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Abstract

This manuscript provides a three-field finite element formulation for the evaluation of

coupled transport-deformation problems. A stabilized advection-diffusion-reaction model is

employed to idealize the mass transport of an aggressive environmental agent within a solid

medium, whereas the deformation response of the medium is formulated using the mixed finite

element approach with pressure and displacement as unknown variables. The proposed model

accurately captures the pressure and pressure gradient fields that characterize the reaction and

advection terms of the mass transport model. The concentration-dependent viscoplastic defor-

mation response is idealized using a generalized Johnson-Cook plasticity model. The accuracy

characteristics of the proposed three-field formulation are assessed by numerical simulations,

which indicate the significance of accurate estimation of pressure at high stress gradient zones

for correct characterization of mass transport.

Keywords: Multiphysics; Coupled problems; Multi-field formulation; Environmental effects;

Oxygen embrittlement.

1 Introduction

Aggressive environmental elements deteriorate the mechanical performance of material and

structural systems subjected to combined loading and environmental conditions. Examples

of engineering problems that display environmental-deformation response coupling are mani-

fold. Two problems that have received significant attention, among others, are hydrogen- and

oxygen-induced embrittlement in metals [1, 2].
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Predictive computational modeling of the deformation response of such materials and struc-

tures subjected to aggressive environmental agents remains to be a significant challenge. The

first difficulty is accurately modeling the coupling mechanisms between the inelastic defor-

mation process and the mass transport of the aggressive agent into the structural material.

The second difficulty is the development of a computational solution method to accurately

evaluate the response in the presence of the coupling mechanisms. An extensive literature ex-

ists in characterization and modeling of metals subjected to hydrogen; and to a lesser extent,

oxygen. The mass transport of the aggressive agent into the solid substrate is often modeled

as a diffusion-advection-reaction problem [3], whereas the mechanical response involves inelas-

tic deformations induced by the mechanical and thermal loads, as well as the environmental

effects. Time-dependent deterioration of the mechanical properties is marked by the coupling

between the transport process of the aggressive agent and the deformation under mechanical

and thermal loads. The transport process typically results in volumetric expansion, hardening,

embrittlement, loss of fatigue life and strength [4, 5]. On the other hand, the chemical potential

that drives the kinetics of the aggressive agent ingress is a function of the state of stress and

deformation through formation of trap sites (e.g., dislocations) and microcracks that enhance

the rate of mass transport.

Computational modeling of this phenomenon requires accurate capturing of the coupling

effects between the transport and deformation mechanisms. Oskay and Haney [6] proposed a

coupled transport-deformation formulation to simulate the oxygen-induced embrittlement of

titanium structures. This formulation does not account for the advection-reaction terms that

become significant at high stress gradient zones. The seminal work of Sofronis and McMeek-

ing [3] provided the first finite element model for the coupled hydrogen transport - deformation

response that can describe the hydrogen transport into a metal substrate around crack tips.

This model has been extended to properly account for transport between trap and lattice sites

by Krom et al. [7]. Ndong-Mefane et al. [8] addressed the potential instability problems in

advection-dominated transport around crack and notch tips by employing a stabilized finite

element approach. The advection coefficient, which depend on the pressure gradient, is typi-

cally approximated a-posteriori through discrete differentiation of the pressure estimates at the

integration points in a displacement-based finite element solution of the deformation problem.

This leads to significant approximation errors at regions of high stress gradients such as notch

and crack tips.

In this manuscript, we propose a three-field computational model for the evaluation of

coupled transport-deformation problems. The displacement, pressure and concentration fields

are evaluated as independent unknowns. The key novel contribution of the present manuscript

is the demonstration that the mixed finite element method, in which the pressure is treated as

an independent unknown in addition to the displacement degrees of freedom, can be employed

to accurately compute the pressure gradient in the deformation problem. The pressure gra-

dient information, in turn, is employed to accurately calculate the instantaneous coefficients

of the advection-reaction terms of the mass transport problem. In addition, the computa-
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Figure 1: Coupled transport-deformation processes defined on the problem domain, Ω.

tional model has the following properties: (a) the mass transport problem is stabilized to

accurately describe the advection-dominated transport in the presence of high stress gradients

(e.g., crack and notch tips); (b) the deformation problem is evaluated using a tight-coupled

two-field (displacement-pressure) formulation, whereas the transport and deformation pro-

cesses are evaluated based on a staggered approach to efficiently address problems where the

time scales associated with the transport and deformation processes are disparate.

The remainder of the manuscript is organized as follows: Section 2 provides the mass

transport model with diffusion-advection-reaction terms coupled to a viscoplasticity model. In

Section 3, the finite element model of the coupled physics problems based on the three-field

(displacement-pressure-concentration) modeling is described, including the stabilization of the

mass transport problem for advection-dominated problems. The details of the implementation

of the proposed approach is included. Numerical verification studies to assess the performance

of the model in the context of the oxygen ingress problem in titanium alloys are discussed in

Section 4. Section 5 provides the conclusions and discussion of future research directions.

