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Abstract4

This manuscript presents the formulation and implementation of an Extended Finite El-5

ement Method (XFEM) for random short fiber reinforced composite materials. A new en-6

richment function is proposed to incorporate the effect of random fiber inclusions within the7

XFEM framework to eliminate the need of using finite element meshes compliant with fiber8

inclusions. The motion of the fiber inclusions are modeled by constraining the deformation9

field along the domain of the fiber inclusions. Coupling the XFEM method along with the10

new enrichment function and constraint equations formulate the elastic response of short fiber11

reinforced composites. Numerical integration procedures are provided for accurate evaluation12

of the system response for fiber tips that lie on arbitrary positions within the problem domain.13

The performance of the proposed model is verified against the direct finite element method.14
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Introduction17

Micro- and nano-fiber reinforced composites have been shown to exhibit good mechanical per-18

formance under static and dynamic loading conditions for a wide range of matrix materials19
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and for a variety of engineering applications. A key advantage of these composites is that they20

can be tailored to perform optimally under a range of loading and environmental conditions.21

Fiber reinforcements provide additional unique properties including self sensing, self control22

of cracks and electromagnetic field shielding, making them attractive for multifunctional ap-23

plications (Li 2003, Chung 2000, 2002, Reza et al. 2004, Fu and Chung 1996).24

Modeling of the micro- and nano-fiber reinforced composite materials are traditionally25

conducted based on micromechanical modeling or through computational studies of repre-26

sentative volume elements (RVEs). The micromechanical modeling approaches are typically27

based on the Eshelby’s solution of ellipsoidal inclusions embedded in a matrix in conjunction28

with Mori-Tanaka scheme (e.g., (Tandon and Weng 1986, Huang 2001, Bouaziz et al. 2007)),29

Hashin-Strichman bounds (Ponte-Castaneda and Willis 1995) and others. The ellipsoidal in-30

clusions are taken to have a high aspect ratio to mimic the effect of the fiber geometries when31

such approaches are applied to model random fibers. The computational RVE modeling of32

the response of random fiber composites has also been proposed by a number of investiga-33

tors (Bohm et al. 2002, Lusti et al. 2002). This approach is based on the 3-D resolution of the34

randomly generated fiber geometries, which becomes very challenging when the fiber aspect35

ratios are large due to the requirement to use very small elements in discretization of the fiber36

domains, and when large number of fibers are present to ensure mesh compatibility between37

the embedded fibers and the matrix.38

The extended finite element method (XFEM) provides a way to eliminate the need to dis-39

cretize the individual fibers and the compatibility requirements of the underlying discretization.40

The primary idea of the XFEM approach is to employ nodal enrichment functions, in addition41

to the standard finite element basis, capable of representing inhomogeneities and discontinuities42

within the problem domain rather than explicitly representing them through meshing (Moës43

et al. 1999). The local character of the base finite element formulation is kept by employing44

the partition of unity principle (Babuska and Melenk 1997). The discontinuities modeled by45

XFEM may be strong (i.e., displacement discontinuities) or weak (i.e., strain discontinuities).46

The strong discontinuity approach is suited to model cracks and fracture processes, whereas the47

weak discontinuities model internal boundaries such as holes and inclusions. XFEM approach48

has seen a rapid development in the past decade, which is summarized in Refs. (Mohammadi49

2008, Belytschko et al. 2009). Sukumar et al. (2000) presented a methodology to model ar-50

bitrary holes and inclusions without remeshing the internal boundaries. The method couples51
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the level set method with the XFEM method. Belytschko et al. (2001) proposed a technique52

for modeling arbitrary (including potentially intersecting) discontinuities in finite elements.53

The approximation for discontinuous elements uses the XFEM form and the surfaces of the54

discontinuities by the signed distance function. Chen et al. (2012) reviewed the treatment55

of tip, fully and partial enrichment of the finite elements and corresponding numerical inte-56

gration techniques in the context of the XFEM approach. Hiriyur et al. (2011) proposed a57

methodology to incorporate the enrichments of multiple weakly discontinuous functions over58

a single element domain, removing the requirement of fine mesh resolution around interact-59

ing inclusions. Such important work of XFEM modeling has addressed inclusions that can60

be represented as a subdomain of the problem domain (e.g., spherical inclusions) or cracks.61

Modeling of short fibers with very high aspect ratios provide a somewhat different challenge,62

in which the discontinuity to be modeled is weak, yet assumed to occupy insignificant volume63

of the problem domain.64

In this manuscript, we present the formulation and implementation of XFEM for random65

short fiber reinforced composite materials. A new enrichment function is proposed to incorpo-66

rate the effect of random fiber inclusions within the XFEM framework to eliminate the need of67

using finite element meshes compliant with fiber inclusions. A key contribution of this work is68

to extend the XFEM for modeling weak discontinuities for inclusions that does not occupy vol-69

ume. To this effect, the fibers are approximated as line discontinuities in a multi-dimensional70

domain. In the present work, the fibers are assumed to behave as a rigid body with no stretch-71

ing or bending. The motion of the fiber inclusions are modeled by constraining the deformation72

field along the domain of the fiber inclusions. Coupling the XFEM method along with the73

new enrichment function and constraint equations formulate the elastic response of short fiber74

reinforced composites. Numerical integration procedures are provided for accurate evaluation75

of the system response for fiber tips that lie on arbitrary positions within the problem domain.76

