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Abstract

This manuscript presents the formulation and implementation of the variational multiscale

enrichment (VME) method using canopy-shaped microscale enrichment functions obtained

through the use of a new family of microscale boundary conditions. The purpose of the new

enrichment functions and the new boundary condition is to relax the overconstraint imposed

by the homogeneous microscale boundary condition (e.g., residual free bubbles) commonly

employed in the variational multiscale literature. The formulation and implementation of

the method are presented for diffusion and elasticity problems. The performance of the pro-

posed method is assessed by comparing with direct numerical simulations on diffusion and

deformation problems. A boundary parameter identification approach is proposed to obtain

near-optimal boundary conditions. The identification approach is verified in the context of the

deformation response of particle-reinforced composites.

Keywords: Variational multiscale enrichment; Multiphysics; Boundary conditions, Diffusion,

Elasticity.

1 Introduction

We are concerned with surface degradation problems that exhibit global-local character, in

which an aggressive environmental agent (i.e., a fluid) diffuses into the surface region of a

structure or material, significantly altering the mechanical response within this subdomain.

Direct numerical simulation that incorporates all relevant fine scale details throughout the

surface region is typically infeasible due to the prohibitive computational cost. On the other

hand, phenomenological description within this local subdomain is not possible since the size
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of the surface region may be smaller than the characteristic size of the representative volume

defined by the microstructural heterogeneity.

Global-local methods attempt to capture the fine scale behavior at small subdomains of

the problem, whereas a coarse description (e.g., a coarse discretization and phenomenological

modeling) is employed at “far-field” regions. Some domain decomposition methods [1], s-

version finite elements [2], generalized finite elements [3], among others are examples of global-

local methods employing this idea. Variational multiscale method (VMM) is an alternative

framework for incorporating fine scale response to an otherwise coarse representation [4, 5].

The key component of the VMM method is the additive decomposition of the response fields

into coarse and fine scale components. The fine scale component is often evaluated analytically

through variational projection as a function of the residual of the coarse scale field [6, 7].

This approach leads to an enriched coarse scale response, which can be evaluated without

further regard to the localized response. It is also possible to evaluate the fine scale response

numerically, which gave rise to the numerical subgrid upscaling method [8]. The numerical

subgrid upscaling is more versatile compared to analytical projection operator for the fine

scale, which may be nontrivial to obtain for nonlinear and path dependent problems. Yet,

the computational cost of the method is significantly higher than the analytical projection

methods. Arbogast [9] proposed computationally efficient subgrid upscaling schemes in the

context of locally conservative porous media flow. Variational multiscale enrichment (VME)

is a new VMM-based numerical subgrid method proposed for problems exhibiting global-local

character [10]. The premise of the VME approach is that the enrichment of the coarse grid is

considered at local subdomains, and the fine scale response fields are numerically computed

at these small subdomains only.

The accuracy of the response approximation in such multiscale computational methods

is significantly affected by the boundary conditions imposed on the fine scale problems. In

the VMM literature, the typical choice for fine scale boundary conditions has been the ho-

mogeneous Dirichlet condition (i.e., residual free bubble functions [11, 12]). Recently, Juanes

and Dub [13] proposed a relaxed constraint for the fine scale response fields in the context of

the numerical subgrid upscaling scheme applied to porous media flow problems. Markovic and

Ibrahimbegovic [14] imposed traction continuity across the fine scale problem interfaces. Hund

and Ramm [15] investigated the effect of homogeneous conditions and enforcing displacement

continuity in the context of localization problems. The displacement continuity was applied

based on either the penalty method or Lagrange multipliers. The Lagrange multiplier method

leads to the coupling of all neighboring fine scale domains and domain decomposition was

employed to study the response. In case of the penalty method, the authors found that weak

enforcement of the continuity through picking a low value for the penalty parameter led to

accurate response. The present approach proposed in this manuscript is related to such a soft

penalty approach. The choice of fine scale boundary conditions has been subject to investiga-

tions in other multiscale methods (e.g., computational homogenization) as well. In addition

to most commonly employed boundary conditions of uniform Dirichlet, uniform Neumann and
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Figure 1: Problem geometry: (a) Schematic representation of the overall problem domain;
(b) boundary between an enrichment domain and the substrate region; and, (c) boundary be-
tween two enrichment domains.

periodicity, new boundary conditions have been recently proposed to address large deforma-

tions [16], fracture phenomena [17] and plate assumptions [18]. Appropriate application of the

coarse scale boundary conditions, a separate problem altogether, has also been investigated in

the context of the VMM approach [19, 20].

In the present manuscript, we propose a new class of boundary conditions for the fine scale

response in the context of the variational multiscale enrichment method. The resulting fine

scale fields are named canopy functions (compare to the residual free bubbles) since the fine

scale response is relaxed across coarse grid boundaries. The proposed boundary conditions

are applied to the time dependent diffusion (parabolic) and elasticity (elliptic) problems to

assess the accuracy characteristics. We also provide parametric studies to identify appropriate

boundary conditions as a function of the physical parameters of the diffusion and elasticity

problems.

The remainder of this manuscript is organized as follows: Section 2 provides the formula-

tion of the variational multiscale enrichment method with canopy functions in the context of

diffusion and deformation problems. Section 3 details the computational implementation of

the method including the finite element discretization of fine and coarse scale problems, as well

as the overall solution strategy. In Section 4, numerical examples are provided to verify the

new boundary conditions. The performance of the variational multiscale enrichment method is

studied on diffusion and deformation problems. Section 5 provides the conclusions and future

research directions in this area.

2 Variational Multiscale Enrichment

Let the open bounded domain Ω ∈ Rnsd represent the structure or the material, where nsd

is the number of spatial dimensions (Fig 1). We consider the decomposition of the problem
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domain into two characteristic subdomains:

Ω = Ωs ∪ Ωb; Ωs ∩ Ωb = ∅ (1)

in which, Ωb and Ωs are the boundary and substrate regions, respectively. The boundary

region constitute the part of the problem domain in which the underlying heterogeneities

of its microstructure as well as the response fields are resolved, whereas in the substrate

region, the response is represented at the coarse scale only and the subgrid effects remain

unresolved. From the physical perspective, the boundary region contains aggressive agent at

critical concentrations, microcracks or fracture initiation sites. The boundary region is further

divided into a number of enrichment domains, Ωα:

Ωb =

nen⋃
α=1

Ωα; Ωα ∩ Ωβ ≡ ∅ when α 6= β (2)

where, nen is the number of enrichment domains that span the boundary region. The enrich-

ment domains, Ωα are taken to be simple (i.e., representable using a single standard finite

element such as a rectangular or triangular domain in 2-D). The boundary of an enrichment

domain is composed of the following parts:

Γα ≡ ∂Ωα = Γint
α ∪ Γsα ∪ Γeα ∪ Γnα (3)

in which, Γsα is the part of the boundary that intersects with the substrate region boundary

(i.e., Γsα ≡ Γα∩∂Ωs) as illustrated in Fig. 1b; Γeα the part of the boundary that intersects with

the Dirichlet boundary of the problem domain (i.e., Γeα ≡ Γα∩Γe); Γnα the part of the boundary

that intersects with the Neumann boundary of the problem domain (i.e., Γnα ≡ Γα ∩ Γn); and,

Γint
α the inter-enrichment domain boundaries:

Γint
α ≡

⋃
β∈Iα

Γβα (4)

where, the neighbor index set of enrichment domain, Ωα, is expressed as: Iα ≡ {β ≤ nen|Γαβ 6= ∅}.
Γαβ denotes the inter-enrichment domain boundary (i.e., Γαβ ≡ Γα ∩ Γβ); and, Γβα and Γαβ de-

note the α and β sides of the inter-enrichment domain boundary, respectively, as illustrated

in Fig. 1(c).