2 Problem Statement

Consider the domain of an arbitrary solid body, Ω ⊂ Rnsd , subjected to an aggressive agent

along a part of the domain boundary, Γ = ∂Ω, as illustrated in Fig. 1 (nsd: number of

space dimensions). When subjected to elevated boundary concentration, fluxes applied on

the domain boundary or stress gradient fields, the aggressive agent tends to diffuse into the

body. Concurrently, the solid body is subjected to time varying mechanical loading. In this

section, the governing equations of the aggressive agent transport and deformation processes

are provided, and the coupling mechanisms between the two physical processes are described.
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2.1 Transport model

We adopt Oriani’s equilibrium theory to describe the diffusion of the aggressive agent into the

stressed solid [9]. According to this theory, the driving force for diffusion is due to the chemical

potential of the aggressive agent:

qi (x, t) = −D (T (x, t))

RT (x, t)
c (x, t)µ,i (x, t) (1)

in which, qi denotes the components of the mass flux; D the diffusivity of the aggressive agent

within the solid; T the temperature; R the universal gas constant; µ the chemical potential; and

c the concentration of aggressive agent, given as weight ratio of the diffusing agent and the solid

substrate within an infinitesimal control volume. We adopt the index notation in the problem

formulation (i.e., i = 1, ..., nsd). Repeated indices of the spatial dimensions indicate summation

unless otherwise stated. A subscript followed by a comma indicates partial derivative ( i.e.,

f,i = ∂f/∂xi). x and t parameterize the spatial and temporal dimensions, respectively. Bold

symbol indicates vector notation (i.e., x = [x1, x2, x3] for nsd = 3). The chemical potential is

a function of the concentration and the state of stress:

µ (x, t) = µ0 +RT ln(c)− V̄cp (x, t) (2)

where, µ0 denotes the chemical potential at the stress free state and at equilibrium concentra-

tion; p = −σii/3 denotes the pressure; V̄c the partial molar volume of the ingressed gas in the

substrate solid; and σi the components of the stress tensor. Using Eqs. 1 and 2, the transport

equation of the stressed solid is given as:

ċ− (Dc,i),i −
(
DcV̄c
RT

p,i

)
,i

= 0 (3)

with superscribed dot indicates differentiation with respect to time. The initial and boundary

conditions for the transport problem are expressed as:

c (x, t = 0) = c∞ (x) ; x ∈ Ω (4)

c (x, t) = c0 (x, t) ; x ∈ ΓcD (5)

qini (x, t) = 0; x ∈ ΓcN (6)

in which, c∞ is the concentration of the aggressive agent at the natural state of the solid; c0

the boundary concentration prescribed along ΓcD ⊂ Γ; ΓcD ∩ ΓcN = ∅ and ΓcD ∪ ΓcN = Γ; and,

ni the components of the unit normal vector. Only homogeneous type Neumann boundary

condition is considered for simplicity of the ensuing formulation, but the formulation can be

extended to arbitrary Neumann or Robin conditions.

The transport process is coupled to the mechanical deformation through two mechanisms.

The first is the stress dependent chemical potential of the aggressive agent, which leads to the
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third term in the transport equation (Eq. 3). The second is by linking the diffusivity to the

state of damage within the solid. The effect of microcracking and damage on diffusivity has

been recognized in geological materials, concrete and metals (e.g., [10–12]). The diffusivity is

assumed to be enhanced as a function of the defect density (e.g. microcrack) as proposed by

Krajcinovic [12]. The effect of evolving defect density on diffusivity is modeled based on the

percolation theory [6] as:

D (ω, T ) = D0 (1 +D (ω)) exp

(
− Q

RT

)
(7)

where, D0 is the pre-exponential constant; Q is the activation energy; and, D (ω) the effect of

mechanical damage on diffusivity:

D (ω) =


aω; ω < ωc

aω − (ω − ωc)2

ω − ωec ; ωc 6 ω < ωec

∞; ω > ωec

(8)

in which, ω ∈ [0, 1) denotes the state of damage at a material point, with ω=0 indicating

undamaged state of the material, and, ω=1 corresponds to loss of load carrying capacity at

the material point. ω evolves as a function of mechanical loading as described below. ωc and

ωec denote the conduction and elastic percolation thresholds respectively; and, a is a material

parameter.

In the absence of loading induced defect formation, Eq. 7 reduces to the classical Arrhenius

form, where the diffusivity varies as a function of temperature only. At low levels of damage

(ω < ωc), the diffusivity is linearly proportional to the damage variable [11]. When damage

exceeds the elastic percolation threshold, a continuous path forms across the material point,

permitting free flow of the aggressive agent. At intermediate values of the damage state, the

rate of change of diffusivity progressively increases as a function of damage. The idea of using

percolation thresholds to relate microcrack networks to transport properties in metals have

been previously proposed [13]. In contrast, detailed experimental investigations of damage

dependent change in diffusivity in metals has been relatively scarce. Additional experimental

investigations would shed further light on the effect of this coupling mechanism.