The performance of the proposed model is verified against the direct finite element method.77

The formulation presented in this study is for multiple dimensions but the numerical aspects78

and examples focus on the two-dimensional problems.79

The remainder of this manuscript is organized as follows. In Section 2, the fundamental80

concepts of the XFEM method is introduced and discussed. In Section 3, the application of the81

XFEM method to short fiber reinforced composite materials. The fiber inclusion enrichment82

function and constraints to define fiber motion is described. Section 4 provides the governing83
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equations, the numerical formulation of the XFEM method for short fiber reinforced composites84

and the treatment of partially enriched elements. The assessment of the performance of the85

proposed approach is presented in Section 5. Conclusions and future research directions in86

this area are discussed in Section 6.87

The Extended Finite Element Method88

The extended finite element method (XFEM) is based on the expression of the response field89

using the following approximation:90

u(x) =

nn∑
a=1

Na(x)ûa +
∑
b∈I

Nb(x)ψ(x)ĉb (1)

in which, u denotes displacements; Na the finite element shape function associated with node91

a; a and b the dummy indices of summation over all nodes and enriched nodes respectively; ψ92

an enrichment function; ûa and ĉb the nodal coefficients of the standard and enrichment shape93

functions, respectively; nn the total number of mesh nodes in a finite element discretization;94

and I is an index set of enriched nodes. The first right hand side term of Eq. 1 corresponds95

to the standard finite element approximation of the response field, whereas the second part is96

the enrichment to the approximation space based on a predefined enrichment function, ψ. The97

enrichment function is known a-priori to represent the response well within the whole domain98

or a subdomain of the problem, such as around strong or weak discontinuities. The index set,99

I reflects the extent to which the domain of the problem is enriched.100

The foundation of XFEM is the partition of unity method (PUM) formalized by Babuska101

and Melenk (1997), which provides the foundation of the enrichment approximation in Eq. 1.102

In PUM, the enrichment is computed as a product of the enrichment function and shape103

functions that satisfy the partition of unity property. The standard Lagrangian finite element104

shape functions are well suited for this purpose as they satisfy the partition of unity property.105

An advantage of using Eq. 1 is that the resulting system of discrete equations is sparse.106
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Modeling Embedded Short Fibers107

This section presents the XFEM enrichment functions that will be employed in modeling the108

deformation response of short fibers embedded in a matrix. The short fibers are modeled as109

one-dimensional rods in view of their very high aspect ratios. The displacement of the fibers110

within the problem domain under loading is enforced through constraint equations described111

in Section 3.2.112

Enrichment function113

We seek to develop an enrichment function for the short fiber inclusions. This is achieved114

through defining level set functions for the fiber domain and the fiber tips separately. In a115

fiber reinforced composite, there exists a multitude of fibers each of which much be represented116

using a separate enrichment function. For the simplicity of the presentation, we consider a117

single inclusion to derive the enrichment function. The application of the enrichment function118

to address the multiple fibers is straightforward provided that no overlapping occurs. The119

overlapping refers to the presence of multiple fibers within a single finite element as opposed120

to overlapping of the fiber domains, which is nonphysical and avoided.121

Let Ω ⊂ Rd be the open bounded domain of the composite body, where d = 2, 3 is the122

number of space dimensions. The reinforcing fibers are entirely embedded in Ω, and are taken123

to be straight with very high aspect ratio compared to the overall size of the composite body.124

The domain of a single fiber is therefore approximated by a line segment, parameterized by s,125

such that:126

x = xc +
x2 − x1

2
s; −1 ≤ s ≤ 1; x ∈ Γ (2)

where, x1 and x2 denote the positions of the fiber tips, and xc the position of the center of127

the fiber (i.e., xc = (x1 + x2)/2). The level set functions associated with the fiber tips are128

expressed as:129

φα (x) = (x− xα) · tα; α = 1, 2 (3)

in which, tα denotes the tangent at the corresponding fiber tip (i.e., t1 = (x1 − x2) /l and130

t2 = (x2 − x1) /l = −t1). l = ‖x2 − x1‖ denotes the length of the fiber. Figure 2 illustrates131

the level set functions associated with the fiber tips. φα provides the zero level set along the132

plane normal to the fiber passing through the fiber tip. The value of φα is positive on the133
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outer part of the domain cut by the zero level set, and negative elsewhere within the composite134

body. A third level set is defined as:135

φc (x) = ‖x− P (x)‖ (4)

in which, P (x) is the projection of x onto the fiber:136

P (x) = x1 + [(x− x1) · t2] t2 = x2 + [(x− x2) · t1] t1 (5)

φc is the level set function associated with domain of the fiber. φc divides the domain of the137

body along the plane of the fiber with positive values on each side and zero along the fiber as138

shown in Fig. 2. Employing Eqs. 3 and 4, the enrichment function for the fiber is written as:139

ψ(x) =

[
2∏

α=1

H(−φα)