2.1 Diffusion problem

The diffusion process is modeled using the following equation:

ċ (x, t) = ∇ · [D (x, t) · ∇c (x, t)] ; x ∈ Ω (5)
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in which, c denotes the concentration field; D the apparent diffusivity; x the position coordinate

vector; and, t ∈ T ⊂ R+ the time coordinate. Superposed dot denotes the time derivative of

the corresponding field. The boundary and initial conditions are:

Dirichlet B.C.: c(x, t) = c̃(x, t); x ∈ Γc (6)

Neumann B.C.: D · ∇c · n = q̃(x, t); x ∈ Γq (7)

Initial condition: c(x, t = 0) = c0(x); x ∈ Ω (8)

where, c̃ and q̃ the prescribed Dirichlet and Neumann boundary data along the domain bound-

ary Γ ≡ ∂Ω, respectively (i.e., Γe = Γc and Γn = Γq such that Γc∪Γq = Γ and Γc∩Γq = ∅); c0

the prescribed initial concentration distribution; and n the unit outward normal to the domain

boundary.

We start by considering the following decomposition of the concentration field:

c(x, t) = cM (x, t) +

nen∑
α=1

H(Ωα) cmα (x, t) (9)

where, cM denotes a coarse scale representation of the response field; and cmα a fine scale

correction to the coarse scale approximation localized within an enrichment domain, Ωα:

H(Ωα) =

{
1 if x ∈ Ωα

0 elsewhere
(10)

The decomposition of the concentration field is applied to the diffusion problem in the varia-

tional setting. Introducing a macroscale test function vM ∈ WM
0 ⊂ H1

0 (Ω), and substituting

Eq. 9 into Eq. 5, the following macroscale diffusion problem is obtained in the weak form:

a
(
vM , cM

)c
Ω

+
(
vM , ċM

)c
Ω

=(
vM , q̃

)c
Γq

+

nen∑
α=1

[(
vM , qmα

)c
Γα\Γ − a

(
vM , cmα

)c
Ωα
−
(
vM , ċmα

)c
Ωα

]
(11)

where, qmα = D · ∇cmα · n is the microscale flux normal to the enrichment domain bound-

ary; H1
0 (Ω) is the subspace of functions in H1 (Ω) that are homogeneous along Γe = Γc,

and H1 (Ω) is the Sobolev space of functions with square integrable values and derivatives

defined within the problem domain. In what follows, a subscript of a function space indi-

cates the prescribed value of the functions along the Dirichlet boundaries (e.g., H1
g (Ω) :={

u ∈ H1 (Ω) |u = g; x ∈ Γe
}

). The bilinear form and the L2 inner product for the diffusion
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problem are, respectively:

a (u,w)c[·] ≡
∫

[·]
∇u ·D · ∇w d[·] (12)

(u,w)c[·] ≡
∫

[·]
uw d[·] (13)

We seek the solution to Eq. 11 in the finite dimensional space WM
c̃M

(Ω) ⊂ H1
c̃M

(Ω), where

c̃M denotes the approximation of the boundary data using the macroscale basis functions that

are taken to span a coarse discretization of the domain. The microstructural heterogeneities

remain unresolved at this scale.

The effect of the microstructure are resolved using the microscale response, cmα , which is

taken to be localized within an enrichment domain, Ωα in view of the decomposition of Eq. 9.

The solution of the microscale response fields is sought within the finite dimensional subspace

Wα,c̃α (Ωα) ⊂ H1
c̃α

(Ωα). Considering a microscale test function, vmα =Wα,0 (Ωα), and bringing

Eq. 5 into the weak form yields the microscale diffusion problem for the enrichment domain,

Ωα:

a (vmα , c
m
α )cΩα+(vmα , ċ

m
α )cΩα =

(
vmα , q

M
)c

Γα\Γcα
+(vmα , q

m
α )cΓα\Γcα−a

(
vmα , c

M
)c

Ωα
−
(
vmα , ċ

M
)c

Ωα
(14)

in which, qM = D ·∇cM ·n is the macroscale flux normal to the enrichment domain boundary.

Remark 1. The decomposition of Eq. 9 is unique if the macro- and microscale solution spaces

are chosen such that the solution space is the direct sum of the macro- and microscale spaces:

Wq̃ (Ω) =WM
q̃M (Ω)⊕

nen⊕
α=1

Wα,q̃α (Ωα) (15)

c ∈ Wq̃ (Ω). It suffices to show that the macroscale and each microscale finite dimensional

subspace are pairwise linearly independent. By virtue of the concentration decomposition, the

microscale contributions within the enrichment domains are linearly independent of each other.

2.1.1 Boundary conditions for the microscale enrichment fields:

The standard choice for the boundary conditions of the microscale response is the homogeneous

Dirichlet conditions (cmα = 0) along the entire enrichment domain boundary. The resulting

microscale solution field is a residual free bubble introduced in Refs. [11, 12, 21]. Figure 2a

schematically illustrates a residual-free bubble (RFB) enrichment function. Previous investi-

gations on diffusion and elasticity problems using the VME method indicated that employing

homogeneous boundary conditions leads to stiff response and relatively low solution accu-

racy [10]. In this manuscript, we propose a new type of boundary conditions to reduce the

modeling errors that originate from overconstraining the enrichment domain boundaries. To
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Figure 2: Schematic illustration of the microscale enrichment functions defined in an enrichment
domain: (a) Residual free bubble functions; and (b) Canopy functions.

this extent, the following constraint at the enrichment domain boundaries is considered:

θ (cmα − ĉα) + (1− θ)γ (qmα − q̂α) = 0; x ∈ Γα (16)

This family of boundary conditions spans the two microscopic boundary conditions commonly

employed in multiscale modeling: prescribed flux and prescribed concentration along the mi-

croscale boundaries. The prescribed flux (Neumann) boundary condition is imposed by setting

θ = 0, whereas prescribed concentration (Dirichlet) boundary condition is imposed by setting

θ = 1. All intermediate values 0 < θ < 1 correspond to a mixed (Robin) boundary condition.

The purpose of the γ parameter is to increase the sensitivity of the response to the boundary

parameter, θ, around the prescribed concentration limit (i.e., θ → 1). The residual free bubble

functions for the microscale fields can be constructed by setting θ = 1 and ĉα = 0 along Γα.