When the body is subjected to a uniform stress field, the transport process (Eq. 3) reduces

to the Fick’s law of diffusion, and the state of mechanical deformation affects the diffusion of

the aggressive agent through the damage dependent diffusivity only. In the presence of stress

gradients induced by crack tips, notches and thermal gradients, pressure significantly affects

transport.
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2.2 Deformation model

The governing equilibrium equations describing the mechanical response are:

σij,j (x, t) + bi (x, t) = 0 (9)

where, bi is the body force per unit volume. The constitutive response of the body is modeled

in the rate form based on the assumption of additive split of the strain field:

σ̇ij = Lijklε̇
e
kl (x, t) = Lijkl (ε̇kl (x, t)− µ̇kl (x, t)) (10)

in which, εij , ε
e
ij and µij denote the components of total, elastic and inelastic strain tensors,

respectively. Assuming small strain kinematics:

εij =
1

2
(ui,j (x, t) + uj,i (x, t)) (11)

where, ui denote the components of the displacement field. Lijkl is the fourth order tensor of

elastic moduli taken to be symmetric and strongly elliptic:

Lijkl = Lklij = Ljikl = Lijlk (12)

ζijLijklζkl ≥ ηζijζij ; ∀ζij = ζji; η > 0 (13)

The inelastic strains, µij , is due to the viscoplastic deformation, as well as the lattice strains

induced by elevated temperature and aggressive agent content within the lattice:

µij = εvpij + εTij + εcij (14)

where, εvpij , εTij and εcij are the viscoplastic, thermal and concentration strains, respectively.

Thermal and concentration strains are taken to be volumetric:

εTij = α (T − T0) δij (15)

εcij = ϑ (c− c∞) δij (16)

where, δ is second order identity tensor; T0 is the reference (i.e., room) temperature; α the ther-

mal expansion coefficient; and, ϑ the concentration induced volumetric expansion coefficient.

The viscoplastic strain is taken to remain in the deviatoric strain space (i.e., εvpii = 0).

Splitting the stress tensor into hydrostatic and deviatoric components and considering the

constitutive equations yield:

ṗ = −1

3
σ̇ii = −1

3
Liikl (ε̇kl − µ̇kl) (17)

ṡij = σ̇ij + pδij = L′ijkl (ε̇kl − µ̇kl) (18)
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where,

L′ijkl = Lijkl −
1

3
Lnnklδij (19)

Remark : In this manuscript, the focus is on the response of an isotropic solid. The tensor of

elastic moduli then takes the form:

Lijkl = kδijδkl + 2G

(
δikδjl −

1

3
δijδkl

)
(20)

where, k and G are bulk and shear moduli, respectively. The pressure is expressed as:

p = −kui,i + 3k [α (T − T0) + ϑ (c− c∞)] (21)

Equation (21) is provided in the total form, since the pressure is independent of viscous and

history-dependent effects. The deviatoric part of the elastic moduli is expressed as:

L
′
ijkl = 2G

(
δikδjl −

1

3
δijδkl

)
(22)

Applying the stress decomposition to the governing equation yields:

sij,j (x, t)− p,i (x, t) + bi (x, t) = 0 (23)

The following boundary conditions are prescribed to evaluate the mechanical problem:

ui (x, t) = ūi (x, t) x ∈ ΓuD (24)

σijnj = t̄i (x, t) x ∈ ΓuN (25)

where, ūi is the prescribed displacement along the Dirichlet boundary ΓuD, t̄i is the prescribed

traction along the Neumann boundary ΓuN , such that ΓuD ∩ ΓuN = ∅ and ΓuD ∪ ΓuN = Γ.

The evolution of the viscoplastic strain is modeled by a generalization of the Johnson-Cook

plasticity model. The viscoplastic model employed in this study accounts for the effects of

embrittlement and hardening as a function of the aggressive agent concentration [6]. The flow

of the viscoplastic strain is expressed in terms of a power law:

ε̇vpij = γ

〈
f

σY

〉q ∂f

∂σij
(26)

where, γ and q denote fluidity and viscoplastic hardening parameters, respectively; 〈·〉 de-

notes Macaulay brackets (i.e., 〈·〉 = ((·) + | · |)/2); σY the flow stress; and, f (σ, σY ) the yield

function. The Von-Mises yield function is adopted in this study:

f (σij , σY ) =
√

3s̄− σY (27)
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where, s̄ is the second invariant of the deviatoric stress, s. The generalized Johnson-Cook

flow stress provides a functional relationship between yielding and the strain, temperature and

concentration:

σY = [A+B (ε̄νp)n + F (c− c∞)][1− (T ?)m] (28)

in which A, B, F , m and n are material parameters. The effective viscoplastic strain ε̄νp and

the non-dimensional temperature T ? are defined as:

ε̄νp =

√
2

3
εvpij : εvpij (29)

T ? =
T − T0

Tmelt − T0
(30)

where, Tmelt denotes melting temperature of the solid.