]
φc(x) +

2∑
α=1

H(φα)dα(x) (6)

with,140

H(f) =

 1 f ≥ 0

0 f < 0
(7)

and dα(x) = ‖x − xα‖ denotes the distance function to the fiber tip, α. The enrichment141

function expressed in Eq. 6 has the form of the V-shaped enrichment functions employed in142

inclusion problems (Moës et al. 2003), with caps defined at the tips of the fiber. Adding ψ(x) to143

the approximation basis of the solution field introduces a strain discontinuity mode along the144

position of the fiber. The displacements around the fiber can therefore be accurately captured145

without explicitly discretizing the fiber domain. The particular form chosen for ψ(x) (Eq. 6)146

ensures that approximation basis captures the strain discontinuity but stay smooth otherwise147

around the tip and sides of the fiber. Three dimensional and planar views of the enrichment148

function are illustrated in Fig. 3 a-b. The enrichment functions around a fiber tip multiplied149

by the finite element shape functions of a quadrilateral element are illustrated in Fig. 4.150

The enrichment function in Eq. 6 is nonzero everywhere in the composite domain except on151

the fiber. The direct application of this enrichment function therefore leads to the enrichment152

of all nodes within the domain. This is undesirable since away from the fiber, the enrichment153

does not enlarge the trial space spanned by the standard finite element shape functions, yet154

increase the size of the linear system. This is circumvented by considering the enrichment of a155
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small subdomain around the fiber, while employing standard finite element shape functions in156

the remainder of the problem domain. By this approach, the domain of the composite is taken157

to consist of four regions as illustrated in Fig. 5: (1) Far field elements with no enrichment;158

(2) elements with partial enrichment; (3) fully enriched elements crossed by the fiber; and159

(4) fully enriched elements partially crossed by the fiber that contain the fiber tip. The160

support of the enrichment region is provided by the sides (or faces) of the partially enriched161

elements formed by their standard nodes. The numerical treatment of the regions are different162

from each other and described in Section . As illustrated in Fig. 5, the enrichment domain163

is chosen based on the discretization as opposed to the geometry of the problem domain that164

is typically used in crack modeling with XFEM (e.g., crack tip enrichment defined within a165

specified radius from the crack tip). Since the fiber tip enrichment functions employed in166

this study are not defined based on geometry and smoothly vary (similar to the Heaviside167

enrichments employed on the sides of the fibers or crack faces), geometry based enrichment168

domain selection is not critical to the method performance.169

Rigid fiber constraints170

The enrichment function provides the necessary weak (i.e., strain) discontinuity within a finite171

element to describe the effect of inclusion on the response of the matrix around it, but does172

not incorporate the kinematics of the fiber itself. The deformation of the fiber inclusion is173

typically a function of the stiffness contrast between the fiber and the matrix, flexural rigidity174

and the length of the fiber. For relatively short fibers embedded in matrix of significantly175

lower stiffness, the bending and stretching of the fiber are small. Early works indicate a relative176

insensitivity of the overall composite stiffness to constituent stiffness ratio, particularly at high177

values (Russel 1973). In this manuscript, the fibers are idealized as rigid bodies going through178

only translation and rotation but no bending and stretching. This condition may be imposed179

by considering the following constraint:180

g(x) := u(x)− uc − (R− δ) · (x− xc) = 0; x ∈ Γ (8)

in which, uc is a constant vector of translation, R the orthogonal tensor of rigid body rotation181

about the center of the fiber; and δ the Kronecker Delta. The orthogonal transformation182

imposed by the rigid body rotation constraint is valid for large rotations, but is a nonlinear183
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constraint. Assuming the rotation of the rigid fiber supported by the matrix remains small,184

Eq. 8 is rewritten using a linear constraint equation as:185

g(x) := u(x)− uc −
l

2
s (x) θn = 0; x ∈ Γ (9)

where, θ is the angle of rotation, and n the normal to the fiber direction as illustrated in186

Fig. 1c. Equation 9 implies that the rotational component of the fiber deformation is normal187

to the original fiber orientation, which is valid for small θ.188

Governing Equations and Formulation189

The governing equations for the deformation response of the short fiber reinforced composite

is:

∇ · σ (x) = 0; x ∈ Ω (10)

σ (x) = L : ε (x) = L : ∇su (x) ; x ∈ Ω (11)

where, σ is the stress tensor; ε the strain tensor given as the symmetric gradient of the

displacement field, u; and L is the tensor of elastic moduli of the matrix material. L is taken

to be a symmetric and strongly elliptic fourth order tensor. The boundary conditions of the

deformation problem are:

u (x) = ũ (x) ; x ∈ ∂Ωu (12)

σ (x) · n (x) = t̃ (x) ; x ∈ ∂Ωt (13)

in which, ũ and t̃ are the prescribed boundary displacement and tractions, respectively. ∂Ωu190

and ∂Ωt are the non-overlapping essential and natural exterior boundary parts such that191

∂Ωu ∪ ∂Ωt = ∂Ω. The domain of the composite body includes nf straight fibers with varying192

length and orientations. Neglecting the bending and stretching of the fibers and assuming small193

rotations of the fibers, the following constraint equations are imposed on the displacement194

response of the composite:195

u(x) = uic +
l

2
si (x) θini; x ∈ Γi; i = 1, 2, . . . , nf (14)
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Superscript i, indicates ith fiber.196