Equation 16 is expressed in terms of a single parameter, κ, as:

qmα = q̂α − κ (cmα − ĉα) (17)

where, κ = θ/(1−θ)γ . By setting the boundary parameter, 0 ≤ κ <∞, the boundary response

is relaxed along the edges of the enrichment domain. The microscale concentration at the cor-

ners of the enrichment domains is set to zero. This constraint ensures that: (1) when micro- and

macroscale discretizations are nested (described below) and when Lagrangian (standard) finite

elements are employed, the nodal values obtained through the evaluation of the macroscale

equation correspond to the concentration values (i.e., the nodal values approximates the re-

sponse field, c); and (2) the zero energy modes of the microscale response are constrained. The

resulting microscale enrichment field (canopy functions) is schematically illustrated in Fig. 2b.

The new boundary condition defined in Eq. 17 is applied to the microscale and macroscale
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diffusion problems. The boundary terms in the microscale diffusion problem (Eq. 14) is de-

composed into the boundary components defined in Eq. 3:

(vmα , q
m
α )cΓα\Γcα = (vmα , q

m
α )cΓqα + (vmα , q

m
α )cΓint

α
+ (vmα , q

m
α )cΓsα (18)

Along the boundaries of the enrichment domain that intersects with the outer boundaries with

Neumann boundary conditions (i.e., Γqα), the microscale flux field is defined as the difference

between the prescribed boundary flux (i.e., q̃), and the approximation to the flux field based

on the macroscale discretization. Setting θ = 0 and q̂α = q̃α := q̃ − q̃M , where q̃M is the

approximation to the prescribed boundary data using the macroscale discretization:

(vmα , q
m
α )cΓqα = (vmα , q̃α)cΓqα (19)

Along the inter-enrichment domain boundaries (i.e., Γint
α ), the boundary term in its general

form becomes:

(vmα , q
m
α )cΓint

α
=
∑
β∈Iα

[
(vmα , q̂α)c

Γβα
− κ (vmα , c

m
α − ĉα)c

Γβα

]
(20)

The limiting boundary conditions along the inter-enrichment boundaries are taken to vary

from microscale flux free (q̂α = 0) to vanishing microscale concentration (ĉα = 0). Equation 20

then reduces to:

(vmα , q
m
α )cΓint

α
= −

∑
β∈Iα

κ (vmα , c
m
α )c

Γβα
(21)

For a given value of the boundary parameter, 0 < κ < ∞, the resulting enrichment domain

boundary response leads to non-zero microscale flux and microscale concentrations. Along the

boundaries of the enrichment domain that intersects with the substrate region (i.e., Γsα), the

boundary term is expressed as:

(vmα , q
m
α )cΓsα = −κs (vmα , c

m
α )cΓsα (22)

when the flux free and concentration free boundaries are taken as the limiting microscale

boundary conditions. It is possible to satisfy the continuity of the concentration field across

the subgrid resolved (i.e., boundary) and the subgrid unresolved (i.e., substrate) regions by

setting κs →∞, which ensures homogeneous microscale response along the boundary regions -

substrate region interface. Applying this boundary condition induces flux discontinuity at the

microscale, since the microscale flux field along the substrate remains unresolved. In contrast,

setting κs = 0 ensures continuity of the fluxes by insulating the microscale concentration field

at the interface. Applying κs = 0 induces concentration discontinuity at the microscale, since

the microscale concentration along the substrate remains unresolved. Numerical investigations

indicated higher accuracy is achieved when a mixed boundary condition is adopted along the

boundary region - substrate region interface as well. In this manuscript we set the boundary

parameter, κs = κ. By this condition, both microscale concentration and flux continuities are
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relaxed along the interface, but to a lesser extent than the limiting cases of κs = 0 and κs =∞
conditions.

Substituting Eqs. 19-22 into Eq. 14, the weak form of the microscale diffusion problem is

expressed as:

a (vmα , c
m
α )cΩα + (vmα , ċ

m
α )cΩα = (vmα , q̃α)cΓqα +(

vmα , q
M
)c

Γα
− κ (vmα , c

m
α )cΓsα −

∑
β∈Iα

κ (vmα , c
m
α )c

Γβα
− a

(
vmα , c

M
)c

Ωα
−
(
vmα , ċ

M
)c

Ωα
(23)

2.1.2 Inter-enrichment domain continuity:

Equation 23 permits discontinuity of the concentration field when the general form of the mixed

boundary condition is imposed along the inter-enrichment domains. To satisfy the continuity of

the concentration field across the inter-enrichment domain boundaries, we explicitly consider:

cmα = cmβ ; x ∈ Γβα; ∀β ∈ Iα (24)

The values of the concentration fields cmα and cmβ are both unknown along the enrichment

domain boundaries and cannot be readily enforced as boundary data. A master-slave cou-

pling approach is employed to impose the field continuity along the inter-enrichment domain

boundaries. Let the neighbor index set for the enrichment domain, α be split into a master

and slave index sets such that:

Imα ≡ {β|α < β ≤ nen and Γαβ 6= ∅} ; Isα ≡ {β|β < α ≤ nen and Γαβ 6= ∅} (25)

The inter-enrichment domain boundary term in Eq. 23 is expressed as:∑
β∈Iα

κ (vmα , c
m
α )c

Γβα
=
∑
β∈Imα

κ (vmα , c
m
α )c

Γβα
+
∑
β∈Isα

κ∞
(
vmα , c

m
α − cmβ

)c
Γβα

(26)

in which, κ∞ ≈ ∞ acts as the penalty parameter and ensures that the inter-enrichment domain

continuity is satisfied with high precision. A sufficiently large but finite value is chosen in the

numerical simulations for stability and accuracy.

We now turn our attention to the boundary term of the macroscale diffusion problem

(Eq. 11). The boundary term is decomposed based on the boundary components analogous

to Eq. 18. Along the interface between the enrichment domain and the outer boundaries with

Neumann boundary conditions:

(
vM , qmα

)c
Γqα

=
(
vM , q̃α

)c
Γqα

(27)

Along the inter-enrichment domain boundaries and the boundary region - substrate region
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interface, using the general form of the boundary constraint yields:

(
vM , qmα

)c
Γint
α

= −
∑
β∈Iα

κ
(
vM , cmα

)c
Γβα

(28)

(
vM , qmα

)c
Γsα

= −κ
(
vM , cmα

)c
Γsα

(29)

The inter-enrichment continuity constraint ensures that the microscale flux terms (Eq. 28)

across the enrichment domain boundaries cancel for each master-slave pair. Substituting

Eqs. 27 and 29 into Eq. 11, leads to the following weak form of the macroscale diffusion

problem:

a
(
vM , cM

)c
Ω

+
(
vM , ċM

)c
Ω

=
(
vM , q̃M

)c
Γq

+
nen∑
α=1

[(
vM , q̃α

)c
Γqα
− κ

(
vM , cmα

)c
Γsα
− a

(
vM , cmα

)c
Ωα
−
(
vM , ċmα

)c
Ωα

]
(30)

2.2 Deformation problem

In this section, we formulate the VME method with the mixed boundary conditions for defor-

mation problems. The equilibrium equation is expressed as:

∇ · (L(x) : ∇u(x)) = 0; x ∈ Ω (31)

where, u is the displacement vector; L ∈ L∞ (Ω)nsd×nsd×nsd×nsd the fourth order tensor of

elastic moduli taken to be symmetric, elliptic and bounded:

Lijkl = Lklij = Ljikl = Lijlk (32)

∃λ,Λ > 0 such that λ ‖ζ‖ ≤ ζ : L : ζ ≤ Λ ‖ζ‖ ∀ζ ∈ Rnsd×nsd (33)

Similar to the diffusivity, the elastic moduli oscillate spatially within the boundary region due

to the microstructural heterogeneity. The boundary conditions of the deformation problem is

given as:

Displacement B.C.: u(x) = ũ(x); x ∈ Γu (34)

Traction B.C.: σ(x) · n = t̃(x); x ∈ Γt (35)

where, ũ and t̃ are prescribed displacement and traction data along the essential (Γe = Γu and

natural (Γn = Γt) boundaries, respectively (such that Γ = Γu ∪ Γt; Γu ∩ Γt ≡ ∅); σ = L : ∇u

the stress tensor; and : denotes double inner product.