The damage progression within the material is modeled as a function of temperature and

concentration. Let the damage parameter, ω, be the ratio between the equivalent strain, ε̄vp

and the failure strain, εf :

ω =
ε̄νp

εf
(31)

where, the failure strain is described as:

εf = D1 (c) (1 +D5T
?) (32)

in which, D5 parameterizes the effect of temperature on the failure strain. D1 varies as a

function of concentration and idealize the progressive embrittlement due to aggressive agent

ingress:

D1 (c) =


D∞1 if c 6 c∞

1
c∞ − ccrit

((D∞1 −Dα
1 ) c+Dα

1 c∞ −D∞1 ccrit) if c∞ < c < ccrit

Dα
1 if c > ccrit

(33)

D∞1 denotes the failure strain at room temperature in the absence of elevated concentration; Dα
1

denotes failure strain beyond a critical concentration, ccrit; and the embrittlement is assumed

to be linear at intermediate concentration values. The effect of aggressive agent ingress on the

mechanical response is modeled based on the concentration dependent terms in Eq. 28 and

Eq. 33. In Eq. 28, the flow stress is affected by the concentration. Elevated concentration

tends to harden the material. In addition to hardening, the elevated concentration embrittles

the response by reducing the failure strain in Eq. 32.
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3 Finite Element Formulation

In this section, we provide the finite element formulation of the coupled transport and defor-

mation problems. The formulation of the transport process includes the stabilization for the

advection dominated flow, whereas the formulation of the deformation is conducted using a

mixed (pressure-deformation) approach.

3.1 Weak forms

The governing equation of the aggressive agent transport is viewed as an advection-reaction-

diffusion problem of the form:

ċ− (Dc,i),i + αic,i + βc = 0 (34)

in which, αi and β are coefficients of advection and reaction, respectively:

αi = −DV̄c
RT

p,i (35)

β =

(
DV̄cT,i
RT 2

− D,iV̄c
RT

)
p,i −

DV̄c
RT

p,ii (36)

It is well known that the numerical evaluation of the advection-reaction-diffusion problem

using standard low-order finite elements leads to poor approximation and instability when the

flow is dominated by advection or reaction. Considerable literature exists on stabilization ap-

proaches for this problem, as explained in [14] and references therein. In this study, we employ

the Stabilized Finite Element Method (SFEM) proposed by Franca et al. [15] to eliminate po-

tential instabilities. The transport response may be dominated by the advection term around

notches and crack tips where high stress gradients are present. In contrast, the amplitude of

the pressure Laplacian around the notch tips is typically smaller in magnitude. When the

temperature and concentration gradients can be taken to be small (e.g., isothermal conditions

and mild variation of diffusivity with respect to concentration), the reaction component is not

dominant and stabilization is applied to the advection term only.

Let ν ∈ H1
0 (Ω) be a test function; H1(Ω) the Sobolev space of functions with square

integrable values and derivatives defined on Ω; and, H1
0 (Ω) the subspace of functions in H1(Ω)

that are homogeneous along the domain boundary, ΓcD. The weak form of the transport

problem is expressed as:∫
Ω
νċdΩ +

∫
Ω
ν,iDc,idΩ +

∫
Ω
ναic,idΩ +

∫
Ω
νβcdΩ = 0; ∀ν ∈ H1

0 (Ω) (37)

in which, the solution is sought within the solution space: c ∈ W

W :=
{
ĉ ∈ H1(Ω) | ĉ = c0 on x ∈ ΓcD

}
(38)
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with sufficient continuity and smoothness assumed for the functions. Restricting the search

for the solution within a finite dimensional subspace based on the Bubnov-Galerkin method,

the stabilized finite element formulation is expressed as:∫
Ω
νhċhdΩ +

∫
Ω
νh,iDc

h
,idΩ +

∫
Ω
νhαic

h
,idΩ +

∫
Ω
νhβchdΩ

−
nel∑
e=1

[∫
Ωe

{
ċh −

(
Dch,i

)
,i

+ αic
h
,i

}
τe

{
−
(
Dνh,i

)
,i

+ αiν
h
,i

}
dΩ

]
= 0 (39)

in which, νh ∈ Vh ⊂ H1
0 (Ω) and ch ∈ Wh ⊂ W are the test and trial functions belonging to the

pertinent finite dimensional subspaces, Ωe is the domain of the element, e, in a finite element

discretization of the problem domain; nel the total number of elements, and τe is a stability

parameter which varies from element to element. At each element, τe is computed based on

the following equations:

τe =
h2
e

2D

me
[1 + ξ (Pe (x))]

(40)

Pe (x) =
me||α||phe

D
(41)

ξ (x) =

1; 0 ≤ x < 1

x; 1 ≤ x
(42)

where, me=1/3 and me=1/24 for linear and quadratic elements, respectively; he is the average

nodal distance in element, e; and Pe the Peclet number. Substituting the coefficient of reaction

and advection (Eqs. 35 and 36) into Eq. 39 yields:

∫
Ω
νhċhdΩ +

∫
Ω
νh,iDc

h
,idΩ−

∫
Ω
νh

[
DV̄c
RT

p,ii +

(
DV̄c
RT

)
,i

p,i

]
chdΩ−

∫
Ω
νh
DV̄c
RT

p,ic
h
,idΩ

−
nel∑
e=1

∫
Ωe

{
ċh −

(
Dch,i

)
,i
− DV̄c
RT

p,ic
h
,i

}
τe

{
−
(
Dνh,i

)
,i
− DV̄c
RT

p,iν
h
,i

}
dΩ = 0 (43)

