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Uncertainty Quantification in Damage Modeling of Heterogeneous Materials 

Michael J. Bogdanor, Sankaran Mahadevan, and Caglar Oskay* 

Civil and Environmental Engineering Department, Vanderbilt University, Nashville, TN 37235, USA 

This manuscript investigates the use of Bayesian statistical methods for calibration and 

uncertainty quantification in rate-dependent damage modeling of composite materials.  The 

epistemic and aleatory uncertainties inherent in the model prediction due to model parameter 

uncertainty, model form error, solution approximations, and measurement errors are investigated.  

Gaussian process surrogate models are developed to replace expensive finite element models in 

the analysis.  A viscous damage model is employed with a solution algorithm designed for 

implementation within a commercial finite element software package (Abaqus).  Experimental 

results from a suite of monotonic load tests conducted on unidirectional glass fiber reinforced 

epoxy composite samples at multiple strain rates and strain orientations are used to quantify the 

uncertainty in the prediction of the composite response within a Bayesian framework. 

Keywords: Composite materials, Uncertainty quantification, Bayesian calibration, Rate-

dependent damage, Gaussian process surrogate model.   

Composite materials fail when subjected to mechanical loading in a more complicated 

manner than metals.  Whereas metals tend to fail due to the propagation of distinct cracks, 

composites are susceptible to a number of interacting failure modes including fiber rupture, 
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Abstract 

1. Introduction 
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matrix cracking, delamination, interface debonding, and the growth of voids within the matrix 

microstructure.  Experiments have shown the response of composite materials to be strain-rate 

dependent under monotonic [1,2] and fatigue loading [3,4] for a variety of composite materials.  

Modeling and prediction of the response of such complex failure mechanisms requires advanced 

models to simulate their behavior.   

Multiscale computational methods, such as the computational homogenization technique 

[5,6], are becoming increasingly popular for the simulation of composite materials.  In these 

methods, the response at the scale of the microstructure is evaluated numerically over a 

statistically equivalent representative volume element (RVE) of the composite by considering 

appropriate boundary conditions and microscale constitutive relationships defined for each 

microconstituent within the RVE.  The common approach to constitutive modeling of the 

composite microconstituents is employing the internal state variable theory [7], in which the 

stress-strain relationship at a material point within the RVE is idealized phenomenologically. 

Achieving predictive capability with this approach hinges on the proper calibration of the 

parameters of composite microconstituents based on experimental data.  Compared to calibration 

of single scale models, multiscale model calibration presents distinct challenges.  The material 

parameters may be defined at disparate scales, the overall effects of which are difficult to 

differentiate.  Model calibrations should therefore be conducted simultaneously for all or large 

sets of parameters.  Deterministic calibration of material properties in composites has been 

conducted in a number of investigations using gradient-based and genetic algorithm approaches 

[8,9].  These calibration methods yield a single set of parameter values that are approximations 

of the mean parameter values, but do not capture the uncertainty in these values due to the 
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natural variability of the material, sparse data, errors in the model, or the possibility of multiple 

solutions due to the nonlinearity of the model.   

In contrast to the deterministic approach, Bayesian calibration also quantifies the uncertainty 

in the model parameters [10,11].  The model parameter is initially defined by a prior distribution 

that reflects subjective knowledge (expert opinion) of its value.  Typically this prior distribution 

represents a wide range of possible parameter values.  Experimental data is then used to 

determine the posterior distribution of the model parameters using the likelihood of observing 

the experimental data for a given set of parameters. Bayesian calibration can include point data, 

interval data, data on statistical distributions, or any combination of these.  Bayesian methods are 

also desirable due to their ability to quantify uncertainty from sources beyond model parameter 

uncertainty, including model form uncertainty, solution approximation error, and measurement 

error. 

Markov chain Monte Carlo (MCMC) simulation is commonly used in Bayesian calibration. 