The displacement field is decomposed into the macroscale and microscale components using
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the additive split:

u(x) = uM (x) +

nen∑
α=1

H(Ωα) umα (x) (36)

in which, uM and umα are the macroscale approximation to the displacement field and the mi-

croscale correction within the enrichment domain, Ωα, respectively. Introducing the macroscale

test function wM ∈ VM0 ⊂
[
H1

0 (Ω)
]nsd and substituting Eq. 36 into Eq. 31, the macroscale

deformation equation is expressed in the weak form as:

a
(
wM ,uM

)u
Ω

=
(
wM , t̃

)u
Γt

+

nen∑
α=1

[(
wM , tmα

)u
Γα\Γ − a

(
wM ,umα

)u
Ωα

]
(37)

tmα = L : ∇umα · n is the microscale tractions along the boundary of the enrichment domain.

The bilinear form and the L2 inner product for the deformation problem are, respectively:

a (u,w)u[·] ≡
∫

[·]
∇u : L : ∇w d[·] (38)

(u,w)u[·] ≡
∫

[·]
u · w d[·] (39)

The solution of the macroscale problem is sought within the solution space VM
ũM

(Ω) ⊂
[
H1

ũM
(Ω)
]nsd ;

and ũM is the approximation of the boundary displacement data using the macroscale basis

functions.

Considering the microscale solution, umα ∈ Vα,ũα (Ωα) ⊂
[
H1

ũα
(Ωα)

]nsd , the weak form of

the microscale deformation problem is obtained as:

a (wm
α ,u

m
α )uΩα =

(
wm
α , t

M
)u

Γα\Γuα
+ (wm

α , t
m
α )uΓα\Γuα − a

(
wm
α ,u

M
)u

Ωα
(40)

for every wm
α ∈ Vα,0 (Ωα).

We propose the following family of boundary conditions along the microscale boundaries

for the deformation problem:

θ (umα − ûα) + (1− θ)γ
(
tmα − t̂α

)
= 0; x ∈ Γα (41)

This boundary conditions is analogous to the one proposed for the diffusion problem and is

rewritten in terms of a single parameter, κ, as:

tmα = t̂α − κ (umα − ûα) (42)

The arguments made in the derivation of the boundary terms for the diffusion problem can

be applied without difficulty to the deformation problem. It is trivial to show that the weak
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form of the macroscale deformation problem is expressed as:

a
(
wM ,uM

)u
Ω

=
(
wM , t̃M

)u
Γt

+

nen∑
α=1

[(
wM , t̃α

)u
Γtα
− κ

(
wM ,umα

)u
Γsα
− a

(
wM ,umα

)u
Ωα

]
(43)

where, t̃M is the approximation to the prescribed boundary traction using a coarse grid, and t̃α

the microscale correction to the prescribed boundary traction. The weak form of the microscale

deformation problem at the enrichment domain, Ωα, yields:

a (wm
α ,u

m
α )uΩα =

(
wm
α , t̃α

)u
Γtα

+
(
wm
α , t

M
)u

Γα

− κ (wm
α ,u

m
α )uΓsα −

∑
β∈Imα

κ (wm
α ,u

m
α )u

Γβα
−
∑
β∈Isα

κ∞
(
wm
α ,u

m
α − umβ

)c
Γβα
− a

(
wm
α ,u

M
)u

Ωα
(44)

3 Computational Implementation

In this section, finite element formulation of the micro- and macroscale diffusion and deforma-

tion problems is presented and the implementation strategy to evaluate the coupled multiscale

problems is discussed.

3.1 Finite element discretization

The macroscale and microscale concentration fields are discretized by setting the pertinent

solution spaces as:

WM
c̃M (Ω) =

{
cM (x, t) | cM (x, t) =

M∑
A=1

NA(x)ĈA(t); ĈA(t) = c̃ (xA, t) if xA ∈ Γc

}
(45)

Wα,0 (Ωα) =

{
cmα | cmα (x, t) =

mα∑
a=1

nα,a(x)ĉα,a(t); ĉα,a(t) = 0 if xa ∈ Γcα

}
(46)

in which, M and mα denote the number of nodes in the macroscale mesh discretizing Ω,

and the microscale mesh discretizing Ωα, respectively; NA and nα,a are the shape functions

for the macro- and microscale fields, respectively; ĈA and ĉα,a are macro- and microscale

nodal concentration coefficients; and xA and xa denote nodal coordinates. In the present

formulation, the macro- and microscale grids are taken to be nested such that one macroscale

finite element coincides with one enrichment domain within the boundary region. Formulation

based on arbitrary positioning of microscale grids may present additional challenges to the

computational implementation of the method, such as the treatment of microscale domain

vertices and enforcement of rigid body constraints. Following the standard Bubnov-Galerkin

setting, the corresponding test functions for the macro- and microscale problems are discretized

using the same shape functions. In the present formulation, we also make the simplifying (but

not a necessary) assumption that the boundary data is smooth and does not have microscale
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components. We further consider a set of discrete time points T̃ = {ti | ti ∈ T ; ti+1 > ti}
within the observation period, T and set ∆t = ti+1 − ti. Substituting Eq. 45 into Eq. 30

and employing a backward difference approximation to discretize the time derivative yield the

following system of equations at the macroscale in the vector form (at time ti+1):

Ψ := (Mc + ∆tKc) Ĉ−Mc
tiĈ− f c = 0 (47)

where, Ĉ = {Ĉ1, Ĉ2, . . . , ĈM}T denotes the vector of macroscale nodal concentration coeffi-

cients; the left subscript ti
(·) denotes the value at the previous time step; and

Mc = A
A,B

(NA, NB)cΩ ; Kc = A
A,B

a (NA, NB)cΩ (48)

f c = A
A

{(
NA, q̃

M
)c

Γq
+

nen∑
α=1

mα∑
a=1

[
∆t κ (NA, nα,a)

c
Γsα
ĉα,a

−∆t a (NA, nα,a)
c
Ωα
ĉα,a − (NA, nα,a)

c
Ωα

∆ĉα,a

]} (49)

in which, A denotes standard finite element assembly operation, and ∆(·) = (·)− ti
(·).

