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Abstract 

The stacking-fault and interfacial energies of three transformation- and twinning-induced 

plasticity steels (TRIP/TWIP) (Fe-22/25/28Mn-3Al-3Si wt.%) were determined by experimental 

and theoretical methods. Analysis of Shockley partial-dislocation configurations in the three 

alloys using weak-beam dark-field transmission electron microscopy yielded stacking-fault 

energy (SFE) values of 15 ±3, 21 ±3 and 39 ±5 mJ m-2 for alloys with 22, 25 and 28 wt.% Mn, 

respectively. The experimental SFE includes a coherency strain energy of ~1-4 mJ m-2, 

determined with x-ray diffraction, which arises from the contraction in molar volume of the 

stacking-fault upon the face-centered cubic (FCC) to hexagonal close-packed (HCP) phase 

transformation. The ideal SFE, computed as the difference between the experimental SFE and 

the coherency strain energy, is equal to14±3, 19±3 and 35±5 mJ m-2, respectively. These SFE 

values were used in conjunction with a thermodynamic model developed in the present work to 

calculate the free energy difference of the FCC and HCP phases and determine a probable range 

for the FCC/HCP interfacial energy in the three Fe-Mn-(Al-Si) steels investigated. In addition, 

the interfacial energies of three Fe-18Mn-0.6C-0/1.5(Al/Si) TWIP and five Fe-
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16/18/20/22/25Mn binary alloys were also determined from experimental data in the literature. 

The interfacial energy in these materials ranged from ~8-33 mJ m-2 and is strongly linked to the 

difference in Gibbs energy of the individual FCC and HCP phases. Accordingly, an empirical 

description of this parameter is proposed to improve the accuracy of thermodynamic SFE 

calculations.    

1. Introduction 

High-manganese austenitic transformation- and twinning-induced plasticity 

(TRIP/TWIP) steels are a superior class of materials that exhibit excellent strain-hardening, 

strength, ductility and toughness [1-8]. This combination of mechanical properties is attractive 

for automotive applications requiring high room-temperature formability and weight reduction. 

These alloys typically include ~18-30 wt.% Mn and additions of Al, Si, Cr, C and N with 

microstructures of meta-stable or stable austenite [9-12]. During deformation, the austenite 

deforms by dislocation glide together with secondary deformation mechanisms including 

αbcc/εhcp-martensite formation and/or mechanical twinning [13]. The martensite platelets and 

mechanical twins act as planar obstacles and reduce the mean free path of dislocation glide. As 

deformation progresses these strain-induced features increasingly refine the grain structure 

causing a dynamic Hall-Petch effect [5,14-22]. The result is high-strain hardening, delayed 

necking and large uniform elongations [1].  

The low stacking-fault energy (SFE) of these steels allows for these secondary 

deformation mechanisms (TRIP/TWIP effect). With decreasing SFE, the plasticity mechanisms 

change from (i) dislocation glide to (ii) dislocation glide and mechanical twinning to (iii) 

dislocation glide and γfcc→εhcp martensitic transformations [3, 23-27]. Each deformation mode 
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results in different mechanical properties. Consequently, designing TRIP/TWIP alloys requires a 

reliable method of predicting SFE. 

Many authors correlate microstructural observations of deformation mechanisms and 

mechanical properties with thermodynamic calculations of the SFE. The method proposed by 

Olson and Cohen [28], and adapted by several other authors [3,12,24,26], treats the fault as n 

layers of hexagonal close-packed (HCP) phase separated from the face-centered cubic (FCC) 

matrix by two interfaces. The SFE can be calculated as:  

𝛾! = 𝑛𝜌 ∆𝐺!!!"
!""→!!"+∆𝐺!"#

!""→!!" + 2𝜎
!
!                                                 (1) 

where γ∞ is the ideal SFE (mJ m-2) of the fault (un-bounded by partial dislocations), n is equal to 

2 for an intrinsic stacking-fault, ∆𝐺!!!"
!""→!!"  and ∆𝐺!"#

!""→!!" (mJ mol-1) are the chemical and 

magnetic contributions to the difference in Gibbs free energy of the FCC and HCP phases. The 

term ∆𝐺!"#
!""→!!" arises from antiferromagnetic ordering. With decreasing temperature both the 

FCC and HCP phases in Fe-Mn based alloys undergo a paramagnetic to antiferromagnetic state 

change at their respective Néel temperatures [3,4,12,18,24-26]. Antiferromagnetic ordering has a 

stabilizing influence and lowers the Gibbs free energy of the individual phases. The term σγ/ε (mJ 

m-2) is the interfacial energy between the FCC and HCP phase and ρ is the molar surface density 

(mol m-2) of {111}, defined in Equation (2): 

𝜌 = !
!!!""

!
!
!!

                                                                              (2) 

The term NA is Avogadro’s number and aFCC is the lattice parameter of the FCC phase. Allain et 

al.[24] studied an Fe-22Mn-0.6C wt.% steel and concluded that εhcp-martensite formation occurs 

for calculated SFEs below 18 mJ m-2 while mechanical twinning is active from 12 to 35 mJ m-2. 

Thermodynamic SFE calculations by Saeed-Akbari et al. [26] indicate an upper limit of 20 mJ m-
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2 for strain-induced εhcp-martensite transformation. Nakano and Jacques [29] calculated SFE 

values for the Fe-Mn and Fe-Mn-C systems and correlated these with microstructural 

observations from other investigators, finding strain-induced εhcp-martensitic to occur at SFEs as 

high as 41 mJ m-2. The lack of agreement between SFE value and deformation mechanism in the 

literature results from different thermodynamic parameters and interfacial energies, with σγ/ε 

varying from 9 mJ m-2 (Allain et al.[24]) to 16 mJ m-2 (Nakano and Jacques [29]). Saeed-Akbari 

et al. [26] utilized a value of 15 mJ m-2 but acknowledged the uncertainty of this parameter in Fe-

Mn based alloys, citing literature values that ranged from 5 to 27 mJ m-2.  

The uncertainty of the interfacial parameter in Fe-Mn based systems limits the 

effectiveness of thermodynamic SFE models. Olson and Cohen [28] proposed to indirectly 

calculate σγ/ε using experimental SFE values, γexp. The term γexp includes a coherency strain 

energy, Estr (J/mol), arising from the contraction in molar volume of the HCP stacking fault 

relative to the FCC matrix (note: the same coherency strain energy is not accounted for in 

thermodynamic SFE values). The strain energy must be subtracted from the experimental SFE 

value as in Equation (3):  

𝛾! = 𝛾!"# − 𝑛𝜌𝐸!"#                                                            (3) 

to yield γ∞. Combining Equations (1) and (3) gives: 

𝜎
!
! = !

! 𝛾!"# − 𝑛𝜌 𝐸!"# + ∆𝐺!!!"
!""→!!" + ∆𝐺!"#

!""→!!"                  (4) 

Cotes et al. [30] used experimental SFE values from measurements of extended dislocation 

nodes [31,32] to determine room temperature values of σγ/ε ranging from 16 to 26 mJ m-2, for 

binary Fe-Mn alloys. However, by comparison to SFE measurements from Shockley partial-

dislocation pairs, measurements from extended dislocation nodes are usually higher and result in 

greater uncertainty [33,34]. Heat treatments were typically required to form symmetrical nodes 
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in Fe-Cr-Ni specimens [33]. In that study, the authors found the room temperature node size to 

vary inversely with prior heat treatment temperature, suggesting the nodes were inhibited from 

returning to equilibrium configuration after heating. Since the effect was not observed on the 

separation of partial-dislocation pairs, the authors suggested nodes were more susceptible to 

solute impedance forces which resulted in higher apparent SFE measurements. However, the 

general trend in SFE values for different grades of austenitic stainless steel was similar for each 

method of measurement. In a study by the present authors [34], the formation of nodes in Fe-Mn-

Al-Si steels required heat treatments in excess of 650°C and then only resulted in non-isolated 

and mostly asymmetrical nodes unsuitable for measurement. Therefore, the SFE values reported 

for binary Fe-Mn alloys [31,32] may overestimate the true values. Consequently, the interfacial 

energy determined from these SFE values may also be systematically overestimated. 