XFEM formulation197

The extended finite element method is employed to discretize and evaluate the governing198

equations (Eqs. 10-14). Using the standard Ritz-Galerkin procedure and employing the penalty199

function formulation for imposing the constraints, the problem can be posed in the weak form200

as: Given the boundary data and the matrix elastic moduli matrix, find u ∈ Uũ such that for201

all ν ∈ U0202 ∫
Ω
∇ν : L : ∇u dΩ +

nf∑
i=1

∫
Γi

γν · gi dΓ =

∫
∂Ωt

ν · t̃ dΓ (15)

gi is the displacement constraint for fiber, i; γ the penalty parameter chosen sufficiently large203

to ensure enforcement of the constraint equations. The appropriate spaces for the trial and204

test functions are:205

Uv :=
{
u ∈ [H1 (Ω)]d | u = v on x ∈ ∂Ωu

}
(16)

where, H1 (Ω) is the Sobolev space of functions with square integrable values and derivatives206

defined on the problem domain. The subscript v is equal to ũ (i.e., the prescribed boundary207

data) in the case of the trial function and equal to zero in the case of the test function.208

The discretization of the trial and test functions follows the Galerkin method based on209

Eq. 1. We start by the decomposition of the problem domain into finite elements. In contrast210

to the standard finite element approach, the mesh does not necessarily conform to the fiber211

domains, i.e., fibers are allowed to lie within the element domains. The first term in Eq. 15 is212

then expressed as:213 ∫
Ω
∇ν : L : ∇u dΩ =

ne∑
e=1

∫
Ωe

∇ν : L : ∇u dΩ (17)

in which, ne is the total number of elements; and Ωe the domain of the element, e. Substituting214

Eq. 1 into Eq. 17 and switching to the Voigt notation with contracted indices for simplicity,215

the element level integral is expressed as:216

∫
Ωe

∇ν : L : ∇u dΩ = (Ve)T
∫

Ωe

(Be)TLBe dΩUe = (Ve)TKeUe (18)

in which, superscript T denotes the transpose operator; and Ue and Ve denote the vectors of217
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nodal coefficients of the trial and test functions in element, e:218

Ue =
{

(ûe1)T (ûe2)T . . . (ûene
n
)T (ĉeIe1 )T (ĉeIe2 )T . . . (ĉeIe

ne
en

)T
}T

(19)

where, ûea and ĉea denote the vectors of unknown coefficients for standard and extended degrees219

of freedom within the element, e at node a; and Ie is the index set of nodes that are enriched220

within the element. Ie an empty set indicates a standard finite element; Ie that consists of221

all nodes within the element indicates full enrichment of the element, whereas Ie that consists222

of a subset of nodes indicates partial enrichment. Be corresponds to the gradient operation223

expressed as:224

Be =
{
B̂e

1 B̂e
2 . . . B̂

e
ne
n

B̄e
Ie1

B̄e
Ie2
. . . B̄e

Ine
en

}
(20)

in which,225

B̂e
a =


N e
a,x 0

0 N e
a,y

N e
a,y N e

a,x

 (2-D) B̂e
a =


N e
a,x 0 0 N e

a,y 0 N e
a,z

0 N e
a,y 0 N e

a,x N e
a,z 0

0 0 N e
a,z 0 N e

a,y N e
a,x


T

(3-D) (21)

where, a subscript followed by a comma indicates differentiation. For the enrichment degrees226

of freedom, the gradient operation takes the form:227

B̄e
a (x) = B̂e

a (x)ψ (x) + B̃e
a (x) (22)

228

B̃e
a =


ψ,x 0

0 ψ,y

ψ,y ψ,x

N e
a (2-D) B̃e

a =


ψ,x 0 0 ψ,y 0 ψ,z

0 ψ,y 0 ψ,x ψ,z 0

0 0 ψ,z 0 ψ,y ψ,x


T

N e
a (3-D) (23)

The formulation of the third term in Eq. 15 proceeds similarly. Decomposing the boundary229

integral into its elemental components yields:230

∫
∂Ωt

ν · t̃ dΓ =
∑
e∈It

∫
∂Ωt

ν · t̃ dΓ (24)

in which, It denotes the index set of elements at the boundary ∂Ωt. Substituting Eq. 1 into231
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Eq. 24, the element level boundary integral is expressed as:232

∫
∂Ωt

ν · t̃ dΓ = (Ve)T
∫
∂Ωt

f e (x) dΓ = (Ve)TFe (25)

where,233

f e =
{

(f̂ e1 )T (f̂ e2 )T . . . (f̂ ene
n
)T (f̃ eIe1 )T (f̃ eIe2 )T . . . (f̃ eIe

ne
en

)T
}T

(26)

The components of the element force vector are:234

f̂ ea (x) = N e
a (x) t̃ (x) ; f̃ ea (x) = f̂ ea (x)ψ (x) (27)

Defining the global vector of unknown nodal coefficients as:235

U =
{

(û1)T (û2)T . . . (ûnn)T (ĉI1)T (ĉI2)T . . . (ĉInen
)T
}T

(28)