Remark 2. In the construction of Kc, it is necessary to evaluate the integration of the bilin-

ear form on the boundary and substrate regions separately. Within the boundary region, the

diffusivity of the material oscillates spatially, whereas the substrate domain is characterized by

a homogenized diffusivity tensor. The bilinear form of the discretized macroscale problem is

expressed as:

a (NA, NB)cΩ = a (NA, NB)cΩs +

nen∑
α=1

a (NA, NB)cΩα (50)

The integration of the bilinear form over the substrate region is standard. We consider the

following partitioning of the integral within each enrichment domain:∫
Ωα

(∇NA)T D (∇NB) dΩ =
∑
i

∫
eα,i

(∇NA)T D (∇NB) dΩ (51)

in which, the partitioning coincides with the partitioning of the domain for microscale problems;

and eα,i denotes the domain of a microscale finite element; and T is the transpose operator. The

integration within eα,i follows the Gaussian quadrature formula with macroscale shape function

gradients computed at each integration point of the partition. We note that this is an expensive

integration. When the macroscale fields vary smoothly, it is possible to approximate this integral

by replacing spatially varying D by a constant D̄, which is the homogenized diffusivity of the

microstructure. This approach leads to the homogenization-like integration scheme [22, 23],

which keeps the standard integration of the bilinear form over the entire macroscale domain.

Substituting Eq. 46 into Eqs. 23 and 26, the microscale problems are expressed in the

13



vector form as (at time ti+1):

ψα := (Mc
α + ∆tKc

α) ĉα −Mc
α ti ĉα − f cα = 0 (52)

ĉα = {ĉα,1, ĉα,2, . . . , ĉα,mα}T denotes the vector of microscale nodal concentration coefficients;

and

Mc
α = A

a,b
(nα,a, nα,b)

c
Ωα

(53)

Kc
α = A

a,b

[
a (nα,a, nα,b)

c
Ωα

+ κ (nα,a, nα,b)
c
Γsα∪Γβmα

+ κ∞ (nα,a, nα,b)
c
Γβsα

]
(54)

f cα = A
a

{
M∑
A=1

[
−∆t a (nα,a, NA)cΩα ĈA − (nα,a, NA)cΩα ∆ĈA

]
+κ∞

(
nα,a, c

m
β

)c
Γβsα

+
(
nα,a, q

M
)c

Γα

} (55)

where, Γβmα = ∪β∈Imα Γβα and Γβsα = ∪β∈IsαΓβα.

To discretize the deformation problem, the macro- and microscopic displacement fields are

approximated by setting the following solution spaces:

VMũM (Ω) =

{
uM (x) | uM (x) =

M∑
A=1

NA(x)ÛA; ÛA = ũ (xA) if xA ∈ Γu

}
(56)

Vα,0 (Ωα) =

{
umα | umα (x) =

mα∑
a=1

nα,a(x)ûα,a; ûα,a = 0 if xa ∈ Γuα

}
(57)

in which, ÛA and ûα,a are the macro- and microscale nodal displacement coefficients, respec-

tively. Substituting Eqs. 56 and 57 into the macroscale weak form (Eq. 43) yields the discrete

macroscale problem:

Φ := KuÛ− fu = 0 (58)

where, Û = {ÛT
1 , Û

T
2 , . . . , Û

T
M}T denotes the vector of macroscale nodal displacement coeffi-

cients; and,

Ku = A
A,B

a (NA, NB)uΩ (59)

fu = A
A

{(
NA, t̃

M
)u

Γt
−

nen∑
α=1

mα∑
a=1

[
a (NA, nα,a)

u
Ωα

ûα,a + κ (NA, nα,a)
u
Γsα

ûα,a

]}
(60)

As in the case of the diffusion problem, the tensor of elastic moduli that characterize the

behavior within the boundary region oscillates spatially due to the microstructural hetero-

geneity. The evaluation of the stiffness matrix (Eq. 58) is therefore similar to Kc as explained
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in Remark 2.

The microscale problem in the discrete form is obtained by substituting Eqs. 56 and 57

into the weak form of the microscale problem (Eq. 44):

φα := Ku
αûα − fuα = 0 (61)

ûα = {(ûα,1)T , (ûα,2)T , . . . , (ûα,mα)T }T is the vector of microscale nodal displacement field

coefficients; and,

Ku
α = A

a,b

{
a (nα,a, nα,b)

u
Ωα

+ κ (nα,a, nα,b)
u
Γsα∪Γβmα

+ κ∞ (nα,a, nα,b)
u
Γβsα

}
(62)

fuα = A
a

{(
nα,a, t

M
)u

Γα
+ κ∞

(
nα,a,u

m
β

)u
Γβsα
−

M∑
A=1

a (nα,a, NA)uΩα ÛA

}
(63)

Remark 3. The solution of the macroscale problem describes the overall (i.e., homogenized)

behavior of the system response, whereas the microscale problems describe the enrichment of

the response at the boundary region to capture the fluctuations induced by the microstructural

heterogeneity. The momentum and mass balance across the macroscale elements, as well as

in the microscale problems are satisfied separately in the weak sense as in the standard finite

element method. A direct reconstruction of the original response fields would violate the mass

and momentum balance across the enrichment domain - substrate interface due to different

resolutions of the micro- and macroscale representations. The local mass conservation principle

can be enforced by employing a mixed formulation [13].

Remark 4. The finite elements employed in the discretization of the macro- and microscale

problems must be chosen to ensure linear independence between the pertinent solution spaces

as discussed in Remark 1. The standard bilinear (for 2D problems) and trilinear (for 3D

problems) Lagrangian shape functions satisfy this condition when the microscale concentration

and displacements at the corner nodes of each enrichment domain is set to vanish as in the case

of the proposed canopy functions. We note that linear independence is not guaranteed when

higher order shape functions are used at both macro- and microscales, but proper choice/design

of the appropriate high order of shape functions that satisfy linear independence is possible.

3.2 Implementation strategy

The VME method with canopy functions has been implemented for two-dimensional diffusion

and deformation problems. The implementation strategy of the multiscale approach applied to

the diffusion problem is summarized in Box 1. The implementation consists of the initialization

and solution phases. The initialization phase consists of setting the initial conditions for the

macroscale and each microscale problem, and identification of the boundary components for
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each enrichment domain. The initial conditions are set as:

ĈA (0) = c0 (xA) ; A = 1, . . . ,M (64)

ĉα,a (0) = c0 (xa)−
M∑
A=1

NA (xa) ĈA (0) ; a = 1, . . . ,mα (65)

Initialization phase -

1. Set the initial condition for the macroscale problem, Ĉ(0).

2. For each microscale problem (α = 1, . . . , nen):

(a) Identify the microscale boundary components (Γint
α , Γsα, Γcα and Γqα).

(b) Set the initial condition for the microscale problem: ĉα(0) on Ωα.

Solution phase -

3. For each time step, ti ∈ T̃

• Loop until convergence

(a) For each microscale problem (α = 1, . . . , nen):

i. Update the microscale problem boundary conditions:
cmβ (x, ti) on Γβα ⊂ Γint

α ; q̂α (x, ti) on Γqα

ii. Solve the microscale problem, cmα (x, ti) on Ωα.