 Stacking-fault energy measurements on TRIP/TWIP steels by analysis of partial-

dislocation pairs using weak-beam dark-field (WBDF) transmission electron microscopy (TEM) 

have been reported for Fe-20Mn-1.2C (𝛾!"#=15 mJ m-2) [35], Fe-18Mn-0.6C (𝛾!"#=13 ±3 mJ m-

2) [10], Fe-18Mn-0.6C-1.5Al (𝛾!"#=30 ±10 mJ m-2) [10] and Fe-25Mn-3Al-3Si grades 

(𝛾!"#=16±4 mJ m-2) [34]. The following concerns arise from evaluating these studies. 

Equilibrium partial-dislocation separations are a balance between the restorative force due to the 

SFE and the repulsive elastic force of the partial dislocations [36]. Determination of the elastic 

repulsive force acting on dislocations in anisotropic materials requires the single-crystal elastic 

constants. The experimental studies rely on bulk elastic properties [10], single-crystal elastic 

constants from other grades of steel [35] and single-crystal elastic constants from ab-initio 

simulation [34,37-39]. Recent work by the present authors [40] provides experimental values of 

single-crystal elastic constants for Fe-Mn-Al-Si and Fe-Mn-C-Al steels necessary for SFE 
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measurements. As such, the previously reported SFE value of 16±4 mJ m-2 for an Fe-25Mn-3Al-

3Si alloy [34] will be updated in the present work by utilizing the more accurate experimental 

elastic constants. Secondly, in the study on the Fe-18Mn-0.6C-0/1.5Al grades [10], a distinction 

between the separation of two partial-dislocation images and separation of the cores is not made, 

which can impact SFE values for small partial-dislocation separations (see sections 3.1 and 4.1). 

Finally, the effect of Mn content on the SFE cannot be understood from the three studies given 

the large differences in composition. 

 The goals of the present study are to:  

1. Quantify the influence of Mn content on SFE by applying the elastic constants 

determined in [40] to Shockley partial-dislocation widths for three Fe-22/25/28Mn-3Al-

3Si wt.% alloys. 

2. Experimentally determine Estr and γ∞ for the three Fe-22/25/28Mn-3Al-3Si alloys. 

3. Calculate σγ/ε for the three Fe-22/25/28Mn-3Al-3Si alloys and other Fe-Mn based alloys 

for which experimental SFE data exists in the literature.  

 In a subsequent paper the observed deformation microstructures and mechanical properties 

will be reported as a function of Mn content and SFE. 

2. Materials 

  Three alloys were induction melted in an argon atmosphere and cast into ingots. The  

compositions are listed in Table 1. As-cast ingots were thermo-mechanically processed by hot 

rolling at 1100ºC to produce strips of 3 mm thickness and subsequently by cold rolling to 1.5 

mm thickness. The resulting sheet was recrystallized at 900oC for 30 min in air, yielding a 

microstructure with equiaxed grains of ~21 µm in diameter for each composition. Oxide layers 

formed during this treatment were removed by machining. The steels with 25 and 28%Mn were 



7 
 

fully austenitic, while the alloy with 22%Mn contained a small amount of ferrite (<1%) in the 

recrystallized condition.  Sub-sized flat tensile specimens with a 20 mm gauge length and 5 mm 

width were cut from the sheet in the direction parallel to the rolling direction using electro-

discharge machining (EDM). 

3. Experimental Procedure 

  Specimens of the 22 25 and 28%Mn alloys were strained in tension at a rate of 4 x 10-4 s-1 

to the yield point (YP) and 1.5% plastic strain for SFE measurements by TEM.  Thermal 

treatments of 650-700°C for 48-70 h were applied to samples strained 1.5% to produce 

equilibrium dislocation configurations. Additional samples of the 22, 25 and 28%Mn alloys were 

strained to failure at room temperature, -25 and -100°C, respectively, in order to introduce strain-

induced εhcp-martensite for measurement of lattice parameters. The 25 and 28%Mn alloys were 

deformed at lower temperatures where enough driving force exists to transform sufficient 

quantities of austenite to εhcp-martensite. Lattice parameters of the FCC and HCP phases were 

measured by X-ray diffraction (XRD) at room temperature from as-recrystallized (for FCC) and 

deformed specimens (for HCP). 

3.1 Stacking Fault Energy Measurements 

  Disks 3 mm in diameter were cut from the gauge length of deformed samples using 

EDM. The 3-mm disks were mechanically polished to 100 µm thickness and then jet electro-

polished to electron transparency with a TenuPol-5 using a solution of 70% methanol and 30% 

nitric acid at -30°C. Partial dislocations were analyzed with a Philips CM20T TEM operating at 

200 kV. 

  Measurements of Shockley partial-dislocation separations were made with a beam 

direction near the [111] zone on defects in the (111) habit plane using <-220> type g-vectors. 
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Bright-field (BF) and WBDF imaging modes were employed with WBDF diffracting conditions 

set at g(3g) or g(4g) with no non-systematic reflections excited. The g(3g) configuration results 

in a deviation parameter sg=0.15 nm-1 and w= ξgsg=12.4 where ξg is the extinction distance. The 

value of sg in the g(3g) configuration is slightly less than the recommended value of 0.2 nm-1 [41] 

and results in slightly larger than ideal image widths. For partial-dislocation separations below 

~4 nm, as in the 28%Mn alloy, the g(4g) configuration (sg=0.23 nm-1, w= ξgsg=18.5) was utilized 

to improve resolution of the partial dislocations. Measurements were made every 5-10 nm along 

the length of long, straight sections of isolated dislocations in areas not significantly affected by 

image forces and constrictions. Since the strain fields outside and between partial dislocations 

are asymmetrical, the intensity peaks are not equidistant from their respective dislocation cores 

and a correction is applied to determine the actual partial-dislocation spacing, dactual [42]. An 

average dactual and standard deviation of the measurements were obtained for each partial-

dislocation pair. Inside-outside contrast techniques (reversing the g-vector) were applied to 

differentiate partial dislocations from dipoles. The total dislocation character angle, β, was 

determined from Burgers vector analysis on the partial dislocations in WBDF imaging mode. For 

Shockley partial dislocations in the [111]/(111) zone/habit plane configuration, |g●bp| (where bp 

is the partial dislocation Burgers vector) values are 1 or 0 and |g●bp| = 1 for both partials at only 

one g-vector. When the latter condition is achieved the total Burgers vector is parallel to the g-

vector and the angle it makes with dislocation line vector is the total dislocation character angle. 

The habit plane was confirmed by stereographic analysis from BF images of the dislocation 

taken at three different locations. 

 
3.2 X-Ray Diffraction 
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  Measurements of lattice parameters utilized a Bruker AXS D8 diffractometer equipped 

with a Co X-ray tube, Goebel mirror optics and a LynxEye Linear Position Sensitive Detector for 

ultra-fast XRD measurements.  A current of 30 mA and a voltage of 40 kV were employed as 

tube settings.  Operational conditions were selected to obtain XRD profiles of sufficient quality: 

namely, optimal counting statistics, narrow peaks and detection of small diffraction peaks of 

minor phases.  The XRD data were collected over a 2θ range of 30 -120º with a step size of 

0.02º.  

  For the application of the Rietveld refinement, instrument functions were empirically 

parameterised from the profile shape analysis measured under the same conditions for an AISI 

Type 316 stainless steel standard prepared by hot isostatic pressing.  In this study, version 4.2 of 

the Rietveld analysis program TOPAS (Bruker AXS) was used for the XRD data refinement. 