In the current study, we employ first order (i.e., bilinear for 2-D and trilinear for 3-D) finite

elements to discretize the concentration field. The second derivative terms of the concentration

field and the test functions in Eq. 43, therefore, vanish. We further assume that the intra-

element variation in the coefficients remains small. The pressure field is evaluated as a solution

to the deformation problem as defined below and itself is approximated using low-order finite

elements. However, assuming vanishing of the term that involve the second derivatives of pres-

sure leads to the partial loss of the reaction component, and the resulting formulation cannot

adequately predict self-equilibration of concentrations induced by the pressure gradients. To

alleviate this problem, we apply the divergence theorem to the pressure-dependent terms in
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Eq. 43:

∫
Ω
νh

[
DV̄c
RT

p,ii +

(
DV̄c
RT

)
,i

p,i

]
chdΩ +

∫
Ω
νh
DV̄c
RT

p,ic
h
,idΩ

=

∫
Γc
N

νh
DV̄c
RT

p,ic
hnidΓ−

∫
Ω
νh,i
DV̄c
RT

p,ic
hdΩ (44)

Substituting Eq. 44 to Eq. 43, the following weak form is obtained for the transport problem:

∫
Ω
νhċhdΩ +

∫
Ω
νh,iDc

h
,idΩ +

∫
Ω
νh,i
DV̄c
RT

p,ic
hdΩ−

∫
Γc
N

νh
DV̄c
RT

p,ic
hnidΓ

+

nel∑
e=1

[∫
Ωe

νh,i

(
ċh −D,jc

h
,j −

DV̄c
RT

p,jc
h
,j

)
τe

(
D,i +

DV̄c
RT

p,i

)
dΩ

]
= 0 (45)

The components of Eq. 43 that contains the concentration Laplacian is not included above

since for low order finite elements, the concentration Laplacian vanishes. The evaluation of the

transport problem clearly requires the computation of the pressure gradient fields. To provide

consistent and accurate pressure distribution, the deformation problem is evaluated using a

mixed formulation, where the cardinal unknowns are the displacements and the pressure. In

this manuscript, the formulation for the mixed finite element approach is presented for an

isotropic solid.

Let vi and q be the test functions for displacement and pressure in the appropriate Sobolev

spaces and with sufficient smoothness, and vhi and qh belong to the corresponding finite

dimensional subspaces of the test functions vi and q, respectively. Starting from Eqs. 23

and 21, the weak form of the governing equations of equilibrium are: Find uh ∈ Hh ⊂ H and

ph ∈ Ph ⊂ H0(Ω) such that for all νh and qh:∫
Ω
νhi,jsijdΩ−

∫
Ω
νhi,ipdΩ−

∫
Γu
N

νhi t̄idΓ−
∫

Ω
νhi bidΩ = 0 (46)

∫
Ω

1

k
qhphdΩ +

∫
Ω
qhuhi,idΩ−

∫
Ω

3qh[α (T − T0) + ϑ (c− c∞)]dΩ = 0 (47)

in which,

H :=
{
û ∈ [H1(Ω)]nsd | û = ū on x ∈ ΓuD

}
(48)

and, H0(Ω) is the space of functions with square integrable values defined on Ω.

3.2 Discretization

Consider a Galerkin discretization of the concentration, displacement and pressure fields:

ch (x, t) =

nc∑
a=1

N c
a (x) ĉa (t) (49)
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uhi (x, t) =

nu∑
a=1

Nu
a (x) ûai (t) (50)

ph (x, t) =

np∑
a=1

Np
a (x) p̂a (t) (51)

where N c
a, Nu

a and Np
a are the basis functions of the concentration, displacement and pressure

fields, respectively; (̂·) denotes the nodal coefficients of the corresponding field; and, the dis-

cretization of the test functions follow the Galerkin method. Substituting the concentration

discretization (Eq. 49) into the weak form of the transport equation (i.e., Eq. 45), yields:

Fb =

nc∑
a=1

[∫
Ω
N c
bN

c
adΩ ˙̂ca +

∫
Ω
N c
b,iDN

c
a,idΩĉa +

∫
Ω
N c
b,i

DV̄c
RT

N c
ap,idΩĉa−∫

Γc
N

N c
b

DV̄c
RT

N c
ap,inidΓĉa +

nel∑
e=1

∫
Ωe

N c
b,i

(
N c
a

˙̂ca (t)−D,jN
c
a,j ĉa −

DV̄c
RT

p,jN
c
a,j ĉa

)
×

×τe
(
D,i +

DV̄c
RT

p,i

)
dΩ

]
= 0; b = 1, ..., nc (52)

in which, the pressure gradient term is approximated by the discretization of the pressure field:

p,i =

np∑
a=1

Np
a,i (x) p̂a (t) (53)

Substituting Eqs. 49 and 50 into Eqs. 46 and 47 respectively, the equilibrium equations yield:

Ψbi :=

∫
Ω
Nu
b,jsijdΩ−

np∑
c=1

∫
Ω
Nu
b,iN

p
c dΩp̂c −

∫
Γu
N

Nu
b t̄idΓ

−
∫

Ω
Nu
b bidΩ = 0; b = 1, ..., nu and i = 1, .., nsd (54)

Θc :=

np∑
a=1

∫
Ω

1

k
Np
cN

p
adΩp̂a +

nu∑
b=1

∫
Ω
Np
cN

u
b,idΩûbi

−
∫

Ω
3Np

c [α (T − T0) + ϑ (c− c∞)]dΩ = 0; c = 1, ..., np (55)

where, the concentration field is computed using Eq. 49. Combining Eqs. 18 and 50 yields:

Rij := ṡij − L′ijkl

(
nu∑
a=1

Nu
a,l

˙̂uak

)
+ 2Gε̇vpij = 0 (56)
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3.3 Numerical implementation

Equations 52, 54-56 constitute a coupled system of nonlinear equations, which are evaluated

using the commercial computer program, Diffpack. Diffpack is an object oriented development

framework with a library of C++ classes for solution of partial differential equations [16]. It is

possible to solve this system of equations such that the unknown coefficients of concentration,

displacement and pressure are evaluated simultaneously, or based on the staggered solution

approach, in which the evolution of transport and deformation problems are evaluated sep-

arately but in a staggered manner. In this study, we consider the physical problems, where

the characteristic time scales associated with the transport and mechanical processes are dis-

parate. Typically, the ingress of the aggressive agent is a long-time phenomenon, whereas

the mechanical loading is applied in a shorter time scale. Conversely, it is also of interest to

investigate the transport response under constant amplitude loading, where the transport is

regarded as the fast time scale phenomena. The staggered solution strategy (of isothermal

type) is appropriate for such problems that involve disparate time scales, and is adopted in

this study. The solution strategy is schematically illustrated in Fig. 2. A manager class con-

trols the execution of the algorithm. At each time step, the mechanical and transport solver

classes are invoked to solve the problems in turn until convergence is achieved between the

solutions of both problems. The thermal state of the system is provided as an input to both

transport and mechanical solvers. In the evaluation of the transport problem, the pressure and

the pressure gradients are treated as known fields. The pressure and pressure gradients are

computed in the deformation problem as described below. It is well known that the staggered

solution algorithm is linearly convergent and unstable for systems with comparable charac-

teristic times. In this study, the investigations are limited to temporally disparate problems

only and no instabilities were observed. The transport problem is linear and the numerical

implementation is standard. In the remainder of this section, the nonlinear solution procedure

for the deformation problem is provided.

3.3.1 Deformation model

The deformation response is evaluated by simultaneously solving Eqs. 54-56. We start by

discretizing the evolution equation of the deviatoric stress, which is an ordinary differential

equation, using the θ-method:

Rij = ∆sij − L′ijkl

(
nu∑
a=1

Nu
a,l∆ûak

)
+ 2Gt+∆tε̇

vp
ij θ∆t+ 2Gtε̇

vp
ij (1− θ) ∆t = 0 (57)

where ∆ (·)=t+∆t(·)-t(·), and θ ∈ [0, 1) is an algorithmic parameter. θ=0, 0.5 and 1 correspond

to forward Euler, midpoint and backward Euler algorithms, respectively. By employing the

first order Taylor series expansion of Eqs. 54, 55 and 57 and using the Newton-Raphson method

13



Manager class

Mechanical solver Transport solver

Thermal state

  

Loop until
convergence 

Figure 2: The solution strategy for coupled transport and deformation problems.

yields:

k+1Ψbi ≈ kΨbi +
k(∂Ψbi

∂skl

)
k+1δskl +

np∑
c=1

k(∂Ψbi

∂p̂c

)
k+1δp̂c

= kΨbi +

∫
Ω
Nu
b,j

k+1δsijdΩ−
np∑
c=1

∫
Ω
Nu
b,iN

p
c dΩ k+1δp̂c = 0

(58)

k+1Θc ≈ kΘc +

nu∑
b=1

k( ∂Θc

∂ûbk

)
k+1δûbk +

np∑
a=1

k(∂Θc

∂p̂a

)
k+1δp̂a

= kΘc +

nu∑
b=1

∫
Ω
Np
cN

u
b,idΩ k+1δûbi +

np∑
a=1

∫
Ω

1

k
Np
cN

p
adΩ k+1δp̂a = 0

(59)

and,

k+1Rij ≈ kRij +
k(∂Rij

∂skl

)
k+1δskl +

nu∑
a=1

k(∂Rij
∂ûak

)
k+1δûak

= kRij − L
′
ijkl

nu∑
a=1

Nu
a,l

k+1δûak +
(
Iijkl + 2Gθ∆t kCijkl

)
k+1δskl = 0

(60)

in which,

kCijkl =

k(
∂ε̇vpij
∂skl

)
(61)

The increment of deviatoric stress, k+1δsij is evaluated using Eq. 60 as:

k+1δsij = kQijkl

(
L

′
klmn

nu∑
a=1

Nu
a,n

k+1δûam − kRkl

)
(62)
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where, the modulus kQijkl is defined as:

kQijkl =
(
Iijkl + 2Gθ∆t kCijkl

)−1
(63)

Substituting Eq. 62 into Eqs. 58 and 59 yields:

∫
Ω

kQijklN
u
b,jL

′
klmn

nu∑
a=1

Nu
a,ndΩ k+1δûam −

np∑
c=1

∫
Ω
Nu
b,iN

p
c dΩ k+1δp̂c

=

∫
Ω

kQijklN
u
b,j

kRkldΩ− kΨbi (64)