(b) Solve the macroscale problem, cM (x, ti) on Ω.

(c) Convergence: ‖cM − cMprev‖/‖cM‖ ≤ tolerance → Exit loop.

(d) No convergence: ‖cM − cMprev‖/‖cM‖ > tolerance → cMprev = cM

Box 1: Implementation strategy for the multiscale approach applied to the diffusion problem.

We consider a coarse finite element discretization of the macroscale problem domain us-

ing bilinear quadrilateral Lagrangian elements. The skeleton of the macroscale discretization

within the boundary region is denoted as:

SMb =

nen⋃
α=1

nedge⋃
s=1

γMα,s (66)

where, γMα,s ⊂ ∂Ωα denotes an element edge; and nedge the total number of edges of a single

macroscale element. Considering a discretization of the microscale problem using bilinear

quadrilateral Lagrangian elements, the part of the skeleton that lies along the boundary of

the microscale domain is denoted as: Smα,s = ∪mα,si=1 γmα,s,i, where γmα,s,i is a microscale element

edge and mα,s the total number of microscale element edges that lie on γMα,s. The microscale

boundary components are identified by determining whether γMα,s lies on the natural boundary

condition (Γn), essential boundary condition (Γe) or the substrate boundary (Γsα). Microscale
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boundary edges, γmα,s,i are assigned as Γnα, Γeα or Γsα accordingly. If γMα,s is an inter-enrichment

domain boundary (i.e., ∃β such that γMα,s = γMβ,p), all γmα,s,i are assigned as master (if β < α)

or a slave (if β > α) enrichment domain boundary.

Remark 5. It is clear that the numbering of the enrichment domains influence the choice

of enrichment domain boundary master-slave pairs in the implementation of the proposed al-

gorithm. This bears resemblance to the domain decomposition approach based on the multi-

plicative Schwartz method, where the coupling between the problem subdomains is affected by

the subdomain ordering. Similar to the multiplicative Schwartz method [24], numerical exper-

iments indicated that the choice of enrichment domain numbering does not significantly affect

the accuracy and convergence characteristics of the method.

At each time increment, the multiscale problem is evaluated iteratively. Within an itera-

tion loop, each microscale problem is evaluated by solving Eq. 52. The microscale boundary

conditions are updated prior to solving each microscale problem. Each slave enrichment do-

main boundary requires the response field computed at the enrichment domain that holds the

corresponding master domain boundary. Owing to the master-slave pairing strategy described

above, the response fields for the master domain boundaries are always computed prior to the

corresponding slave boundaries. In the current (serial) implementation, this approach leads to

near identical computational efficiency of the proposed mixed boundary conditions compared

to imposing homogeneous boundary conditions. In contrast, parallel implementation of the

VME method with mixed boundary conditions is more complex than with homogeneous bound-

ary conditions since information from master domain boundaries needs to be communicated

(possibly across processors) to the enrichment domains. Since the microscale problem at each

enrichment domain is evaluated independent of the problems at the neighboring enrichment

domains, enforcement of continuity does not necessarily imply imposing nodal compatibility

across the neighboring enrichment domains. The inter-enrichment domain continuity may be

implemented strongly (i.e., along every point of the discretized boundary domains) or weakly

(i.e., only at nodal positions). In the strong implementation, nodal compatibility is typically

unavoidable. In the weak implementation - more suitable for non-periodic microstructures -

the nodal values of the slave boundary response are approximated from the master boundary

response. The macroscale problem is evaluated using Eq. 47 along with the solution of all

microscale problems at the current iteration. The convergence of the solution is checked based

on the macroscale solution using the energy norm as shown in Box 1. We note that in all

numerical examples investigated, the microscale response fields at each enrichment domain

also converged up to the tolerance value. When large time step sizes are considered, the con-

vergence of the microscale problems may become critical for solution accuracy. This issue can

be alleviated by checking the solution convergence based on both microscale and macroscale

solutions, and by considering separate time step sizes for the micro- and macroscale problems.

It is straightforward to extend the proposed algorithm to include multiple convergence cri-

terion and separate time step sizes for the macroscale and the microscale problems. Box 2
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illustrates the implementation strategy for the deformation problem. The proposed strategy

for the deformation problem follows closely with the strategy for the diffusion problem.

Initialization phase -

1. For each microscale problem (α = 1, . . . , nen):

• Identify the microscale boundary components (Γint
α , Γsα, Γuα and Γtα).

Solution phase -

2. Loop until convergence

(a) For each microscale problem (α = 1, . . . , nen):

i. Update the microscale problem boundary conditions:
umβ (x) on Γβα ⊂ Γint

α ; t̂α (x) on Γtα
ii. Solve the microscale problem, umα (x) on Ωα.

(b) Solve the macroscale problem, uM (x) on Ω.

(c) Convergence: ‖uM − uMprev‖/‖uM‖ ≤ tolerance → Exit loop.

(d) No convergence: ‖uM − uMprev‖/‖uM‖ > tolerance → uMprev = uM

Box 2: Implementation strategy for the multiscale approach applied to the deformation problem.

The solution algorithms for the diffusion and deformation problems are implemented using

the commercial software program, Diffpack, which is an object oriented development framework

for numerical solution of partial differential equations [25]. DiffPack provides a library of C++

classes to facilitate development of solution algorithms for complex PDEs. When coupled

diffusion-elasticity problems are considered, such as when the elastic moduli is a function of

concentration and when the diffusivity is a function of elastic moduli, it is possible to evaluate

the diffusion and deformation problems in a coupled manner. Such a coupled solution algorithm

based on the operator split method has been proposed and detailed in Ref. [10] for the VME

method with RFB functions. The extension of this methodology to the VME method with

canopy functions is straightforward and does not require special treatment of the multiphysics

coupling.

4 Numerical Verification

4.1 Nonuniform diffusion into biphasic boundary region

We consider a 2.5 mm × 2.5 mm specimen with geometry and boundary conditions illustrated

in Fig. 3. The boundary region constitutes the top 1 mm of the specimen and consists of

two phases illustrated as dark (phase a) and light (phase b) colors. A nonuniform prescribed

boundary concentration is applied to create a two-dimensional diffusion within the numeri-

cal specimen. The magnitude of the prescribed boundary concentration is 5%. The initial
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Figure 3: Geometry and boundary conditions of the plane strain panel.
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Figure 4: (a) Discretization of the reference finite element model; (b) Microscale discretization
of an enrichment domain; and, (c) macroscale discretization of the numerical specimen with
enriched (darker) elements.

19



10−4 10−3 10−2 10−1 100

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

boundary parameter, κ

L 2 e
rro

r

Figure 5: The effect of boundary parameter, κ on modeling error in diffusion simulations.

concentration within the problem domain is 1.5%. The performance of the proposed multi-

scale approach is verified against direct numerical simulations. In the reference model, the

microstructure within the boundary region is fully resolved (Fig. 4a), whereas the substrate

region discretization remains coarse. The field continuity along the nonconforming substrate-

boundary region interface is enforced using the penalty formulation [26]. The micro- and

macroscale discretizations of the multiscale model are illustrated in Fig. 4b and Fig. 4c, re-

spectively. The microscale mesh has the same mesh density as the mesh employed in the

discretization of the boundary region of the reference model.