The refinement protocol included the background, zero displacement, scale factors, peak width, 

unit cell parameters and texture parameters.  The room-temperature structures used in the 

refinement were ferrite, austenite and εhcp-iron.  The quality and reliability of the Rietveld 

analysis was quantified by the corresponding figures of merit:  the weighted summation of the 

residual of the least-squares fit, Rwp, the statistically expected least-squares fit, Rexp, the profile 

residual, Rp, and the goodness of fit (sometimes referred to as chi-squared), GoF.  Since GoF = 

Rwp / Rexp, a GoF = 1.0 means a perfect fitting.  

4. Results and Discussion 

4.1 Stacking-Fault Energy Measurements 

  Additions of Mn from 22 to 28 wt.% increase the SFE and reduce the partial-dislocation 

separations. Partial-dislocation core separations in the 22%Mn alloy ranged from 6 to 13 nm 

depending on character angle. Figure 1a displays a WBDF image of a partial-dislocation pair 
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with a character angle of 39° in a specimen deformed to the YP. The average actual partial-

dislocation core separation is 9.3 ±1.1 nm, in which the uncertainty is one standard deviation of 

all measurements along the length of the dislocation (note: measurements were taken every 5-10 

nm along the length of dislocations but most are removed from the Figures for clarity). The BF 

image in Figure 1b of the same dislocation illustrates the increased resolution of the WBDF 

technique. In Figure 1c, a dislocation pair in a 22%Mn specimen deformed to the YP with a 

smaller character angle of 26° exhibits an average core separation of 6.6 ±0.5 nm. Due to a low 

SFE, partial-dislocation separations in the 22%Mn alloy displayed greater variations and 

susceptibility to image forces, as evidenced by partial dislocations in specimens deformed to the 

YP in Figure 2. The width of the partials in Figure 2a fluctuates dramatically at the foil surfaces, 

where the partials are constricted at one intersection while showing a large separation distance at 

the other. In Figure 2b, a partial-dislocation pair in the (111) habit plane normal to the [111] 

beam, imaged with a -220 g-vector, is interacting with a stacking fault on (-111). The partial 

dislocations in (111) experience a contraction in their separation at the intersection with the 

partial dislocation on the inclined plane. In an image of the same defects with a 02-2 g-vector 

(Figure 2c), one of the partials on (111) and SF on (-111) become invisible (|g●bp| = 0). This 

study avoided partial dislocations such as those in Figure 2 for quantitative measurements.   

  The separation of partials in the 25%Mn alloy fell between 4 and 7 nm, with Figure 3 

showing a partial-dislocation pair with average actual spacing of 4.9 ±0.5 nm and a total 

character angle of 22°. The present authors reported additional measurements of dislocations 

from this alloy in [34].  

  Partial-dislocation separations in the 28%Mn alloy ranged from 2.6 to 4.3 nm. Imaging 

with g(4g) diffracting conditions decreased image-widths and reduced the discrepancy between 
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observed and actual partial-dislocation separations. In figure 4a, a partial-dislocation pair with 

kinks or jogs along its length and a character angle of 40° exhibits an average actual spacing of 

3.3 nm on uniform sections. In Figure 4b a partial-dislocation pair with a character angle of 15° 

displays an average actual spacing of 2.5 nm.  At small spacing the intensity of the partial-

dislocation image located between the partial-dislocation cores becomes significantly weaker due 

to fewer atomic planes oriented for scattering, as clearly shown in Figure 4b.  

  The character of stacking faults (intrinsic vs. extrinsic) in the present alloys, as 

determined by typical diffraction contrast methods (e.g., Williams and Carter [43] and Edington 

[44]), is intrinsic. Figures 5a, b and c display three dark-field TEM micrographs of stacking 

faults corresponding to the 22, 25 and 28%Mn alloys respectively. Of ~10 faults investigated for 

each alloy, all were intrinsic.  

  Figure 6 displays the average spacing of partial-dislocation pairs in the three alloys. 

Theoretical partial-dislocation spacing curves based on Equation (5), formulated by Aerts et al. 

[45], are fit to the experimental data to determine the SFE. The relationship is an excellent 

approximation of anisotropic theory, as shown by Teutonico [46], and avoids the significant 

complexity of pure anisotropic dislocation theory [47-49], in which solutions are available only 

for specific dislocation configurations. 

𝑑!"#$!% =
!!""!!!

!!!!"#

!!!!""
!!!!""

1− !!!""!"#!!
!!!!""

                          (5) 

The term bp is the ao/6<112> partial-dislocation Burgers vector, determined by XRD of 

recrystallized Fe-22/25/28Mn-3Al-3Si specimens to be 0.1476, 0.1477 and 0.1479 nm, 

respectively. The total dislocation character angle is β and effective shear modulus, µeff, for 

dislocations in {111} is a function of the single-crystal elastic stiffness constants C11, C12 and 

C44, and defined by equation (6):  
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𝜇!"" = 𝐶!!
!!!!!!"

!

!.!
                                                               (6) 

Equations (7) and (8) denote the relationship between the effective Poisson ratio, νeff, and the 

single-crystal elastic constants. 

!
!!!!""

= !
!!!""

(𝐶 + 𝐶!")
!!! !!!!"

!!! !!!!"!!!!!

!.!
1+ 2 !!!

!
                                  (7) 

                 𝐶 = !
!
𝐶!! 𝐶!! + 𝐶!" + 2𝐶!!

!.!
                                                     (8) 

For the 22, 25 and 28%Mn alloys, respectively, µeff=67±4, 66±4, 66±4 GPa and νeff=0.30, 0.31 

and 0.31. The terms µeff and νeff account for anisotropic elasticity in {111} and are calculated 

from equations (6-8) using single-crystal elastic constants determined by the present authors 

[40]. The experimental SFEs for the 22, 25 and 28%Mn alloys are 15±3, 21±3 and 40±5 mJ m-2, 

respectively. The large increase in SFE energy above 25 wt.% Mn is consistent with 

experimental observations that show are sharp reduction in the ε-martensite start temperature for 

additions of Mn above 25 wt.% in binary Fe-Mn alloys [29,30]. The uncertainty of the SFE is 

primarily due to the scatter of average dactual values between different dislocations (data points in 

Figure 6) and uncertainties of νeff and µeff. The first two sources of uncertainty are accounted for 

by fitting upper and lower bounds (SFE curves) that encompass the majority of the data points 

for a given composition as shown in Figure 6. The uncertainty from these two sources was 

determined to be ±20.0, ±14.3 and ±12.5% of the SFE for the 22, 25 and 28%Mn alloys, 

respectively. The uncertainty of µeff is ±6.03%. The final uncertainty of the SFE for the 22, 25 

and 28%Mn alloys was obtained from the root sum square of the two calculated values and is 

±20.9 (e.g., 20.0! + 6.03!
!
!), ±15.5 and ±13.9% or ±3, ±3 and ±5 mJ m-2 (rounded to one 

significant figure). Volosevich et al. [31] reported SFE values of ~15 and 27.5 mJ m-2 for Fe-

22/25Mn wt.% alloys, respectively, by TEM observation of extended nodes. These values likely 
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overestimate the SFE, since the combined effect of adding 3 wt.% Al and Si would raise the 

SFE, yet the SFE values of the Fe-22/25Mn-3Al-3Si steels are equal or less. If isotropic elasticity 

is applied to the measurements on the 22%Mn alloy, by replacing the effective elastic constants 

in Equation (5) with a polycrystalline shear modulus (72 GPa) and Poisson ratio (0.24) [40], the 

SFE is 16 ±4 mJ m-2 (dashed lines in Figure 6). The SFE determined with isotropic elastic 

constants overestimates the anisotropic value by ~7% and results in a poorer data fit, producing a 

larger uncertainty of ±4 mJ m-2. The overestimation of the SFE results from the use of the larger 

isotropic shear modulus and the poorer data fit stems from the large difference between the 

isotropic and effective values of the Poisson ratio. The elastic anisotropy ratio (2C44/(C11-C12)) of 

the present materials is ~2.2 [40].  For FCC materials, µeff and νeff will become increasingly 

smaller and larger, respectively, relative to the polycrystalline values, as the elastic anisotropy 

ratio increases [46]. 