The global stiffness matrix, K̂ and the force vectors are obtained by assembling the corre-236

sponding element matrices (i.e., Ke and Fe):237

K̂ =

ne

A
e=1

Ke; F =

ne

A
e=1

Fe; (29)

Constraint equations238

The constraint equation for the ith fiber (gi) indicates that the motion of the fiber is fully239

defined by a translation vector and a rotation angle. These unknowns are interpreted as the240

translation of the fiber midpoint (i.e., uic) and the rotation angle of the fiber about the fiber241

midpoint (i.e., θi). The translation vector is obtained as a function of the displacement field242

by integrating the constraint equation over the domain of the fiber and normalizing with the243

fiber length:244

1

li

∫
Γi

gi (x) dΓ =
1

li

∫
Γi

u (x) dΓ− uic −
θi

2

∫
Γi

s (x) dΓni = 0 (30)

Observing that the rotation term vanishes, the translation vector reads:245

uic =
1

li

∫
Γi

u (x) dΓ (31)
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The rotation angle is obtained by taking the inner product of the constraint equation with the246

fiber normal, ni and averaging over the domain of the fiber:247

θ =
2

(li)2

∫
Γi

u (x) · ni

s (x)
dΓ (32)

The constraint equation for fiber, i becomes:248

gi (x) = u (x)− 1

li

∫
Γi

u (x) dΓ− 1

li
s (x)

∫
Γi

u (x) · ni

s (x)
dΓni (33)

The enrichment function ψ vanishes within the fiber domain due to the zero level set functions249

as illustrated in Fig. 3. Therefore only the the standard shape functions are employed in the250

discretization of the displacement field along the fiber domain and the enrichment function does251

not affect the imposition of the constraint. Substituting Eq. 33 into Eq. 15 and decomposing252

the integral into element contributions, the first term of the constraint equation is written as:253

∫
Γi

γν (x) · u (x) dΓ =
∑
e∈Ii

∫
Γi
e

γν (x) · u (x) dΓ (34)

where, Ii is the index set of all fully enriched elements crossed by the fiber, i. The element254

level integration is expressed in the vector form as follows:255

∫
Γi
e

γν (x) · u (x) dΓ = (Ve)T
∫

Γi
e

γ(N̂e)T N̂edΓUe = (Ve)TKei
c1U

e (35)

where,256

N̂e (x) =
{
N e

1δ N
e
2δ . . . N

e
ne
n
δ
}T

(36)

δ is the Kronecker delta. The contribution of the first term of the penalty function to the257

global system of equations can be computed using the standard assembly operation:258

K̂i
c1 =

ne

A
e=1

Kei
c1 (37)
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The second and the third terms of the constraint equation take the following form when

expressed in terms of the element components, respectively:

γ

li

∫
Γi

ν (x) dΓ ·
∫

Γi

u (x) dΓ =
γ

li

∑
e∈Ii

∫
Γi
e

ν (x) dΓ ·
∑
e′∈Ii

∫
Γi
e′

u (x) dΓ (38)

γ

li

∫
Γi

s (x)ν · nidΓ

∫
Γi

u · ni

s (x)
dΓ =

γ

li

∑
e∈Ii

∫
Γi
e

s (x)ν · nidΓ
∑
e′∈Ii

∫
Γi
e′

u · ni

s (x)
dΓ (39)

The elemental components of the above equations are expressed in the vector form as:

∫
Γi
e

νdΓ = (Ve)T
∫

Γi
e

(N̂e)TdΓ = (Ve)T (Ñe)T ;

∫
Γi
e

udΓ = ÑeUe (40)∫
Γi
e

sν · nidΓ = (Ve)T (M̃e
1)T ;

∫
Γi
e

u · ni

s (x)
dΓ = M̃e

2U
e (41)

where,259

M̃e
1 =

∫
Γi
e

s (x) N̂e (x)nidΓ; M̃e
1 =

∫
Γi
e

N̂e (x)ni

s (x)
dΓ (42)

The contributions of the second and third terms of the constraint equation to the global260

equation system is computed by assembling Ñe, M̃e
1 and M̃e

2. The contribution to the stiffness261

matrix is:262

K̂i
c2 =

γ

li

[
(Ñ)T Ñ + (M̃1)TM̃2

]
(43)

in which, Ñ, M̃1 and M̃2 are assembled from the element counterparts through the stan-263

dard assembly operations. The final system of equations to be evaluated for unknown nodal264

coefficients is:265

KU = F; K = K̂ +

nf∑
i=1

[
K̂i
c1 − K̂i

c2

]
(44)

Numerical integration266

To be able to compute the linear system of Eq. 44, it is necessary to numerically compute267

the element level integrals for Ke, Fe, Kei
c1, Kei

c2, Ñei, M̃ei
1 and M̃ei

2 as defined in the previous268

section. The integration rules employed in the standard finite element method is not sufficient269

since the higher order functions (i.e., enrichment functions) need to be integrated. The inte-270

gration rules are defined for all possible cases of fiber positions. While the general treatment of271

the numerical integration can be generalized to 3-D without conceptual difficulty, the current272

discussion focuses on the 2-D cases. The possible cases of fiber positions as illustrated in Fig. 6273