Several MCMC algorithms are available, such as the Metropolis-Hastings algorithm [12,13], 

Gibbs sampling [14], and slice sampling [15].  MCMC simulation requires several thousands of 

sets of samples to be evaluated using the numerical model.  It quickly becomes computationally 

impractical to evaluate the finite element model for each set of input parameters, and therefore a 

surrogate model must be introduced.  The surrogate model approximates the predicted response 

of the original model using an inexpensive function.  Gaussian Process (GP) modeling is a 

popular choice due to its versatility in handling nonlinear relationships and the ability to estimate 

prediction uncertainty in the model [16,17,18]. In GP models, the prediction output is a Gaussian 

random field, defined by a mean and covariance function.   
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The objective of this paper is to quantify the uncertainty in the modeling of damage 

accumulation in composite materials.  We propose to employ the Bayesian approach for 

calibration of the model parameters of composite constituents.  A Gaussian process surrogate 

model, trained using expensive finite element model simulations, is used to efficiently 

approximate the solutions during the calibration process.  The proposed approach is applied to 

evaluate the response of glass fiber reinforced epoxy composites (GFRP) subjected to a variety 

of loading rates. 

 The remainder of this manuscript is organized as follows: In Section 2, the rate-

dependent phenomenological damage evolution model for the composite material is presented.  

In Section 3, issues and methods regarding uncertainty quantification of the composite material 

properties are discussed, including the sources of uncertainty, Gaussian process surrogate 

modeling, and the Bayesian calibration approach.  Section 4 elaborates upon the computational 

implementation of the rate-dependent damage evolution using the MCMC-based Bayesian 

calibration method.  Section 5 provides the model calibration and uncertainty quantification of 

glass fiber reinforced polymer composites.  The parameters of the model, which govern the rate 

dependent behavior, are calibrated using the Bayesian approach with experimentally available 

results of unidirectional composite samples with different strain rates and strain orientations 

subjected to monotonic tensile loading. 

2. Composite damage model 

The composite structure is a heterogeneous body whose domain, ⊂ ℝ  (where d = 1,2,3 

denotes the spatial dimensions) as illustrated in Figure 1.  The heterogeneous body is taken to be 

made of a periodically repeating representative volume element (RVE) with domain ⊂ ℝ  

consisting of two or more constituent materials [19]. 
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Figure 1. Multiple spatial scales. 

Damage accumulation in fiber and matrix are primary failure modes for fiber reinforced 

composites. These failure modes have been investigated for a number of different composites 

[20,21,22].  Continuum damage mechanics (CDM) models utilize the internal state variable 

theory to idealize these failure modes, in which damage within the composite constituents is 

taken to follow a path-dependent evolution with respect to strain, stress or energy criterion [23].  

Previous works have investigated the behavior of composites using rate-independent and rate-

dependent phenomenological models [23,24,25].  In this study, a viscous damage model is used 

to describe the evolution of microcrack damage within the fiber and matrix phases of the 

composite to capture the rate-dependence observed in experiments.  Damage within each 

microconstituent phase,    ( , ), which varies with respect to space, x, and time, t, within each 

microconstituent, reduces the stiffness of that phase such that 

    = 1−             (1) 
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where L is the stiffness tensor, σ is the stress tensor, ε the strain tensor, and  indicates the 

phase of the composite (i.e. matrix, reinforcement).  The evolution of damage is given by 

 = ɸ
       (2) 

in which the superimposed dot indicates the first derivative with respect to time, λ is the rate 

dependent consistency parameter, ɸ is the monotonically increasing damage hardening evolution 

function,    ,  is the phase damage equivalent strain.  The rate dependent consistency 

parameter is given as the power law expression:  

 =   
   ,      

    (3)  

where     and     are the rate dependent phase damage material parameters and  is the 

damage potential function, given as 

    ,    = ɸ    − ɸ      (4)  

If damage evolution is considered rate-independent, then    ,    ≤ 0.  This condition is 

relaxed for rate-dependent damage evolution and  may take on any value.  Evolution of the 

damage hardening variable,    , , is defined as 

    =    (5) 

and the phase damage equivalent strain is given by 

    =                                (6) 
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where       is the principal strain vector of the strain tensor,      .      is the stiffness tensor in 

the principal directions, and ,  is the weighting matrix used to account for the difference 

in damage accumulation between tensile and compressive loading: 

       =

  

  

  
   (7) 

where, 

             = +       −          = . .    (8) 

and     and     are used to represent the effect of compression and tension on the evolution 

of damage.  The damage hardening evolution function for the rate dependent model is given as 

 ɸ    =       −      
≤    (9) 

where the ∙  indicates MacCauley brackets,     and     are material parameters, and     is 

the threshold value of strain, below which no damage accumulation occurs.  The damage 

evolution model described by Eqs. (1)-(9) are used, along with the equilibrium equations, 

kinematic equations and boundary conditions, to evaluate the damage accumulation response of 

the composite at the scale of the representative volume.  