In the above analysis, the partial dislocation cores are treated as purely elastic defects, i.e. 

as singular Volterra type dislocations with a core width of zero. However, the core width of 

dislocations may not be zero and, at small partial-dislocation separations, such as those observed 

in the 28%Mn alloy, core effects can influence SFE measurements as shown by Cockayne and 

Vitek [50]. The dislocation core thickness can influence the force acting between two partial 

dislocations and thus, their separation. The partial-dislocation separation obtained from a Peierls 

type core model, dPeierls, which accounts for core width, is related to the partial-dislocation 

separation of Equation (5), dactual, by Equation (9) [50]:   

𝑑!"#"$%& =
!
!
𝑑!"#$!% + 𝑑!"#$!%

! − 4ζ!                                             (9) 

In this model, as core width increases, the repulsive force acting between the two partial 

dislocations decreases. Since the core width, ζ, is unknown, a reasonable approximation is twice 
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the lattice parameter (0.724 nm), as employed by Cockayne and Vitek [50]. Applying this model 

to the partial-dislocation separation measurements of the 28%Mn alloy yields a SFE of 37.5 mJ 

m-2 as depicted in Figure 6 (dash-dot line), which is slightly smaller than 40 mJ m-2 obtained 

assuming  singular cores. The fit of Equation (9) to the partial dislocation separation 

measurements of the 28%Mn alloy becomes increasingly worse as the core thickness is increased 

above 0.724 nm. Therefore, the true value of the partial-dislocation core width for the 28%Mn 

alloy is likely between 0 and 0.724 nm. As such, the SFE of the 28%Mn alloy is taken as the 

average of the two SFE values, 38.8 ±5 mJ m-2. Since the partial-dislocation separations of the 

22 and 25%Mn alloys are substantially larger, assuming a core width of 0.724 nm in these alloys 

produced no significant change in the SFE. Cockayne and Vitek [50] also suggested that partial-

dislocation core widths greater than twice the lattice constant may lead to a less well defined 

image peak and an addition narrow image peak under certain circumstances [50]. No such 

features observed in the WBDF images for each alloy could be attributed to these effects giving 

further confidence that the partial dislocation core thickness is below 0.724 nm.  

4.2 Coherency Strain Energy Contribution 

 The FCC matrix and εhcp-martensite have the (111)γ||(0001)ε/[1-10]γ||[1-210]ε orientation 

relationship. However, the εhcp-martensite phase displays a slightly smaller molar volume than 

the austenite phase. Brooks et al. [51] showed the local close packed plane (CPP) spacing of 

single stacking faults contracts ~2% relative to the CPP spacing of the austenitic matrix in Fe–

Cr–Ni steels, and thus that stacking faults are εhcp-martensite embryos or nuclei. Marinelli et al. 

[52,53] observed decreases in the molar volume of the εhcp-martensite structure of ~2% relative 

to austenite in binary Fe-Mn alloys. The propensity to contract is resisted by the matrix (i.e., 

austenite phase), which results in the deformation of both austenite matrix and the martensite 
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phase. This coherency strain increases the energy of the stacking fault complex. It is desirable to 

remove the coherency strain-induced energy contribution from the SFE of experimental 

measurements so that comparison to theoretical SFE values is applicable. The molar volume of 

the FCC and HCP phases are defined in equations (10) and (11) as: 

𝑉!,!"" =
!!""
!

!
𝑁!                                                          (10) 

and         

   𝑉!,!"# =
!
!
𝑎!"#! 𝑐!"#𝑁!                                                     (11) 

, respectively, where aFCC, aHCP and cHCP are the lattice constants of the FCC and HCP phases. 

The volumetric strain (VS) due to volume change from FCC to HCP phase is defined as: 

𝑉𝑆 = !!,!"#!!!,!""
!!,!""

                                                        (12) 

The strain (ε33) corresponding to the contraction normal to the close packed planes of the HCP 

structure relative to the FCC matrix is defined as: 

𝜀!! = 𝑐!"# − 𝑐!"" 𝑐!""                                                   (13) 

The terms cFCC and cHCP are twice the CPP spacing in the FCC and HCP structures, respectively. 

The strain terms ε11 and ε22 correspond to the contraction along <1-210> relative to <1-10> 

(close packed directions) and <1-100> relative to <11-2>, respectively, and are calculated 

similarly to ε33 (Equation (13)) as a function of the lattice parameters. Several authors have 

investigated the energy contribution of the coherency strain, Estr, on SFE measurements (e.g., 

[28,30,54]). Olson and Cohen [28] considered the strain energy term to be the sum of a dilatation 

energy, Edil, and a shear energy, Esh:  

𝐸!"# = 𝐸!"# + 𝐸!!                                                         (14) 

where 
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                                  𝐸!"! =
!(!!!)
!(!!!)

𝜇𝑉!,!"" 𝑀𝑉𝑆 !                                             (15) 

and 

 𝐸!! = 𝜂𝑉!,!""2𝜇
!
!

𝜀!! − 𝜀!! ! + 𝜀!! − 𝜀!! ! + 𝜀!! − 𝜀!! ! +𝜀!"! +𝜀!"! + 𝜀!"!        (16) 

The terms ν and µ represent the austenite phase polycrystalline Poisson’s ratio and shear 

modulus, respectively [40]; and η is the accommodation factor further described below. 

Equations (15) and (16) are based on the work of Eshelby [55] for determining the strain energy 

of an inclusion which undergoes a shape change within an infinite matrix. The Olson and Cohen 

model does not consider the interaction energy between the contracted stacking fault and the 

partial dislocations. However, Müllner and Ferreira [54] modeled the strain field generated by 

two parallel partial dislocations and a contracted stacking-fault using Somigliana dislocations to 

compute the total energy including the interaction components. The interaction energy 

components involving the two Shockley partials were found to be small or vanishing compared 

to other components of the coherency strain energy. The Müllner and Ferreira model assumes 

that the coherency strain is volume preserving (i.e., VS=0), which contrasts with our 

experimental measurements. Therefore, the method of Olson and Cohen has been used to 

estimate the coherency strain energy in this study.  

The orientation of the principal strain axes ε11, ε22 and ε33 are assumed to remain 

unchanged by the transformation resulting in values of 0 for shear strains ε12, ε23 and ε13. The 

accommodation factor (η) is the ratio between the total energy per unit inclusion (i.e., martensite 

phase) volume embedded in the austenite phase to the energy per unit inclusion volume 

embedded in a hypothetical rigid matrix [28,55]. For pure dilatation η is constant regardless of 

particle shape and is built in to Equation (15). For shear strain, η may vary from 0 to 1 depending 
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on particle shape and the strain state [55]. Following [28,30], η for a spherical inclusion, which is 

independent of strain state, is employed: 

𝜂 = !!!!
!" !!!

                                                                (17) 

Table 2 provides the lattice parameters of the FCC and εhcp-martensite phases obtained 

from the Rietveld refinement of XRD patterns from recrystallized specimens (for FCC) and 

those displayed in Figure 7 from specimens deformed to failure (for HCP), with uncertainty 

representing equipment error.  The XRD patterns in Figures 7a, b and c are from the 22, 25 and 

28%Mn samples after deformation to failure at RT, -25°C and -100°C, respectively. The 

presence of strain-induced ε-martensite is confirmed for each condition, while the formation of 

strain-induced α-martensite is noted in the 22 and 25%Mn alloys.  