13



are:274

1. Far field elements with no enrichment: Standard integration orders apply since no addi-275

tional functions are employed in these elements.276

2. Partially enriched elements: Integration rules with elevated order are employed since277

some of the nodes include enrichment functions.278

3. Fully enriched elements entirely crossed by the fiber: The elements are split by the279

fiber. Each part is further decomposed into triangular sub-elements using Delaunay280

triangulation and higher order integration rules are used to capture high order enrichment281

fields within each sub-element.282

4. Fully enriched elements that contain fiber tips: The elements are split along the nor-283

mal direction at the fiber tip, as well as along the fiber direction. Each part formed by284

the split is further decomposed into triangular sub-elements using Delaunay triangulation285

and higher order integration rules are used to capture high order enrichment fields within286

each sub-element. The splitting based on the fiber normal ensures that the components287

of the enrichment function that pertain to the fiber tip and fiber level sets are integrated288

separately.289

290

Typical integration schemes employed in fully enriched elements are shown in Fig. 6. In291

full enrichment cases, triangular sub-elements aligned with the fiber faces are used in the292

integration of a 2-D quadrilateral. The triangular sub-elements contain three integration points293

and use the standard Gauss quadrature rules. In the partially enriched elements and the far-294

field elements, Gauss quadrature rule with 4 integration points is performed (Chen et al. 2012).295

The partially enriched elements do not have sub elements since the fiber does not cross through296

the element.297

The line integration of the ith constraint equation is performed on the domain of the ith298

fiber based on the Gauss quadrature. The rule employed in the integration of the constraint299

equation has a significant influence on the accuracy characteristics of the model, similar to the300

sensitivity of accuracy with respect to the integration of the enrichment functions, reported301

previously (e.g., (Bordas et al. 2010)). The number of integration points along the fiber (nig)302

is determined using a heuristic formula, as a function of the fiber length (li) and the mesh303
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density (h) given as:304

nig = bb1.3l
i

h
eee (45)

where, bb·eee indicates approximation to the nearest even integer. Only even number of inte-305

gration points are used to ensure that the no gauss point lies on the fiber center, since this306

causes the rotation constraint (i.e., Eq. 39) to tend to infinity. When more than 12 integra-307

tion points are needed in the constraint equation, the domain of integration is split and the308

integration is performed separately for each split part such that the quadrature formulas per309

split fiber part does not exceed 12 integration points. If a fiber crosses an element for a very310

small fraction of the fiber length, it is possible to have no integration points within the element311

despite the presence of the fiber within the element.312

Treatment of Partially Enriched Elements313

It has been previously shown that the treatment of the partially enriched elements has an314

effect on the accuracy and convergence of XFEM models (Fries 2008). This is because within315

partially enriched elements (a) the partition of unity property no longer holds and (b) the316

affine transformations (e.g. constant strain modes) cannot be represented exactly. A number317

of solution strategies exist to alleviate these problems (e.g. Chessa et al. (2003), Laborde et al.318

(2005)). One method involves the modification of the enrichment using a ramp function that319

has a local support within the partially enriched element and enriching all nodes of the partially320

enriched element using the modified enrichment function (Fries 2008). In the current study a321

similar modification of the enrichment function is considered. Let ψ̂(x) denote the modified322

enrichment function within a partially enriched finite element:323

ψ̂(x) =
∑
c∈Ie

Nc(x)ψ(x); x ∈ Ωe (46)

where, Ie are the nodes in the partially enriched element, Ωe, that are connected to fully324

enriched elements. The modified enrichment function is active at all nodes of the partially325

enriched element:326

ue(x) =

ne
n∑

a=1

N e
a(x)ûea +

ne
n∑

a=1

N e
a(x)ψ̂(x)ĉea (47)
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in which, superscript e indicates that all pertinent variables are defined in the partially enriched327

element, e. The modifications needed in the finite element implementation discussed above is328

to use the modified enrichment functions (instead of the enrichment functions) and considering329

enrichment of all nodes within the partially enriched elements.330

Numerical Examples331

In this section we present two numerical examples to demonstrate the performance of the332

proposed XFEM model in evaluating the response of short fiber reinforced composites in two-333

dimensional setting. The first example illustrates the accuracy characteristics of the method334

using a single fiber inclusion embedded in a matrix, whereas the second example considers335

multiple random short fibers embedded in a matrix.336

Single fiber inclusion337

The XFEM formulation is verified against the standard finite element method using a compos-338

ite enriched with a single fiber. The schematic representation of the model problem is shown339

in Fig. 7. The size of the domain is 5mm by 5mm and the fiber size is approximately 1mm.340

The domain is subjected to uniform uniaxial tensile loading applied at the right edge. The341

fiber is placed such that a non-uniform deformation and stress distribution is achieved within342

the matrix. The Young’s Modulus and Poisson’s ratio of the matrix material are 14 GPa343

and 0.3, respectively. The reference model consists of a very densely meshed finite element344

model in which the fiber is enforced to undergo rigid body motion. The rigid fiber motion345

in the reference model is prescribed by constraining nodal degrees of freedom that lay along346

the fiber domain using the multi point constraint method. Similar to the XFEM approach,347

the fiber is idealized as a line segment. Reference simulation discretizations ranging from 400348

elements up to approximately 625,000 elements have been studied to ensure mesh conver-349

gence. The simulations confirmed that the response is very accurately captured at such high350

levels of discretization. All reported reference simulation results are based on approximately351