Uncertainty in the computational simulation of natural phenomenon arises from both aleatory 

(irreducible) and epistemic (lack of knowledge) sources.  For example, the material parameters 

of each composite constituent are subject to natural variability.  This variability cannot be 

avoided, and must be quantified to inform design decisions.  Epistemic uncertainty arises from 

3. Uncertainty quantification in the damage evolution model 
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lack of adequate data, mathematical and numerical approximations used to characterize the 

natural behavior, and from errors in measurement of the model inputs and outputs.  This 

uncertainty can be reduced in several ways:  collect additional data, improve the accuracy of the 

mathematical models, employ more precise measurement techniques, or use more rigorous 

experimental methods.  Each of these reduction measures comes at some cost.  Quantification of 

epistemic uncertainty allows resource allocation decisions to be made to improve the model and 

experiments in order to reduce the overall prediction uncertainty. 

The basic outline of the model used in the monotonic loading case is given in Figure 2 with 

the inputs, outputs, and model parameters shown with the types of uncertainty seen in each. 

 

Figure 2. Uncertainty sources in model prediction. 

The goal of this model is to predict the ultimate stress, σf, and strain, εf, at failure for a 

composite material.  These are the outputs, y, of the model G(x,θ), for the inputs, x, subject to the 

parameters, θ.  The inputs for the model are the strain rate and load orientation as these are 
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directly controlled in the experiments.  The parameters for the model are elastic properties, 

contained in the stiffness matrix, L(α), and the damage evolution parameters, a(α), b(α), p(α), q(α), 

c1(α), c2(α), and 0(α) for each phase.  In this case, the inputs are discrete values, while the model 

parameters are continuous. Additionally, the model G(x,θ) is a surrogate GP model that is used 

to approximate the output response of the finite element model, and is affected by several 

sources of model error. 

3.1 Sources of uncertainty 

The response of the composite material is subject to random natural variability.  This is 

present in the elastic properties and the damage evolution parameters for the each phase of the 

composite. Epistemic uncertainty is, however, also present in these parameters from incomplete 

information on the distribution of the parameters.  Of primary concern in this study are the 

parameters that govern the rate-dependency of the stress-strain response, strength and ductility 

modeled by the a(α), b(α), p(α), and q(α) parameters.  It is difficult to analytically arrive at the 

distributions of these parameters directly from experimental data because the observable 

response of the material is non-linearly related to these parameters.  What is required is an 

indirect calibration approach to determine the range of possible combinations of material 

parameters.  Multiple parameters are calibrated simultaneously, thus capturing the non-linear 

relationships between the parameters.  This is accomplished through the use of a Bayesian 

calibration method, discussed below.   

Measurement error is present in the model inputs - strain rate and loading orientation – and 

outputs – macroscopic stress and strain at failure, due to imprecision in the techniques used to 

record these values.  Slight perturbations in the experimental inputs cause the simulation model 

to vary from the natural behavior that is actually occurring, propagating error to the predicted 
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outputs.  Input measurement error is assumed to be small for the experiments considered in this 

study and is not explicitly modeled.  The uncertainty from output measurement error is 

commonly represented as a Gaussian random variable with zero mean and known or estimated 

standard deviation. 

Solution approximation error exists in the model from homogenization, finite element 

discretization, and surrogate modeling [26].  As an example of homogenization error, the 

composite fiber ratio is given as an average quantity for the entire composite.  However, in some 

areas of the material, the local fiber ratio can be significantly different from the mean.  In this 

analysis, the stresses and strains and the fiber ratio for the composite are assumed to be uniform 

at the structural scale, varying only at the RVE microscale (i.e. uniform macroscopic response).  