−
nu∑
b=1

∫
Ω
Np
cN

u
b,idΩ k+1δûbi −

np∑
a=1

∫
Ω

1

k
Np
cN

p
adΩ k+1δp̂a = kΘc (65)

When expressed in the matrix form, Eqs. 64 and 65 yield:[
kKuu Kup

(Kup)T Kpp

]{
k+1δû
k+1δp̂

}
=

{
kfu

kfp

}
(66)

in which,

kKuu
αβ =

∫
Ω
Nu
b,j

kQijklL
′
klmnN

u
a,ndΩ; α = b+ (i− 1)nu; β = a+ (m− 1)nu (67)

Kup
αc = −

∫
Ω
Nu
b,iN

p
c dΩ; α = a+ (i− 1)nu; 1 ≤ c ≤ np (68)

Kpp
ab = −

∫
Ω

1

k
Np
aN

p
b dΩ; 1 ≤ a, b ≤ np (69)

The force vectors are expressed as

kfu = {kfu1 , ...,
kfunsd×nu

}T (70)

kfp = {kfp1 , ...,
kfpnp
}T (71)

and the components of the force vector are given as:

kfuα =

∫
Ω

kQijklN
u
b,j

kRkldΩ−k Ψbi; α = b+ (i− 1)nu (72)

kfpa = kΘa; 1 ≤ a ≤ np (73)

Based on the definitions above, we employ the following algorithm to compute the pressure

and displacement fields:

At t = 0, the initial condition of the viscoplastic strain rate is taken as zero, leading to a linear
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system of the form: [
0K

uu Kup

(Kup)T Kpp

]{
0û

0p̂

}
=

{
0f
u

0f
p

}
(74)

where,

0K
uu
αβ =

∫
Ω
Nu
b,jL

′
ijmnN

u
a,ndΩ (75)

0f
u
α =

∫
Γu
N

Nu
b t̄idΓ +

∫
Ω
Nu
b bidΩ (76)

0f
p
a = −

∫
Ω

3Np
a [α (T − T0) + ϑ (c− c∞)]dΩ (77)

The linear system (Eq. 74) is evaluated for the initial state of deformation and pressure coef-

ficients.

At arbitrary time t+ ∆t; Given: tû, tp̂, tsij and tε̇
vp
ij ; Find: t+∆tû, t+∆tp̂.

1. Initiate the algorithm: k = 0.

2. Set the initial guesses of the pressure and deformation coefficients at the current incre-

ment:
0û = tû; 0p̂ = tp̂; 0sij = tsij ;

0ε̇vpij = tε̇
vp
ij (78)

3. Loop until convergence:

(a) Compute the moduli: kCijkl,
kQijkl using Eqs. 61 and 63, respectively.

(b) Calculate kΨbi,
kRij ,

kΘb using Eqs. 54, 57 and 55, respectively.

(c) Update the pressure and displacement increments, k+1δû and k+1δp̂, using Eq. 66.

(d) Compute deviatoric stress increment k+1δsij using Eq. 62.

(e) Update displacement, pressure and stress:

k+1û = k+1δû + kû (79)

k+1p̂ = k+1δp̂ + kp̂ (80)

k+1sij = k+1δsij + ksij (81)

(f) Update k+1ε̇vpij and k+1εvpij by simultaneously evaluating:

k+1εvpij = tε
vp
ij + θ∆t k+1ε̇vpij + (1− θ) ∆t tε̇

vp
ij (82)

k+1ε̇vpij = γ

〈
k+1f
k+1σY

〉q k+1( ∂f

∂σij

)
(83)

(g) k = k + 1
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Table 1: Material parameters for viscoplastic deformation of Ti-6Al-2Sn-4Zr-2Mo-0.1Si.

ν E0 [GPa] γ [MPa/s] q α [1/◦C] ϑ [1/%c]
0.32 120.8 25.0 1.0 7.7e-6 1.1e-3

A [MPa] B [MPa] F [MPa/%c] n m ccrit [%]
895.0 125.0 140.0 0.2 0.85 4.5

Tmelt [◦C] ε̇0 [1/s] D∞1 Dα
1 D5

1700.0 1.0 0.1676 5.0e-3 3.0

0.
2 

m
m

0.2 mm

0.4 mm

0.02 mm θ

Figure 3: Geometry, boundary conditions and the finite element mesh of the notched specimen.

4 Numerical Verification

In this section, the performance of the proposed three-field model is verified using numerical

simulations. The effect of element type on the accuracy and stability characteristics of the

transport and deformation problems based on numerical simulations is investigated.

We are concerned with the response of a near alpha titanium alloy, Ti-6Al-2Sn-4Zr-2Mo-

0.1Si (Ti-6242S), which displays good mechanical properties at high temperatures. When

exposed to high temperatures for an extended period of time, this alloy is known to exhibit

significant embrittlement [5] caused by ingress of oxygen. The material properties that char-

acterize the mechanical response at a wide range of temperatures and oxygen exposure are

summarized in Table 1. Figure 3 illustrates the geometry and discretization of the numerical

specimen. The specimen dimensions are 0.8mm x 0.4mm with a 0.4mm deep notch at the

middle. The notch radius is 20µm. Due to symmetry, only a quarter of the specimen is dis-

cretized (with 1846 quadrilateral elements or 3298 triangular elements). The notched specimen

is employed to generate a stress gradient, which captures the effects of advection and reaction

terms in the transport model. Plane strain conditions are assumed.
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(a) (d)(c)(b)

Figure 4: The nodal positions in the mixed finite elements: (a) u4p4; (b) u4p1; (c) u9p4 and
(d) u6p3.