In the first set of simulations, we illustrate the effect of the microscale boundary condition

on the accuracy characteristics of the proposed multiscale approach. The apparent diffusivity

contrast between the two phases is Da/Db = 50. These simulations are conducted for the

duration of 125 hours, with time step size of 50 minutes for both the VME and reference

model. The time step sizes are small enough such that further refinement of the time step

does not significantly affect the solution accuracy. Figure 5 illustrates the effect of the bound-

ary parameter, κ, on the accuracy of the VME approach. In all simulations, the boundary

parameter, γ, is set to 3.0. The value set for γ has insignificant influence on the accuracy of the

proposed approach, and the chosen parameter value ensures that a small variation in θ leads to

a relatively large change in κ permitting a convenient probing of the microscale boundary con-

ditions, particularly around the homogeneous boundary condition limit. The modeling errors

are minimized when the boundary parameter, κ is approximately 4e-3. Compared to the ho-

mogeneous boundary conditions (i.e., using RFB functions), the proposed boundary condition

(i.e., using canopy functions) with the optimal boundary parameter value is significantly more
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Figure 6: Model error as a function of simulation time.

accurate (i.e., 9.5% using the RFB functions compared to 4.5% with the canopy functions)

in these simulations. The accuracy of the predictions degrades as the boundary parameter

approaches the flux free as well as the homogeneous boundary condition limits. The rate of

degradation is significantly higher as the boundary condition approaches the flux free case

(θ → 0), whereas the errors converge to a higher yet stable value when (θ → 1). The L2 error

presented in Fig. 5 is time averaged over the duration of the simulation. The evolution of the

L2 error as a function of time is shown in Fig. 6 for a range of boundary parameter values.

While the homogeneous boundary conditions are reasonably accurate at the steady state of the

diffusion response, modeling errors tends to be higher at the transient regime. The accuracy

of the proposed boundary condition also increases in time. The error characteristics within

the transient regime is not sensitive to the boundary parameter value when (approximately

0.3 ≤ θ < 1.0 or 1 ≤ κ <∞). The error within the transient regime reduces as the boundary

parameter approaches the optimal value. The increase in model error at the transient regime

is not pronounced when the proposed boundary condition is employed.

Figures 7 and 8 show the concentration profiles computed using direct numerical simula-

tions and the concentration response computed using the multiscale model. The concentration

profile in the multiscale model is computed by adding the macro- and the pertinent microscale

response fields at the enriched domains. Figure 7 shows the concentration profiles along a

vertical cross-section 2 mm from the left of the specimen for two time instants within the

transient regime. In both time instances, the predictions with the proposed boundary condi-

tion (with κ=4.0e-3) are more accurate than those obtained using the homogeneous boundary

conditions as well as when the boundary parameter approaches the flux free limit. Figure 8
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Figure 7: Concentration profiles computed based on the VME and the reference model at a
vertical cross-section at the middle of the numerical specimen.
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Figure 8: Concentration profiles computed based on the VME and the reference model at an
horizontal cross-section 1 mm below the top of the numerical specimen.
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Table 1: Optimal boundary condition parameter for a range of diffusivity contrasts.

Da/Db 1/50 1/25 1/5 1 5 25 50

κ 3.0e-3 7.5e-3 4.0e-3 2.0e-3 1.5e-3 3.0e-3 4.0e-3

shows the concentration profiles from a horizontal cross-section, 0.5 mm from the top of the

specimen. The response computed using the VME approach closely approximates the over-

all behavior within the boundary region, with better accuracy with the proposed boundary

conditions. In Figs. 7 and 8 the cross sections coincide with the internal boundaries of the

enrichment domains. Since the microscale response vanishes at the internal boundaries when

homogeneous boundary condition is imposed (i.e., κ = 1e10), the full multiscale response is

equal to its macroscale counterpart. When the boundary parameter approaches the flux free

limit (κ → 0), we observed formation of fluctuations in the concentration response in the

vicinity of the applied concentration boundary. These fluctuations appear to be due to the

discretization errors associated with the transient diffusion process. This indicates that when

the microscale boundary condition approaches the flux free limit, the effect of the microscale

solution on the macroscopic response is reduced and the microscale solution fails to regularize

the macroscale response.

We then conducted a series of simulations to study the sensitivity of the optimal boundary

condition parameter, κ, to the material parameters within the microstructure. Table 1 sum-

marizes the values of the optimal boundary condition parameter as a function of the diffusivity

contrast. The boundary condition appears to change values as a function of the diffusivity

contrast, but remains within a reasonably narrow range for a wide spectrum of diffusivity

contrasts. κ =4.0e-3 yielded better accuracy than the homogeneous boundary condition for all

cases considered in this study. The microstructure employed in this study leads to non-uniform

and two dimensional transport conditions to better assess the sensitivity of the model to the

variations in the boundary parameter, κ. Concentration fluxes across the microstructures,

particularly at the beginning of the simulations are relatively high. The results of the sensi-

tivity study therefore points to the relative insensitivity of the optimal boundary parameter

with respect to the high flux and multi-dimensional transport conditions, in addition to the

diffusivity contrast. Physically, the low (i.e., 4e-3) value of κ indicates that the variation of

the concentration across microstructure boundaries is non-uniform.

4.2 Elastic response of inclusion reinforced composites

The performance of the multiscale model is also assessed in the setting of elliptic (i.e., elas-

ticity) problems. The geometries and the boundary conditions for the problems considered

are illustrated in Fig. 9. The first problem is the uniaxial tensile response of a periodic com-

posite with uniform circular inclusions, whereas the second problem is defined on a periodic

composite with three inclusions with different sizes subjected to uniaxial tension. The re-

sponse computed based on the VME method with the canopy functions is compared to the

23



(a) (b)

Figure 9: The geometry and boundary conditions of (a) one inclusion model; and, (b) three
inclusions model.

direct numerical simulations (i.e., the finite element method) with full discretization of the

problem domains (Fig. 9). In the VME simulations, the macroscale grid is a uniform grid

with 25 quadrilateral elements. The microscale grids considered for the single inclusion and

three-inclusion problems are shown in Fig. 10.

First, we investigate the effect of the boundary parameter on the solution accuracy in

the context of the single inclusion problem. Two microstructure parameters characterize the

composite: (1) the stiffness contrast, r = Ei/Em with Ei and Em denoting the elastic moduli of

the inclusion and matrix, respectively; (2) inclusion volume fraction, ν = Vi/V with Vi and V

are the volume of the inclusion phase and the total volume of the microstructure, respectively.