The uncertainty from these homogenization assumptions could be further quantified by using 

RVEs of various fiber ratios, constructing macroscopic models randomly composed of these 

RVEs, and analyzing the resulting macrostructures for the variability in the response.  There is 

additional model uncertainty from discretization error in the finite element model, which can be 

reduced by refining the mesh in the RVE.  These additional finite element analyses represent 

significant computational expense and are not implemented in this investigation.  Surrogate 

models that replace finite element models also contribute to approximation error.  The 

uncertainty from the surrogate model approximation is available from the Gaussian process 

prediction variance and a cross-validation approach, as explained later. 

A major source of epistemic uncertainty in the model comes from the model form itself.  The 

true value of the quantity of interest, ytrue, (e.g.  or ) accounting for various sources of 

uncertainty are: 

 = , + +    (10) 
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where ,  is the predicted output from the model, is the measurement error, and  is a 

model discrepancy term introduced by Kennedy and O’Hagan [27].  The  term is used to 

reflect discrepancy in the model prediction with respect to the experimental observations. In this 

paper,   includes the contributions from surrogate model error, model form uncertainty, 

homogenization error, and finite element discretization error.  (Alternatively, one could also 

separately quantify the solution approximation errors and include them in Eq. 10, in order to 

quantify the model form error). Note that  depends on the input, x. In this work, model 

discrepancy is a function of strain rate, where it is used to indicate rate-dependent response that 

is not fully characterized by the model.   

3.2 Gaussian process (GP) modeling 

For the MCMC method that is used in the Bayesian calibration process, several thousands of 

samples are required, and the computational cost of evaluating the model with finite element 

analysis at each of these points is prohibitively expensive.  Therefore, a GP model is used as a 

surrogate for the full finite element analysis [17,28].  The GP model is defined such that for each 

input x in D-dimensional input space, the predicted output yP is a Gaussian distribution. This 

model is “trained” with about nt input points,  using the output, yT, using the full finite 

element RVE analysis for those training points where = 1,2. . . At a given prediction point, 

, the joint density of the output, conditioned upon the training point values and the parameters 

of the GP, is: 

 ( | , , ; )~ ( , ) (11) 

where  are the parameters of the GP model, m is the prediction mean, and S is the prediction 

covariance given as:   
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 = +  (12) 

 = − +  (13) 

where KPT is the np x nt covariance matrix between np prediction points and the nt training 

points, KTT is the nt x nt covariance matrix between training points, KPP is the np x np covariance 

matrix between prediction points, KTP is the transpose of KPT, and  is the noise variance in the 

training point.  If the training points come from computational models the  term is taken to be 

zero.  For a weakly stationary random process, i.e. covariance is only a function of the distance 

between two locations, the covariance, kij (elements of covariance matrices), between two points 

i and j is assumed to be of the squared exponential form in this paper: 

 = −    (14) 

where     is a scaling factor on the order of output variance,   , of the training output values and 

 is a length scale parameter for each input dimension, d.  When the process is not stationary, 

other covariance functions must be used (see [18]).  For problems where  is small, variation in 

the output response is more sensitive to slight perturbations of the input.  When  is large, the 

output response is not greatly affected by changes in the input.  These length scale parameters 

are inferred in the creation of the GP model from the given data by maximizing the log marginal 

likelihood [17,18]: 

 log ; = − ( + ) − log + + log  (2 )   (15) 

The surrogate model error is a function of the distance from a set of prediction inputs to the 

training points.  Error is less for predictions made closer to the values used to train the response 

surface of the GP model, while there are high errors associated with predicting outputs for inputs 
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that are not near the training points.  The surrogate model error can be estimated in the GP model 

using a jackknifing or “leave-one-out” cross-validation approach [17].  For each of the nt 

training points, a GP model is constructed leaving out the ntth point.  The prediction mean and 

variance at this point is then determined for each of the nt points in this manner as a Gaussian  ~ 