  A slight increase in the lattice parameters of the FCC phase with Mn content is observed 

while no trend in the HCP lattice parameters can be deduced over the current range of Mn.  

Utilizing the lattice parameters from Table 2 in conjunction with the method reported by Olson 

and Cohen [28] yields ε11, ε22, ε33, VS, Edil, Esh and 2ρEstr  as shown in Table 3. The uncertainties, 

calculated using a root sum square approach, are ~25% for ε11, ε22 and ε33 and ~43% for VS. The 

uncertainties are ~62 and 79% for Edil and Esh. The value of Esh is small compared to Edil for the 

Fe-22/25/28Mn-3Al-3Si alloys and consequently, the uncertainty of 2ρEstr is also ~62%. The 

values of VS ranged from -0.011 to -0.018 (-1.1 to -1.8%). Notwithstanding a substantial 

uncertainty in the calculation of the strain components, the experimental data suggests that 

contraction increases with Mn content. This is in line with the previous studies conducted on 

binary Fe-Mn steels [52,53]. The value of 𝐸!! + 𝐸!"#  calculated by Olson and Cohen is 41.9 

mJ mol-1 for an Fe-Cr-Ni steel and similar to the values calculated here (see Table 3). In 

addition, Müllner and Ferreira [54] calculated a value of 4.3 mJ m-2 for 2ρEstr for a type 316 



18 
 

austenitic steel which is similar to the values calculated in the present work of 1.4 ±0.87, 2.3±1.4 

and 3.6 ±2.2 mJ m-2 for the Fe-22/25/28Mn-3Al-3Si alloys, respectively.  

  Figure 9 shows the experimental effective (γexp) and ideal (γ∞) SFE values. The ideal 

values, γ∞, represent the experimental values less the term nρEstr. The dependence of γ∞ on Mn 

content for Fe-22-28Mn-3Al-3Si wt.% alloys is approximated by Equation (18): 

      𝛾! = 0.675𝑋! − 29.453𝑋 + 334.6   (mJ m-2)                                    (18) 

where X is the Mn content in wt.%. The second order polynomial approximation to the SFE 

displays a minimum at 21.8 wt.% and increases with further additions of Mn. Experimentally, 

Volosevich et al. [31] observed a similar SFE minimum at 22 wt.% Mn in binary Fe-Mn alloys, 

followed by a sharp increase in SFE with additions of Mn.   

4.3 Thermodynamic Modeling 

  To determine the interfacial energy from Equation 4, a new thermodynamic model was 

developed to calculate ∆𝐺!!!"
!""→!!"  and ∆𝐺!"#

!""→!!" for the present Fe-Mn-Al-Si-C system. 

Existing thermodynamic models [3,12,25,26,29] for Fe-Mn based steels were evaluated and 

deemed unsuitable for the present study for several reasons. The models of Saeed-Akbari et al. 

[26], Mosecker and Saeed-Akbari [12] and Nakano and Jacques [29] address the Fe-Mn-Al-C, 

Fe-Cr-Mn-N and Fe-Mn-C systems, respectively, but do not attempt to specifically address the 

influence of Si. The model of Dumay et al. [25] shows that additions of Si up to ~4 wt.% 

increase the SFE while further additions decrease the SFE of an Fe-22Mn-0.6C steel. The model 

of Curtze et al. [3] utilizes the same thermodynamic parameters for both pure Si and its 

interaction with Fe as that of Dumay et al. [25]. A thermodynamic model by Tian and Zhang 

[60] also predicts an increase in SFE for Fe-31Mn-xSi-0.77C (x=at.%) alloys for Si additions up 

to 10.2 at%. However, experimental studies on Fe-18Mn-0.6C-0/1.5Si [11] wt.% and Fe-31Mn-
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xSi-0.77C at.% [61] alloys report decreases in the SFE with additions of Si, contradicting the 

thermodynamic models. Also, the more recent thermodynamic models of Nakano and Jacques 

[29] and Mosecker and Saeed-Akbari [12] show that the treatment of interstitial elements like C 

is enhanced by the use of a sub-lattice type thermodynamic model. Finally, improved 

thermodynamic parameters for the Mn-C and Fe-Mn-C systems have recently been published by 

Djurovic et al [62,63].  For the new model, the FCC and HCP phases were treated as randomly 

mixed substitutional solutions with two sublattices: substitutional and interstitial [12, 29]: 

𝐹𝑒,𝑀𝑛,𝐴𝑙, 𝑆𝑖 ! 𝐶,𝑉𝑎 !                                                       (19) 

with λ equal to 1 for FCC and 0.5 for HCP, assuming that interstitial elements do not occupy 

neighboring octahedral sites in the HCP structure [29, 64]. The term “Va” stands for vacancy. 

The terms 𝐺!
!!" and 𝐺!

!"" are the molar Gibbs free energy of the individual phases, Φ (FCC or 

HCP) [12, 29]: 

𝐺!
! = 𝑦!"

! 𝑦!
! 𝐺!":!

! +! 𝑦!"
! 𝑦!"

! 𝐺!":!"
! +! 𝑦!"

! 𝑦!
! 𝐺!":!

! +! 𝑦!"
! 𝑦!"

! 𝐺!":!"
! +!  

𝑦!"
!(!!"

!""!!!"
!"#

!
) 𝐺!":!"

! + 𝑦!"
!(!!"

!""!!!"
!"#

!
) 𝐺!":!"

! +!! 𝑅𝑇
𝑦!"
! 𝑙𝑛𝑦!"

! + 𝑦!"
! 𝑙𝑛𝑦!"

! + 𝜆𝑦!
!𝑙𝑛𝑦!

! +
𝜆𝑦!"

! 𝑙𝑛𝑦!"
! + 𝑦!"

! 𝑙𝑛𝑦!"
! + 𝑦!"

!𝑙𝑛𝑦!"
! +

𝐺!
!!"                                                                                                                                              (20)                  

In Equation (20), R is the gas constant and T is the temperature in K. The site fractions of the 

individual elements, 𝑦!, in the substitutional lattice are calculated as: 

𝑦! =
!!

!!!!
                                                             (21) 

and for C in the interstitial lattice as: 

𝑦! =
!!

! !!!!
                                                             (22) 

where x is the mole fraction of each element. Equations (23) defines the correlation between the 

individual site fractions: 
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𝑦!"!𝑦!"!𝑦!"!𝑦!" = 𝑦!+𝑦!" = 1                                                  (23) 

The thermodynamic parameters 𝐺!:!"
!  and 𝐺!:!

!  in Equation (20) are listed in Table 4. They 

represent the Gibbs energy of substitutional element i in phase Φ when all available interstitial 

sites are vacant (Va) or occupied by C, respectively. The terms 𝐺!":!
!!  and 𝐺!":!

!!  were not 

included in Equation (20) due to a lack of data for the HCP phase. In addition, average vacancy 

site fractions, !!"
!"#!!!"

!""

!
, were used for Si and Al and resulted in significantly better agreement 

with experimental results for steels with Si and C. The combined term  ∆ 𝐺!":!"!"#→!""!  replaces 

𝐺!":!"!"#! , 𝐺!":!"!""!  and 𝑅𝑇𝑦!"
!𝑙𝑛𝑦!"

! in the calculation of ∆𝐺!!!"
!""→!!". The excess free energy is 

described as [29]: 

𝐺!
!!" = 𝑦!"

! 𝑦!"
! 𝑦!

!𝐿!",!":!
! + 𝑦!"

! 𝑦!"
! 𝑦!"

! 𝐿!",!":!"
! + 𝑦!"

! 𝑦!
!𝑦!"