The composite material is subjected to macroscopic tensile stress as illustrated in Fig. 9. The

Poisson’s ratio of the inclusion and matrix are taken to be the same. The boundary exponent

parameter, γ is set as 3.0. Figure 11 illustrates the L2 error of the proposed multiscale approach

compared to the direct numerical simulation as a function of the boundary parameter, θ for

various values of the constituent stiffness contrast (1e-3 ≤ r ≤ 10) and the inclusion volume

fraction (15% ≤ ν ≤ 67.5%). In contrast to the parabolic (i.e., diffusion) problem, the optimal

value of the boundary parameter is close to the homogeneous boundary condition θ = 1 in

the present case. The VME error typically dips to an optimal boundary parameter value,

θopt and increases rapidly as θ is further reduced. Relaxation of the boundary parameter has

a much more pronounced effect on the solution accuracy for high volume fraction and high

stiffness contrast values. For instance, the VME error reduces from 8% to less than 2% for

the microstructure with ν = 67.5% and r = 0.1. For lower volume fraction materials and

low stiffness contrasts, there is no clear optimal boundary parameter different from the RFB

limit (θ = 1). This is because at small inclusion volume fractions, the heterogeneity of the
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Figure 10: The geometry and discretization of the microstructure meshes for (a) one inclusion
model; and, (b) three inclusions model.

Table 2: Coefficients of the optimal boundary parameter model.

When r > 1: n = 2 m=5

p00=9.997e-1 p01=-7.445e-4 p02=-7.227e-2 p03=2.992e-1 p04=-4.436e-1 p05=2.251e-1
p10=-6.624e-4 p11=-2.472e-3 p12=4.821e-3 p13=-1.341e-3 p14=-2.882e-3 p15=0
p20=3.363e-5 p21=7.925e-6 p22=-1.625e-4 p23=2.898e-4 p24=0 p25=0

When r < 1: n = 3 m=4

p00=1.0 p01=-5.241e-2 p02=1.097e-1 p03=-1.588e-2 p04=-1.735e-1
p10=-4.298e-3 p11=3.094e-2 p12=-1.244e-1 p13=6.975e-1 p14= 0
p20=1.858e-1 p21=-2.986e-1 p22=-1.313 p23=0 p24=0
p30=-4.727e-1 p31=1.835 p32= 0 p33=0 p34=0

deformation field is localized within the enriched element (through St. Venant’s principle) and

the boundaries of the domain has less influence on the microscale response.

Figure 12 illustrates the variation of the optimal boundary parameter as a function of the

microstructural characteristics. The figure indicates that the optimal boundary parameter

varies within a narrow range of values (between 0.96 and 1.0) and is influenced by the mi-

crostructure characteristics. A single value of θopt cannot be identified in view of the sensitivity

of the model error (Fig. 11) to the boundary parameter. Alternatively, we consider a polyno-

mial fit for the optimal boundary parameter as a function of the microstructure parameters, r

and ν:

θ̃opt (r, ν) =
n∑
a=0

m∑
b=0

pabr
aνb (67)

Figure 13 shows the fitted optimal boundary parameter function. The parameters of the

function are provided in Table 2.

The performance of the proposed optimal boundary parameter function is demonstrated
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Figure 11: The L2 error of the VME model as a function of the boundary parameter, θ.
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Figure 13: The parametric model of the optimal boundary parameter as a function of mi-
crostructural characteristics.
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using simulation of the three-inclusion composite response. The microstructure geometry is

set as constants for all simulations (i.e., ν = 0.25). Figure 14 shows the variation of the

modeling error compared to the DNS as a function of the boundary parameter, θ for various

stiffness contrasts ranging four orders of magnitude. The error characteristics follow a similar

trend to that of a single inclusion model. For high stiffness contrasts (i.e., 1 � r or r � 1)

the optimal boundary parameter provides a significant improvement to the solution accuracy,

whereas the RFB approach is satisfactory for composite problems with low stiffness contrast.

Figure 14 also illustrates the performance of the optimal boundary parameter model (Eq. 67).

The errors computed using the boundary parameter provided by this model display higher

accuracy compared to the results using the RFB functions for the entire range of stiffness

contrasts.

The proposed parametric fit does not necessarily provide accurate optimal parameter pre-

diction with arbitrary microstructures. It is perhaps reasonable to consider a similar identifi-

cation methodology to obtain optimal boundary parameter function for other microstructural

configurations that can be described by a set of microstructural parameters.

The performance of the proposed boundary parameters is demonstrated using periodi-

cally arranged microstructures, but the multiscale approach is also applicable to non-periodic

microstructures. The boundary conditions and the overall multiscale approach is expected

to work well in the presence of spatially varying and non-periodic microstructures, since no

assumptions are made in the model formulation regarding microstructural periodicity. The

purpose of using periodic microstructures is to ensure that, to the extent possible, the per-

formance of the boundary conditions are isolated from other potential sources of errors and

complicating factors.

5 Conclusions

In this manuscript, we presented a new variational multiscale enrichment method for diffu-

sion and deformation problems. This method includes a new family of microscale boundary

conditions of Robin type, which relax the overconstraint imposed by the residual free bub-

ble approach (i.e., homogeneous microscale boundary conditions). The proposed boundary

conditions give rise to microscale response functions, named canopy functions, which take on

nonzero values along the boundary edges of the microscale problems. The field continuity

between neighboring enriched domains is satisfied using the penalty method through straight-

forward modification of the proposed boundary conditions.

The performance of the method is assessed against direct numerical simulations in the con-

text of diffusion and deformation problems. The new boundary conditions provide significant

improvement compared to homogeneous boundaries when the boundary parameter is appro-

priately chosen. We offered possible choices for the boundary parameter through parametric

analyses. For diffusion problems, a boundary parameter independent of the model parameters

is recommended. For deformation problems, the optimal boundary parameter was found to be
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Figure 14: The L2 error of the VME model as a function of the boundary parameter, θ in the
three inclusion model. Boundary parameter based on parametric model (i.e., Eq. 67) identified
as black stars.

a function of the model parameters, and an identification approach is proposed for obtaining

near-optimal boundary conditions. The identification approach is verified in the context of

particle-reinforced composite problems.

Several important advancements to the VME method are under development. First, this

manuscript provided the implementation for 2-D problems only. The implementation of the

problem will be extended to 3-D in the near future. Next, is devising efficient computational

algorithms for the parallel implementation of the proposed computational methodology. While

the present approach is computationally efficient compared with direct numerical simulations,

analysis of large-scale three-dimensional structures will require the implementation of parallel

algorithms capable of efficiently evaluating the multiscale response in view of the high compu-

tational cost of evaluating the microscale problems numerically. The parallel implementation

is challenging with the new boundary conditions because of the communication between en-

richment domains to ensure inter-enrichment domain continuity (no such requirement exists

for the case of homogeneous boundary conditions). Third, the transport processes into me-

chanical systems typically cause microcracking and inelastic processes. The extension of the

proposed methodology to incorporate the presence of inelastic processes and fracture within

the boundary region is important for realistic simulations that model surface degradation prob-

lems, such as the response of titanium structures subjected to extreme environments. Finally,

it is desirable to adaptively identify and evolve the boundary region throughout the simulation

process and automatically enrich/un-enrich subdomains as a function of the response. Such

an adaptive strategy is particularly important for accurate and efficient modeling of evolving
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failure phenomena. Our near term efforts will therefore include extending the proposed multi-

scale computational framework to parallel implementation for three-dimensional and inelastic

problems.
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