N(m,S). Finally, the surrogate model prediction error, , can be estimated also as a Gaussian 

distribution with mean, µsu, and variance, σsu
2, shown below: 

 =  (16) 

 =  (17) 

3.3 Bayesian parameter calibration 

The material parameters in the damage evolution model are calibrated here using a Bayesian 

approach.  For the case of continuous parameter distributions, Bayes’ theorem can be rewritten 

as: 

 = |  (18) 

where  is the set of parameters whose distributions are to be inferred from the observed data, 

yobs.  is the prior distribution of the parameters containing the current knowledge about the 

parameter, primarily from expert opinion.  is the posterior distribution of   given that yobs 

has been observed, |  is the likelihood of observing yobs for a given set of , and  

is the probability that y will occur.   is calculated by integrating the probability of 

observing y over the entire space of .  As such it is a constant in Equation 18; thus, 

 ′′′′    ∝ ( ) ′( ) (19) 
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where ( ) is the likelihood of  given the observed data.  This likelihood function follows the 

form: 

 = ( ( )| ) (20) 

where ( |   ) =       − ( ) ( )  (21) 

in which yp(i) are the predicted values of y for nt prediction points, in this case obtained from a 

GP model, yobs(i) are the observed output values, and  is the standard deviation of the 

observation measurement error, , (assumed to be zero mean Gaussian). 

The response of the composite is evaluated at the scale of the microstructure using the finite 

element method.  The user-defined material modeling capability (UMAT) was utilized in the 

commercial finite element modeling package, Abaqus, to implement the damage evolution law 

defined in Section 2.  The stress update algorithm utilized to implement this model is outlined in 

Section 4.1.  The Markov chain Monte Carlo simulation technique used to calibrate model 

parameters and quantify model uncertainty is shown in Section 4.2. 

4.1 Stress update algorithm   

The stress update algorithm that was implemented in the UMAT subroutine is defined below: 

Inputs: Strain at time step k, , strain increment, , time step Δt, at time step k: 
damage, , initial phase hardening value, r , initial phase damage equivalent 
strain υ( ) , and initial consistency parameter, λ  

Step 1:  Take strain at time k+1, = +  

Step 2: Calculate the principal strains,  

Step 3: Compute the weight matrix, ℎ = +
π
atan  (c − c )  

4. Computational implementation 
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Step 4: Determine the phase damage equivalent strain, υ : 

υ( ) =
1
2

                             

Step 5: Solve for λ  and r   to satisfy 

  λ = υ − υ − r − υ  

and  r = r + ∆  

Step 6: Calculate damage evolution, ω: ω = (υ − υ )   

Step 7: Compute accumulated damage, ω : ω = ω + ωΔt  

Step 8: Calculate stress at time k+1, σk+1: = 1−ω :  

For each time step, Abaqus provides the initial strain, strain increment applied over the time 

step, length of the time step, and state variables at the start of the time step.  The subroutine 

UMAT then calculates the strain at the end of the time step and the phase damage equivalent 

strain from the principal strains at the integration point.  The consistency parameter, λ , and 

phase hardening variable at the end of the time step, +1, are solved iteratively.  These values 

are then used to update the state variables and calculate the stress state at the integration point. 

4.2 Markov chain Monte Carlo simulation with Metropolis-Hastings sampling 

 We consider the target distribution of the MCMC simulation as the posterior distribution 

     In the Metropolis-Hastings algorithm, the following procedure is used to generate 

samples from the target distribution [12,17]: 

Step 1:  Set i = 0; Select a starting value  such that ′( ) ≠ 0 

Step 2: Calculate the value of = ( )  using the observed data, yobs. 
Step 3: Generate a random sample of inputs, ∗, from the prior distribution 

Step 4: Calculate the value of ∗ = ( ∗) ∗  

Step 5: Calculate the acceptance ratio of the sample, = min   1,
∗
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Step 6: Generate a random number u, from the uniform distribution [0,1] 

Step 7: If u < α, = ∗, otherwise  =  

Step 8: Increment i = i + 1. 

Repeat 3-8 until the Markov chain converges (i.e., additional samples do not affect the 
distribution of the chain). 

