reduced order model is posed as an integer optimization problem and
the genetic algorithm method is used to evaluate the optimization problem. A series of nu-
merical simulations were conducted to assess the performance of the identified reduced order
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models against the computational homogenization method, which considers full resolution of
the material microstructure. Since the reduced order models are derived from the computa-
tional homogenization formulation in eigendeformation-based reduced order homogenization,
the accuracy characteristics of the reduced order models are bounded by the computational
homogenization method. The reduced order models identified using the proposed methodology
are able to accurately capture the failure response characteristics for a wide range of loading
conditions in our investigations. The failure response using relatively small order models were
found to be satisfactory. The errors do not monotonically reduce by increasing the model
order. This is attributed to possible identification of reduced order models at local minima of
the objective function and the constraint imposed on high order models that preclude lower
order models from being represented identically by the high order models in the model hier-
archy. While the proposed methodology is effective in identifying satisfactory reduced order
models, some issues remain to be addressed. The parameter scaling for the materials that
exhibit more complex microconstituent response characteristics call for a different identifica-
tion approach than employed in this study. Constitutive models for more complex material
behavior include multiple material parameters, and the decision of which parameters needs
to be scaled is model specific. The increase in computational complexity of the identification
problem when the material microstructure is highly resolved remains outstanding. When the
microstructure is densely meshed, the search space for the identification problem becomes very
large and the interrogation of the search space with the posed integer optimization problem is
computationally exhaustive. The reduction of the search space for the reduced order models is
critical for highly resolved material microstructures. The outstanding issues mentioned above
will be investigated in the future.
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