! 𝐿!":!,!"
! + 𝑦!"

! 𝑦!
!𝑦!"
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! +
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!"#
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)𝐿!",!":!"
!                                                                                                         (24) 

where 𝐿!,!:!,!"
!  is the interaction parameter for the elements in phase Φ, listed in Table 4. 

Parameters describing the interaction of Al and Si with C were not available for the HCP phase. 

Average vacancy site fractions were used for 𝐿!",!":!"
! ,  𝐿!",!":!"

! ,  𝐿!",!":!"
!  and 𝐿!",!":!"

!  to 

improve agreement with experimental SFE measurements of steels with interstitial C. For 

aluminium, the combined term  ∆𝐿!",!":!"!"#→!""  replaces 𝐿!",!":!"
!  in Equation (24) for the calculation 

of ∆𝐺!!!"
!""→!!".  

  The magnetic contribution to the Gibbs energy of a phase is described by Hillert and Jarls 

[74] modification to the model proposed by Inden [75]: 

𝐺!"#
! = 𝑅𝑇𝑙𝑛 𝛽! + 1 𝑓! 𝜏!           (25) 
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The term βФ is the magnetic moment of phase Ф divided by the Bohr magneton µb and given by 

Equations (26) and (27) [25]. 

𝛽!"" = 0.7𝑥!" + 0.62𝑥!" − 0.64𝑥!"𝑥!" − 4𝑥!                                     (26) 

𝛽!"# = 0.62𝑥!" − 4𝑥!                                               (27) 

The term 𝑓! 𝜏!  is a function of the scaled Néel temperature 𝜏! = 𝑇/𝑇!""#
! , found elsewhere in 

the literature [3,26,65,74,75]. The Néel temperature for the FCC phase of Fe-Mn-Al-Si steels is 

described by King and Peters [58] as: 

𝑇!""#!"" = 199.5+ 6.0𝑋!" − 10.4𝑋!" − 13𝑋!"        (K)                                   (28) 

where X is the wt.% of the individual elements and for the HCP phase as [59]: 

𝑇!""#!"# = 580𝑥!"       (K)            (29) 

In Equation (29), xMn is the molar fraction of Mn. If the lattice parameters of the materials are 

unknown, they may be estimated as a function of composition and temperature from equations 

listed in reference [26].  

  At room temperature (25°C), the model predicts (∆𝐺!!!"
!""→!!" + ∆𝐺!"#

!""→!!") to be -88 J 

mol-1 for the alloy with 22%Mn. This is a reasonable value considering thermal εhcp-martensite is 

not present yet mechanical εhcp-martensite forms upon deformation. Thermal εhcp-martensite 

typically occurs when (∆𝐺!!!"
!""→!!" + ∆𝐺!"#

!""→!!") < −100 J mol-1 [25] while mechanical εhcp-

martensite is generally observed in Fe-Mn based alloys where (∆𝐺!!!"
!""→!!" + ∆𝐺!"#

!""→!!") is 

negative [12]. Thermal εhcp-martensite forms in a similar alloy (Fe-20Mn-3Al-3Si wt.%) with 

slightly less Mn content [23]. At 25%Mn, the term (∆𝐺!!!"
!""→!!" + ∆𝐺!"#

!""→!!") is positive and 

equal to 31 J mol-1 and the dominant secondary deformation mechanism is mechanical twinning 

[23]. These results are consistent with previous observations that Fe-Mn based alloys with 
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negative or positive values of (∆𝐺!!!"
!""→!!" + ∆𝐺!"#

!""→!!") tend to exhibit strain-induced εhcp-

martensite or mechanical twinning, respectively [12].  

 Figure 8 displays the trends in 2𝜌∆𝐺!!!"
!""→!!", 2𝜌∆𝐺!"#

!""→!!" and σ!/! as a function of Mn 

content. The chemical contribution, 2𝜌∆𝐺!!!"
!""→!!", increases with increasing Mn content from 22 

to 28 wt.%, exhibiting a slight concave up trend due to the stabilizing effect that Mn has on the 

FCC phase relative to the HCP. For the compositions analyzed, the increase in 2𝜌∆𝐺!!!"
!""→!!" is 

~3 mJ m-2 per wt.% Mn, agreeing well with the experimentally observed SFE between 22 and 25 

wt.% Mn. The calculation of 2𝜌∆𝐺!!!"
!""→!!" was also performed using the thermodynamic 

parameter 𝐿!",!":!"!"#  proposed by Djurovic at al. [63] (dashed line in Figure 8). However, the 

calculated value of 2𝜌∆𝐺!!!"
!""→!!" using the 𝐿!",!":!"!"#  proposed by Nakano and Jacques [29] 

more closely agreed with the present experimental SFE measurements. 

  The HCP phase in each alloy is in the paramagnetic state at RT (the Néel temperatures 

are 123, 137 and 153K for the 22, 25 and 28% Mn alloys, respectively, based on Equation (29). 

Consequently, the influence of antiferromagnetic ordering on the HCP phase is insignificant at 

RT and 𝐺!"#!"# ≈ 0 J mol-1 for the three alloys. The FCC phase of the alloys with 22 and 25% Mn 

are paramagnetic at RT (Néel temperatures are 267 and 282K, respectively) while the FCC phase 

of the 28%Mn has a Néel temperature of ~298K based on Equation (28). The calculated values 

of 𝐺!"#!""  are -26, -34 and -45 J mol-1 for the 22, 25 and 28%Mn alloys, respectively. Therefore, 

2𝜌∆𝐺!"#
!""→!!" is small and increases from 1.5 to 2.6 mJ m-2 with increasing Mn content (see 

Figure 8). For the present range of Mn content, the term (2𝜌∆𝐺!!!"
!""→!!" + 2𝜌∆𝐺!"#

!""→!!") 

increases by 3.2 mJ m-2 per wt.% Mn, a slight increase compared to the rise due only to the 

chemical contribution. As Fe-Mn based alloys are cooled below 𝑇!""#!"" , the influence of 
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antiferromagnetic ordering on properties such as electrical resistance and stiffness are gradual 

[57,58,76]. Accordingly, increasing 𝑇!""#!""  through room temperature by additions of Mn should 

produce only a gradual stabilization of the FCC phase due to magnetic ordering as the model 

currently predicts. However, ∆𝐺!"#
!""→!!" becomes large for alloys that are cooled significantly 

below 𝑇!""#!""  [3] and partially counteracts the reduction in ∆𝐺!!!"
!""→!!" with cooling. This explains 

why low deformation temperatures (-25 and -100°C) are required to form sufficient quantities of 

εhcp-martensite in the 25 and 28%Mn alloys. The sensitivity of the SFE to temperature becomes 

less below 𝑇!""#!""  [29] due to the competing nature of ∆𝐺!!!"
!""→!!" and ∆𝐺!"#

!""→!!". The Néel 

transition of most high-Mn TWIP and TRIP steels (especially those with Al and Si additions) is 

slightly below room temperature [57], save for the Fe-22Mn-0.6C wt.% grade [4]. Interestingly, 

stabilization of the FCC phase due to antiferromagnetic effects still occurs, owing to the gradual 

nature of this transition [4,57,58,76].  