 

When the chain converges, the posterior distribution can be constructed using a kernel 

density estimation, after discarding the first few thousand burn-in samples. 

The proposed model calibration and uncertainty quantification approach was employed to 

evaluate the response of unidirectional S2-glass/epoxy composite materials.  Off-axis specimens 

loaded uniaxially to failure at angles of 15° and 30° to the fiber direction with strain rates of 

0.0001/s, 0.01/s and 1/s, are considered.  The stress strain curves for these tests provided in Ref. 

[2] are shown in Figure 3.  The ultimate strength and the strain to failure for each of the six tests 

are used in the calibration effort.  This data set provides a fairly sparse amount of information for 

calibration.  As such, only a subset of the model parameters available are calibrated, specifically 

af, bf, pf, and qf  (f indicates the fiber phase and m the matrix). 

5. Model calibration and uncertainty quantification in GFRP composites 
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Figure 3. Uniaxial tensile stress strain curves for (a) 15° and (b) 30° off-axis specimens [2]. 

An RVE with a fiber ratio of 65%, shown in Figure 4, with periodic boundaries was created 

as a homogenization of the structural scale response for the unidirectional GFRP composite.  

Strain load was applied to the RVE by defining relative displacements between the periodic 

boundaries equivalent to the transformed strains from the off-axis loadings.  The fiber and matrix 

phases are both made of tetrahedral elements, with 1806 total elements used to define the RVE.    

 

Figure 4. Representative volume element for the GFRP composite. 
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The elastic parameters of the fiber and matrix were chosen assuming isotropic behavior at the 

microscale such that the elastic moduli of the overall composite material at 15° and 30° to the 

fiber’s longitudinal direction match the experimental data.  The fiber is modeled with modulus of 

elasticity, Ef  = 60 GPa, and Poisson’s ratio,   = 0.30; the matrix with Em = 4.775 GPa and νm = 

0.29.   

Neglecting interface damage, 14 parameters remain (a(α), b(α), p(α), q(α), c1(α), c2(α), and υ ( )
    

for both the fiber and matrix from Eq’s 2,4, and 8) governing the material response of the RVE.  

Of these parameters, c1(α) and c2(α) are used to account for the difference in damage behavior 

under tensile and compression loadings, and are set to deterministic values, 105 and 0, 

respectively for both phases since only tension loading is considered. υ0(α), the threshold value 

below which no damage occurs in the phase is set to zero for both the fiber and matrix.  This 

leaves the eight damage evolution parameters, am, bm, pm, qm, af, bf, pf, and qf, unknown.  In this 

investigation, the parameters governing the matrix response are set at deterministic values (am = 

2.0, bm =1.5, pm = 2.5, and qm = 0.001) and the damage parameters of the fiber are calibrated. 

The sensitivity of the damage model response to each of the four parameters, af, bf, pf, and qf, 

was evaluated using a one-element model to set bounds on the prior distributions of each of these 

parameters in the calibration.  Twelve sets of these model parameters were selected using Latin 

Hypercube sampling and were each used to simulate six strain rate and strain orientation input 

conditions from the experimental data.  GP models were trained for each experiment for ultimate 

stress, σf, and strain-to-failure, εf.  The experimental data was then used to calibrate the 

parameters of the damage model and discrepancy function and the standard deviation of the 

measurement errors.  Finally, the uncertainty in the prediction is summarized and quantified.  
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5.1 Parameter sensitivity study 

The prior distributions for the four calibrated material parameters were obtained by 

evaluating the damage evolution in a one-element model for the effect that each parameter 

displayed on the stress-strain and strain-damage relationships.  The distributions of the 

parameters af, bf, pf, and qf are selected, considering the nonlinear relationships in these variables, 

to keep the ultimate strength and strain to failure values within a reasonable range of the 

experimentally observed values when RVE failure occurs.   

The rate of damage growth is primarily governed by af and bf.  As af increases, the strain to 

failure decreases and the maximum stress attained decreases, seen in Figure 5. Figure 6 shows 

the effects of bf on stress, strain, and damage with damage accumulating faster for larger bf 

values, accompanied by lower stress values. 