625,000-element discretizations.352

Figure 8 shows the accuracy of the XFEM model compared to the reference simulation.353

The accuracy is assessed at four different locations as illustrated in Fig. 7. Points A, B, C, D354

refer to the left fiber tip, right fiber tip, top right corner and bottom right corner within the355
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problem domain, respectively. In Fig. 8, the point-wise errors are computed using the L2 norm356

and plotted against the normalized mesh density (h/l). The reference simulation considers a357

very fine and nonuniform grid (to conform to the fiber domain). The discretization of the358

XFEM model is a square and uniform grid. In these simulations, the fiber tip locations for359

all element sizes always coincide with a node. The error for the corner nodes reduces mono-360

tonically with increasing mesh density. Errors at the fiber tips displayed slight variations in361

accuracy as a function of mesh density. While the trend is not monotonic for fiber tips, the362

error for all four points probed remained within very reasonable accuracy (i.e., 0.25%). The363

numerical studies indicated that the sensitivity to the numerical integration of the constraint364

equation is the main factor leading to non-monotonic convergence. The integration rule selec-365

tion formula introduced in Section 4.3 leads to highly accurate results, yet with some variation366

from monotonic convergence in some cases. The demonstrated errors are point-wise in contrast367

to the more traditional error characterization where the errors over the entire problem domain368

is averaged. We note that the highest errors within the model typically occurs at the fiber369

tips, which are directly reported in Fig. 8. The global error of the proposed approach is much370

more favorable compared to the reported point-wise values.371

We also investigated the effect of fiber tip location on the local accuracy characteristics372

of the XFEM method. Figures 9 and 10 illustrate the accuracy characteristics of the XFEM373

model for cases in which the fiber tips lay within the elements or on element edges, respectively.374

In both cases we observed that the XFEM models display reasonable accuracy and follows the375

same trend as when fiber tips are on the nodes with a slightly higher errors. The accuracy of376

the model is higher when the fiber tip resides on the edges rather than within the element. The377

slight deviation from monotonic mesh convergence is attributed to the fact that the relative378

positions of the fiber tip for each mesh density is different leading to slightly different accuracy379

of the numerical integrations. For instance, if the fiber tip is too close to a node location,380

the sub elements formed in the Delaunay triangulation for numerical integration of the fully381

and partially enriched elements have very high aspect ratios. In all cases the accuracy of382

the XFEM model is in reasonable agreement with the reference finite element model. The383

point-wise comparison of the performance of XFEM models as a function of fiber tip location384

is summarized in Table 1 for three normalized mesh densities.385

The XFEM method is known to exhibit sensitivity to the position of the enrichment func-386

tions with respect to the finite element mesh. The position sensitivity in the context of the387
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present problem is investigated by considering the response of a fiber with fixed orientation388

and length that is swept across the problem domain. The accuracy of the model predictions389

is quantified as a function of the fiber relative position within the mesh. The angle and length390

of the fiber is 61o to the horizontal and 1 mm, respectively. The sweep starts with the left391

fiber tip starting at 0.5 mm from the left edge and ends at 3.25 mm from the left edge of392

the domain. Simulations were conducted for each fiber position with a resolution of 0.1 mm.393

The errors at points C and D corresponding the bottom left and right corners of the domain394

remain consistently below 0.02%. The errors at the fiber tips tended to decrease slightly as it395

moved across the domain but clearly demonstrate the position sensitivity of the accuracy as396

illustrated in Fig. 11. The errors oscillate since the relative position of the fiber with respect397

the elements in the regular grid repeats as the fiber is moved an amount equal to the element398

size. The largest errors occur when the tips of the fibers are positioned at the center of an399

element. Figure 11 shows the absolute errors at the four points studied across the domain.400

Random short fiber composite401

In this section, we investigate the response of two-dimensional random short fiber composites.402

The matrix is taken to be portland cement with the elastic modulus of 14 GPa, Poisson’s ratio403

of 0.3 and a domain of 100 mm by 100 mm. The cement matrix is reinforced in a planar404

fashion using carbon microfibers. The elastic moduli, length and diameter of the microfibers405

are 207 GPa, 7 mm (± 1 mm) and 7 µm, respectively. Due to the high stiffness ratio between406

the reinforcement and matrix, we consider the deformation of the fibers to be rigid.407

A set of volume elements with specified weight fractions of up to 0.15% are generated and408

subjected to uniform uniaxial stress to determine the effective properties of the composite409

material as a function of fiber weight fraction. The microstructures are generated to ensure410

that no element within the mesh is crossed by more than a single fiber. Figure 12 shows an411

example of the random short fibers in a domain. At each of the 6 different weight fractions412

studied, 20 microstructures are generated to characterize the variability of the effective modulus413

as a function of the fiber distribution properties. The variability of the effective modulus is414

due to two distinct factors: (a) the natural variability due to the random positioning of the415

fibers within the matrix in each realization; and (b) the effect of overall volume element size416