4.4 Interfacial Energy Calculation and Behavior 

  In each alloy the interfacial energy is the major component of the SFE. The term σγ/ε is 

9.2 ±1.6, 8.6 ±1.7 and 11.8 ±2.7 mJ m-2 for the Fe-22/25/28Mn-3Al-3Si alloys, respectively, 

from Equation (4). The uncertainty of σγ/ε is obtained from the root sum square of the 

uncertainties of 𝛾!"# and 2𝜌𝐸!"# then dividing this quantity by two. Using the same 

methodology, interfacial energy values were calculated for binary Fe-16/18/20/25Mn, Fe-18Mn-

0.6-0/1.5Al and Fe-18Mn-0.6C-0/1.5Si alloys from existing data in the literature. The calculation 

of σγ/ε used values of 𝛾!"# reported by Volosevich et al. [31] (Fe-16/18/20/25Mn), Kim et al. [10] 

(Fe-18Mn-0.6-0/1.5Al) and Jeong et al. [11] (Fe-18Mn-0.6C-0/1.5Si). Values of 𝐸!"# were 

calculated using lattice parameters in references [52] and [53] and the procedure outlined in 

section 4.2. Lattice parameters of the FCC and HCP phase of the Fe-18Mn-0.6C-0/1.5(Al/Si) 
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alloys were assumed to be equal to the binary Fe-18Mn alloy for the purpose of calculating 𝐸!"#.  

The shear modulus and Poisson ratio used in the calculation of 𝐸!"# are provided in Table 3.  The 

values of  2𝜌(∆𝐺!!!"
!""→!!" + ∆𝐺!"#

!""→!!") were determined with the thermodynamic model 

developed in section 4.3. A summary of some of the parameters used in the calculation of σγ/ε are 

listed in Table 3. The interfacial energies of the Fe-18Mn-0.6C-0/1.5(Al/Si) range from 8.6 to 

11.5 mJ m-2 and are consistent with a range of 8.6 to 11.8 mJ m-2  for the Fe-22/25/28Mn-3Al-

3Si alloys. Interstitial C segregation may influence the experimental SFE measurements but is 

not accounted for in ∆𝐺!!!"
!""→!!" and ∆𝐺!"#

!""→!!" (due to the assumption of homogenous 

compositions). Therefore, Mosecker and Saeed-Akbari [12] proposed that the effects of 

interstitial segregation on γexp would be accounted for in the calculation of σγ/ε. However, no 

substantial differences in the calculated values of σγ/ε are observed between the Fe-22/25/28Mn-

3Al-3Si and Fe-18Mn-0.6C-0/1.5(Al/Si) alloys, suggesting the influence of segregation on the 

SFE measurements is minor. The calculated interfacial energies of the binary Fe-

16/18/20//22/25Mn wt.% alloys range from 15.7 to 32.5 mJ m-2 and are higher than for the other 

alloys. A comparison of the interfacial energies of Fe-22/25Mn and Fe-22/25Mn-3Al-3Si 

indicates an offset of ~3 mJ m-2. One explanation for the offset is that values of 𝛾!"# [31] used in 

the interfacial calculation are higher than the actual values (as previously discussed) and 

therefore result in an overestimate of the interfacial energies for the binary Fe-Mn alloys. 

However, the trend in 𝛾!"# vs. Mn reported by Volosevich at al. [31] is similar to other works 

[26,76] and provides confidence that the general trend in σγ/ε  (which is calculated from 𝛾!"#) 

with changes in Mn content reflects the actual behavior.     
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  In Figure 9, the values of σγ/ε are plotted as a function of 2𝜌(∆𝐺!!!"
!""→!!" + ∆𝐺!"#

!""→!!") 

for all alloys. The dependence of σγ/ε on 2𝜌(∆𝐺!!!"
!""→!!" + ∆𝐺!"#

!""→!!") is consistent with 

parabolic behavior. In general, as 2𝜌(∆𝐺!!!"
!""→!!" + ∆𝐺!"#

!""→!!")  increases, the term σγ/ε also 

increases, indicating the interfacial energy is strongly related to ∆𝐺!!!"
!""→!!" + ∆𝐺!"#

!""→!!" . 

Conversely, as ∆𝐺!!!"
!""→!!" + ∆𝐺!"#

!""→!!"  approaches 0, where both FCC and HCP phases are 

equally favored, the resulting energy increase at the interface should be near a minimum, as is 

observed. Therefore, σγ/ε can be approximated as a parabolic function of 2𝜌(∆𝐺!!!"
!""→!!" +

∆𝐺!"#
!""→!!") with a minimum at 𝜎!"#

!
! : 

σ
!
!   = 𝑐(2𝜌(∆𝐺!!!"

!""→!!" + ∆𝐺!"#
!""→!!"))! + 𝜎!"#

!
!      (mJ m-2)                         (29) 

where c is a constant determined from fitting to experimental values. The term 𝜎!"#
!
!  is 9.5 mJ m-

2 and results from the minimum fit for the Fe-22/25/28Mn-3Al-3Si and Fe-18Mn-0.6C-

0/1.5(Al/Si) alloys. The constant “c” of 0.01 was determined by fitting a curve (dotted line in 

Figure 9) to the trend in σγ/ε as a function of 2𝜌(∆𝐺!!!"
!""→!!" + ∆𝐺!"#

!""→!!") for the Fe-Mn-Al-Si, 

Fe-Mn-Al-C and Fe-Mn alloys.  

  Non-monotonic behavior of σγ/ε as a function of composition has been reported by other 

authors. Cotes et al. [30] showed that σγ/ε varies as a function of Mn content for binary Fe-Mn 

alloys and can be approximated as an upward opening parabolic curve, with a minimum σγ/ε 

occurring between 20 and 25 wt.% Mn. Mosecker et al. [12] reported a similar behavior for the 

Fe-Mn-Cr-N system, where σγ/ε displays parabolic behavior with additions of nitrogen from 0.2 

to 0.9 wt.%. These studies provides additional confidence that the underlying cause of the 
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parabolic behavior is due to the relationship between σγ/ε and ∆𝐺!!!"
!""→!!" + ∆𝐺!"#

!""→!!"  as 

proposed in the present work.  

4.4 Model Validation 

  The thermodynamic model and the empirical relationship for σ
!
!  were used in 

conjunction to predict values of γexp and compare them with values from the literature. The 

calculated values of 𝛾!"# (note: the calculated value includes 2𝜌𝐸!"#) are 16.7 and 28.9 mJ m-2 

for Fe-18Mn-0.6C-0/1.5Al alloys and exhibit good agreement with experimental values of 

13±3/30±10 mJ m-2 [10] and 19.3±2.5/29.1±2.5 mJ m-2, respectively. Jung and De Cooman [78] 

reported mechanical twinning in an Fe-18Mn-0.6C-2.5Al alloy. The calculated values of 𝛾!"# 

and 𝛾!for this alloy are 40.4 and 34.8 mJ m-2 which is in the SFE range for mechanical twinning 

as reported by Allain et al. [24]. The calculated SFE values are reasonable for C contents up to 

0.6 wt.%. In addition. the present SFE measurements for the Fe-22/25/28Mn-3Al-3Si alloys give  

confidence that the model is valid for Al additions up to 3 wt.%.   

  The range of Si for which the model is valid was tested by predicting T0 temperatures (in 

this work the T0 temperature is defined as the average of the ε-martensite start (Ms) and austenite 

start (As) temperatures and corresponds to (∆𝐺!!!"
!""→!!" + ∆𝐺!"#

!""→!!") = 0) of ternary Fe-Mn-Si 

alloys and comparing them to experimental values reported by Cotes et al.[71,79]. The results of 

this comparison are reported in Table 5. Analysis of the data indicates that good agreement is 

achieved between the experimental and calculated T0 temperatures (within 7%) for Si additions 

up to ~6 wt.% in ternary Fe-Mn-Si alloys. At high Mn contents (28-29 wt.%), a greater deviation 

(~11-13%) is observed in the predicted vs. experimental T0 temperatures. Therefore, the model is 

valid for a range of Mn content from 16 to 29 wt.% [29].  Jeong et al. [11] reported SFE 

measurements of 19.8 ±2.5 and 13.8 ±2.5 mJ m-2 for paramagnetic Fe-18Mn-0.6C and Fe-
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18Mn-0.6C-1.5Si wt.% alloys, respectively, finding that additions of Si resulted in a decrease of 

3.5 mJ m-2 per wt.%. The current thermodynamic model predicts values of 𝛾!"# of 17.0 and 15.4 

mJ m-2 for the same alloys, corresponding to a decrease in 𝛾!"# of ~1 mJ m-2 per wt.% addition 

of Si. Tian and Zhang [61] experimentally measured a decrease 𝛾!"# of ~2.5 mJ m-2 per wt.% 

addition of Si in Fe-32Mn-0/4.6Si-0.2C alloys [61]. While the model improves upon previous 

thermodynamic models which report an increase in SFE for small additions of Si, the present 

themodynamic model would likely benefit from interaction parameters for Fe-Si-C for the HCP 

phase, an observation also shared by Jeong et al. [11]. Therefore, the model should be limited to 

Si concentrations of up to 1.5 wt.% for alloys with C contents of ~0.6 wt.%.  