 

Figure 5. Effect of af on damage-strain and stress-strain. 
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Figure 6. Effect of bf on damage-strain and stress-strain. 

The parameters pf and qf govern the rate-dependency of the damage evolution.  Figure 7 

shows the effect of three different values of pf for each of the strain rates considered.  As pf 

increases, the response becomes more rate-dependent. Figure 8 shows the effect of qf on the rate 

dependency of the damage accumulation model.  For greater qf values, the difference between 

growth rates from different strain rates is more pronounced.  
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Figure 7. Effect of pf and strain rate on damage accumulation. 
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Figure 8. Effect of qf and strain rate on damage accumulation. 
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face of the RVE transverse to the fiber direction accumulates damage at the fastest rate (see 

Figure 9).  Structural failure occurs when the stress carrying capacity in this direction is lost.  

The resulting stress-strain curves from all 72 simulations are shown alongside the experimentally 

obtained curves in Figure 10. 

 

Figure 9. Damage accumulation transverse to the fiber direction. 
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Figure 10. Simulated vs. Experimental stress-strain curves for (a) 15° and (b) 30° strains. 

The ultimate stress and the strain-to-failure from these simulations were then used to train 
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where  is the mean function prediction and ..  are the coefficients of the mean function.  

These coefficients were determined from least-squares regression for each of the twelve 

surrogate models and the GP model with a squared exponential covariance function was then 

trained using the difference between the mean function prediction and the actual training value.  

Using this form for the mean function yielded predictions with R-squared values from 0.9 to 0.99 

for each of the twelve data sets.   

5.3 Model discrepancy and measurement error 

Recalling Eq. (10), the GP model provides the prediction, , , while the discrepancy, 

( ), and measurement error, , must still be addressed.  In this study, it was assumed that the 

model discrepancy is only a function of the strain-rate, , and that the function is the same for 

both the 15° and 30° tests: 

   =    + ( ) (23) 

where  and   are the coefficients of the discrepancy term to be calibrated (two for the stress 

discrepancy and two for the strain discrepancy).  The prior distributions for these coefficients are 

taken as uniform: _ = [−10,10], _ = [−2,2], _ = [−1,1], _ = [−0.01,0.01]. 

Output measurement error is taken as a Gaussian random value with zero mean and standard 

deviation, σm.  Since two types of outputs, ultimate stress and strain-to-failure are utilized in this 

calibration process, two separate values of measurement error standard deviation are calibrated, 

σm_σ and σm_ε, for the stress and strain respectively.  The prior density of the standard deviation, 

based on the Fisher information criterion [29] is given as: 

 ′ ∝  (24) 
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In the calibration, the prior of the standard deviation was assumed to be uniform from 0 to 20 

MPa for stress and 0 to 0.1% for strain. 

5.4 Calibration results 

The distributions of ten variables are to be calibrated using MCMC sampling: θ = {af, bf, pf, 

qf, b0_σ, b1_σ, b0_ε, b1_ε, σm_σ, σm_ε}.  For each loop in the MCMC sampling, a random value was 

sampled from each distribution.  Assuming independence, the prior probability of this set is then 

proportional to the product of the inverse of the standard deviations, as all the other values are 

sampled from uniform distributions.  Using af, bf, pf, and qf , the GP model predictions for the 

twelve outputs were calculated.  The discrepancy values were calculated from b0_σ, b1_σ, b0_ε, and 

b1_ε using Eq. 23, and added to the GP prediction.  The measurement error standard deviations 

σm_σ, and σm_ε were then used to calculate the likelihood of observing the experimental outputs 

given those model parameters and discrepancy values.  MCMC simulation was then carried out 

for five hundred thousand samples until the chain converged. 

The results for the calibrated distributions of the four model parameters are shown in Figure 

11 through Figure 14.  In each of the graphs, posterior distribution of the parameters can be seen 

to tighten and show preference to a narrower band of values.  Each of the graphs shows one 

major spike in the parameter values, with some minor spikes away from the large spike.  This is 

partly attributed to the nonlinearity of the model and numerical artifacts from the MCMCS 

method. 
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Figure 11. Calibrated distribution of af. 