(i.e., statistical representativeness of the volume element). The effect of the second factor417
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is minimized by choosing large enough representative volumes. This size of the volumes are418

determined as the smallest matrix volume beyond which the modulus variability does not419

significantly change. For a given weight fraction, preliminary simulations using different volume420

sizes were conducted. The modulus variability was found to be higher when the volume size is421

smaller. Beyond a threshold size, the variability of the modulus stabilizes. Similar simulations422

conducted at varying weight fractions showed that the threshold size for large weight fractions423

is bigger compared to small weight fractions. The representative volume size is therefore larger424

at higher fiber weight fractions.425

Figure 13 illustrates the XFEM response of the random short fiber composite compared to426

the direct finite element method simulations performed with the commercial software package,427

Abaqus. The Young’s Modulus of the random short fiber composite is plotted as a ratio with428

the initial Young’s Modulus. At each weight fraction, 20 randomly generated microstructures429

are simulated using both the XFEM and the reference models. The results of the XFEM and430

the reference simulations are plotted including the mean value and standard deviation for each431

method. The elastic modulus tended to initially increase almost linearly and then started to432

level out with the increase of weight fraction. The XFEM results had variation due to the433

randomness of the fibers in the domain but were within 2% of the mean Abaqus results, which434

was slightly below the mean of the XFEM results for each weight fraction.435

Conclusions436

The formulation and implementation of an Extended Finite Element Method (XFEM) for437

random short fiber reinforced composite materials was proposed. A new enrichment function438

was used to incorporate the effect of random fiber inclusions within the XFEM framework and439

eliminated the need of using finite element meshes compliant with fiber inclusions. The motion440

of the fiber inclusions were modeled by constraining the deformation field along the domain of441

the fiber inclusions. Numerical integration procedures were provided for accurate evaluation442

of the system response for fiber tips that lay on arbitrary positions within the problem domain443

and for the rigid constraint of the fibers. The coupling of the XFEM method along with the444

new enrichment function and constraint equations formulated the elastic response of short fiber445

reinforced composites. The numerical examples verified the performance characteristics of the446

proposed model against the direct finite element method. The proposed approach accurately447
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characterizes the elastic response of short fiber reinforced composites without the need for448

mesh compliance.449

Several important advancements to the proposed model are under development. First, this450

manuscript provided the implementation details for 2-D problems only. While the proposed451

formulation can be extended to three-dimensions without conceptual difficulty, significant chal-452

lenges are present in the computational implementation of the method in 3-D. Second is the453

incorporation of the failure processes present within the material. One key future development454

will be modeling the debonding process along the fiber-matrix interfaces. While cohesive zone455

models have been effective in numerical modeling of the debonding process along interfaces456

between distinct solid subdomains resolved with finite elements, incorporating the debonding457

process within the XFEM method and on sets of measure zero (i.e., fibers modeled as line ele-458

ments within a volume) remains an open research question. Our near term research efforts will459

therefore focus on extending the proposed modeling approach to 3-D and account for failure460

processes.461
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Moës, N., Cloirec, M., Cartraud, P., and Remacle, J.-F. (2003). A computational approach to504

handle complex microstructure geometries. Comput. Methods Appl. Mech. Engrg., 192:3163–505

3177.506
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Location Point A Point B

h/l 0.05 0.025 0.0125 0.05 0.025 0.0125

Tips at nodes 0.219% 0.085% 0.018% 0.079% 0.058% 0.015%

Tips at edges 1.099% 0.096% 0.140% 0.563% 0.165% 0.089%

Tips in element 1.459% 0.972% 0.358% 0.417% 0.463% 0.162%

Location Point C Point D

h/l 0.05 0.025 0.0125 0.05 0.025 0.0125

Tips at nodes 0.095% 0.090% 0.025% 0.034% 0.032% 0.009%

Tips at edges 0.011% 0.006% 0.002% 0.010% 0.018% 0.012%

Tips in element 0.447% 0.172% 0.029% 0.592% 0.164% 0.140%

Table 1: Point wise absolute error comparison.
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Figure 1: (a) Short fiber reinforced composite (from Ravichandran et al. (2012)); (b) domain
of the short fiber reinforced composite; (c) short fiber kinematics.
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Figure 2: Level set functions of the enrichment.
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Figure 3: Short fiber inclusion enrichment function: (a) three dimensional view; (b) planar view
(fiber is illustrated by the white line).
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Figure 4: The nodal enrichments computed for a 2-D quadrilateral element. The fiber tip is
within the element domain.
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fully enriched fiber tip
elements

partial enriched elements

Figure 5: The decomposition of the problem domain into subdomains of far-field elements
approximated by standard basis, partially and fully enriched elements.
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Figure 6: The schematic illustration of Delaunay triangulation and integration of fully enriched
elements based on fiber tip positioning.
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Figure 7: The geometry and boundary conditions of the single inclusion problem.
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Figure 8: Error as a function of normalized mesh density when fiber tips are at mesh nodes.
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Figure 9: Error as a function of normalized mesh density when fiber tips in elements.
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Figure 10: Error as a function of normalized mesh density when fiber tips are on element edges.
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Figure 11: Error as a function of tip location across domain.
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Figure 12: Random short fiber domain.
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Figure 13: Elastic modulus ratio of random short fibers.
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