  The values of 2𝜌∆𝐺!"#
!""→!!", 2𝜌∆𝐺!!!"

!""→!!", 2𝜌𝐸!"# and σ!/! determined in this work 

(Figure 8) provide a greater understanding of the physical phenomena behind the SFE evolution 

in Fe-Mn based steels. Of particular interest is the interfacial energy parameter, which is 

typically the largest parameter to contribute to the SFE in these materials at RT. This parameter 

exhibits a minimum near the point at which the Gibbs free energies of FCC and HCP phases are 

equal and increases when the absolute value of the term 2𝜌(∆𝐺!!!"
!""→!!" + ∆𝐺!"#

!""→!!") becomes 

larger (see Figure 9). In the present Fe-22/25/28Mn-3Al-3Si steels, for additions of Mn above ~ 

23.5 wt.%, the terms σ!/!, 2𝜌∆𝐺!"#
!""→!!" and 2𝜌∆𝐺!!!"

!""→!!" all make positive contributions, 

resulting in a sharp rise of the SFE. However, when decreasing the Mn content from ~23.5 wt.%, 

only the interfacial energy increases and makes a positive contribution to the SFE. This results in 

a much flatter SFE curve in this region or a minimum, observed in both experimental [31,32] and 

theoretical studies [26,29], before a subsequent increase in SFE occurs with further reductions in 

Mn content.  
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5. Summary and Conclusions 

In this study the effect of Mn content on the SFE was investigated by measuring 

dissociation widths of partial-dislocation pairs in three alloys (Fe-22/25/28Mn-3Al-3Si wt.%) 

using TEM. The experimental SFE values of 15 ±3, 21 ±3 and 39 ±5 mJ m-2 exhibit a super-

linear increase in SFE from 22 to 28 wt.% Mn. The strain energy associated with the contraction 

in molar volume during the austenite to εhcp-martensite transformations was determined to be ~1-

4 mJ m-2, yielding ideal SFE values of 14±3, 20±3 and 37±5 mJ m-2.  

A new thermodynamic model for the Fe-Mn-Al-Si-C system is proposed which 

determines the chemical and magnetic components of the difference in Gibbs free energy of the 

FCC and HCP phases. The ideal SFE values were used in conjunction with the thermodynamic 

phase data to determine the FCC/HCP interfacial energies of the three Fe-Mn-(Al-Si) steels as 

well as Fe-Mn and Fe-Mn-C-Al/Si alloys for which experimental SFE data is available in the 

literature. Calculations of the FCC/HCP interfacial energy parameter yielded values ranging 

from 8.6 to 11.8 mJ m-2 for the Fe-22/25/28Mn-3Al-3Si and Fe-18Mn-0. 6C-0/1.5(Al/Si) wt.% 

TRIP and TWIP alloys. The interfacial energy of the binary Fe-Mn alloys ranged from 15.7 to 

32.5 mJ m-2. The present work shows a strong correlation between the value of the interfacial 

energy of Fe-Mn-(Al, Si,C) steels and the difference in free energy of the FCC and HCP phases. 

To improve the accuracy of SFE calculations, an empirical relationship to describe the interfacial 

energy is proposed for use in SFE calculations. The combined thermodynamic model and 

empirical relationship exhibit good agreement with the present SFE measurements, and those in 

the literature, making it a useful tool for the design of high-Mn TRIP/TWIP steels. A follow on 
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study will investigate the relationship between SFE value, microstructural evolution and 

mechanical properties.  
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Figure Captions 

Figure 1 – Images of dislocations in 22%Mn specimens deformed to the YP. (a) WBDF 

and (b) corresponding BF image of a partial-dislocation pair. (c) WBDF image of a second 

partial dislocation pair closer to screw character and displaying reduced separation. Only a few 

representative separation measurements are shown. 

Figure 2 – WBDF images of partial-dislocation pairs in a 22%Mn alloy deformed to the 

YP. In (a) the partials display non-uniform separation, most dramatically at the intersections with 

the foil surfaces. In (b) a partial-dislocation pair residing in (111) normal to the [111] beam 

direction is interacting with a stacking fault on (-111). In (c), the defects in (b) are imaged with a 

02-2 diffracting vector leading to invisibility of one of the partials in (111) and the SF on (-111). 

Figure 3 – A WBDF image of a partial-dislocation pair in an Fe-25Mn-3Al-3Si alloy 

deformed to the YP. 

Figure 4 – WBDF images of partial-dislocation pairs in specimens of the 28%Mn alloy 

deformed to (a) the YP and (b) 1.5% with heat treatment of 650°C for 48 h. 
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Figure 5 – Dark-field images of intrinsic SFs in (a) the 22%Mn, (b) the 25%Mn and (c) 

the 28%Mn alloys as identified by the procedure in [43,44]. 

Figure 6 – Average actual partial-dislocation separations for the 22, 25 and 28%Mn 

alloys for specimens deformed to the YP and 1.5% with heat treatments. The error bars represent 

the standard deviation of the measurements on individual pairs. The dashed and solid curves 

represent theoretical partial-dislocation spacings based on isotropic and anisotropic elasticity, 

respectively. The dash dot line for the 28%Mn alloy assumes a Peierls core model. The larger 

symbols correspond to the partial dislocations from Figures 1, 3 and 4. 

Figure 7 – XRD patterns for (top) an Fe-22Mn-3Al-3Si alloy deformed at room 

temperature, (middle) an Fe-25Mn-3Al-3Si alloy deformed at -25°C and (bottom) an Fe-28Mn-

3Al-3Si alloy deformed at -100°C. All samples deformed to maximum uniform elongation. The 

peaks are labeled according to phase and reflection in miller indices. 

Figure 8 – Experimental effective SFE (γexp) and ideal SFE (γ∞) values with error bars 

representing the standard deviation of the measurements. Chemical (𝑛𝜌∆𝐺!!!"
!""→!!") and magnetic 

(𝑛𝜌∆𝐺!"#
!""→!!") contributions to the difference in Gibbs free energy from the FCC to HCP phase 

transformation determined by thermodynamic model (note: the values of  𝑛𝜌∆𝐺!!!"
!""→!!" denoted 

by the dashed line were calculated using 𝐿!",!!:!"!"#  proposed by Djurovic et al. [63]). Interfacial 

parameters σγ/ε calculated from the experimental and theoretical data. All values are plotted as a 

function of Mn content. The dash-dot line indicates Mn content at which the Néel transition 

occurs at 298K for an Fe-XMn-2.7Al-2.9Si wt.% steel [58]. 

Figure 9 –Interfacial energy plotted as a function of 2𝜌(∆𝐺!!!"
!""→!!" + ∆𝐺!"#

!""→!!")  for Fe-

22/25/28Mn-3Al-3Si, Fe-16/18/20/22/25Mn and Fe-18Mn-0.6C-0/1.5(Al/Si) wt.% steels. The 

dashed line represents the fit of the calculated interfacial energies. 
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