 
Figure 12. Calibrated distribution of bf. 
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Figure 13. Calibrated distribution of pf. 

 
Figure 14. Calibrated distribution of qf. 
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surrogate model error is included in the calibrated model discrepancy.  Model discrepancy and 

measurement error were evaluated during the calibration process.   

The estimated error in the surrogate model is given in Table 1.  The variance in the stress 

prediction error was high indicating that additional training points are needed to reduce the 

epistemic uncertainty.  With four parameter dimensions, twelve training points can miss 

nonlinearities in the model response.  

Table 1. GP surrogate model error. 

Output
Strain
Rate

Strain
Orientation Mean Variance

Stress 0.0001/s 15° 0.0142 53.1
Stress 0.01/s 15° -0.0050 37.5
Stress 1/s 15° -0.5016 134.4
Stress 0.0001/s 30° -0.0777 5.6
Stress 0.01/s 30° -0.0616 1.4
Stress 1/s 30° -0.2251 30.9
Strain 0.0001/s 15° 0.001172 0.000479
Strain 0.01/s 15° 0.000690 0.000186
Strain 1/s 15° -0.000487 0.001545
Strain 0.0001/s 30° -0.000197 0.000315
Strain 0.01/s 30° 0.000270 0.000487
Strain 1/s 30° -0.000075 0.001293

Surrogate Model Error

 

The parameters of the model discrepancy (including model form error and solution 

approximation error) calibrated simultaneously with the model parameters are shown in Figure 

15 for stress and Figure 16 for strain.  If there were no discrepancy in the model, each of the 

coefficients would be equal to zero.  As this is not the case, it is apparent that the damage model 

or surrogate model has discrepancy in capturing all of rate-dependent effects in the material 

response. 
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Figure 15. Model discrepancy parameters for stress (δ(x) = b0 + b1ln( )). 

 

Figure 16. Model discrepancy parameters for strain (δ(x) = b0 + b1ln( )). 

The final uncertainty measure that was calibrated is the standard deviation of the 

measurement error.  The posterior distributions for stress and strain measurements are displayed 

in Figure 17.  These graphs indicate that the standard deviation of the measurement error in the 
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Figure 17. Measurement error standard deviation. 

The calibrated model parameters were used to draw samples of the predicted outputs using 

Eq. (10).  This prediction for the first experimental set-up with a 0.0001/s strain rate and strain 

applied at a 15° angle to the fiber direction is shown in Figure 18.  A significant amount of 

scatter remains around the observed value for the output, but the calibration shows reasonable 

performance in achieving results close to the observations.  While the range of predicted strain to 

failure appears to be centered on the observed results, the range of predicted ultimate stress tends 

to be biased below the observed value.   The calibration and prediction accuracy can be 

improved with further testing and a larger data set. 
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Figure 18. Predicted Outputs for 0.0001/s at 15°. 

In this study, a Bayesian approach was used to calibrate the model parameters in the rate-

dependent composite material damage evolution model from experimental data.  This calibration 

yielded distributions for the material parameters of the damage evolution model for the 

composite constituents and the standard deviation of the measurement errors, σm_σ, and σm_ε.  

Gaussian process models were implemented in this task as surrogate models for expensive finite 

element analyses, and the approximation errors from these surrogate models was quantified.   

Nonlinear behavior, lack of extensive test data, and incomplete understanding of the material 

phenomenology contribute to errors in the prediction of composite material response.  Rate 

dependency in the damage model was controlled by the parameters p(α), and q(α), but these might 

not fully capture this effect, as evinced by the large discrepancy values.   
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Ultimately, further experimental testing is needed to improve the accuracy of the calibration 

and better quantify the measurement errors.  Additional GP model training points are needed to 

more fully characterize the response surface across the entire parameter input space and reduce 

the uncertainty contribution from the surrogate model. 

Propagation of uncertainty across multiple spatial and time scales as seen in fatigue loading 

is of important concern for economic design of composite materials.  The next step in this 

research is to extend the viscous damage evolution to multi-scale applications, considering the 

cyclic fatigue loading.   
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