The specimen is discretized using four types of elements, named as u4p4, u4p1, u6p3 and

u9p4. The types of elements and the associated nodal positions are shown in Fig. 4. u4p4

consists of four-noded Lagrangian quadrilateral elements for both displacement and pressure

degrees of freedom. In u4p1, the pressure is discretized using a single node positioned at

the centroid of the finite element, whereas the displacement is discretized using four-node

quadrilateral elements. Two types of Taylor-Hood elements were employed. u6p3 consists of a

triangular, quadratic, six-node element for displacement degrees of freedom, and a three-node,

linear element for pressure degrees of freedom. u9p4 consists of a quadrilateral, bi-quadratic,

nine-node Lagrangian element for displacement degrees of freedom, whereas a four-node bi-

linear element is employed for pressure degrees of freedom. In u4p4, u6p3 and u9p4 elements,

the pressure field exhibits inter-element continuity, allowing a straightforward computation

of the pressure gradients (i.e., using Eq. 53). In all four element types, the displacement

discretization is isoparametric, whereas pressure field is non-isoparametric. The performance

of the four mixed elements are compared to the reference model (denoted as u4), which is the

standard displacement-based finite element with four-noded bi-linear shape functions. In u4,

the pressure is evaluated at the integration points.

In the case of u4p1 element, the pressure is constant within a finite element, and Eq. 53

cannot be used to directly compute the pressure gradients. The computation of the pressure

gradient for u4p1 is based on the pressure smoothing procedure of the least squares type [17].

In this procedure, a piecewise continuous smoothed pressure field is computed. The smoothed

pressure approximation is made as a function of four-noded bilinear Lagrangian quadrilateral

shape functions. The pressure gradient is then computed using Eq. 53 from the smoothed

pressure field.

The specimen is subjected to displacement controlled tensile loading with maximum ampli-

tude of 6.4e−4 mm applied in 11.52 seconds at 650◦C and the mechanical response is evaluated

using the four mixed elements described above. Figures 5 and 6 display the pressure as a

function of distance from the notch tip plotted along lines 0◦ and 70◦ to the horizontal, respec-

tively. The pressure profiles at the loading magnitudes of 4.32e−4 mm and 6.32e−4 mm are

shown. At both loading amplitudes a zone of plastic deformation forms around the notch tip

as shown in Fig. 7. The peak pressure moves away from the notch tip as the loading increases

due to accumulation of damage and expansion of the area of the plastic zone. All four models
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Figure 5: Pressure distribution along the notch tip: θ = 0.

yield similar response at low loading amplitude, but the results begin to deviate as the loading

increases. u4p4 displays slight oscillation around the peak pressure (Fig. 6), whereas u4p1,

u6p3 and u9p4 elements yield response free of oscillations. The pressure predictions of u4p1,

u6p3 and u9p4 are stable everywhere inside the problem domain and in reasonable agree-

ment throughout the loading history. For u4p4 element, the pressure oscillations are observed

within part of the specimen domain and it is severe along the 70◦ to the horizontal. Figure 8

shows the oscillating pressure distribution around the notch tip at the loading magnitudes of

4.32e−4 mm and 6.32e−4 mm. The oscillatory behavior of the u4p4 element is expected as this

element does not satisfy the Babuska-Brezzi stability criteria and therefore not guaranteed to

be stable.

The convergence characteristics of the mixed formulation are investigated in a mesh sensi-

tivity study. The mesh sensitivity study was performed using the u6p3 elements. The pressure

variations around the notch tip at Θ = 0 orientation computed using three different mesh den-

sities are shown in Fig. 9. The results correspond to the applied magnitudes of 4.32e−4 mm

(lower curves) and 6.32e−4 mm (upper curves). In the three discretizations considered, the

element edge lengths around the crack tip were set to h = 2 µm, 1µm and 0.5µm, respectively.

All three mesh densities produce very similar pressure profiles. The pressure profiles computed

using the h = 0.5 µm and 1µm edge lengths are nearly identical, pointing to mesh convergence.

The key benefit of employing the mixed finite element approach in computing the cou-

pled aggressive agent ingress and deformation response is to accurately capture the pressure

gradients across the problem domain. The pressure gradient fields are in turn employed in ac-

curately capturing the transport response. This is in contrast to the displacement-based finite

element method, in which the stresses are computed point-wise at the integration points and
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Figure 6: Pressure distribution along the notch tip: θ = 70.

(a) (b)

Figure 7: The area of plastic deformation at applied displacement: (a) 4.32e−4mm ; (b)
6.32e−4mm computed using the u9p4 model.
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(a) (b)

Figure 8: The pressure field at applied displacement: (a) 4.32e−4mm ; (b) 6.32e−4mm computed
using the u4p4 model.
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Figure 9: The pressure distributions along the notch tip (θ = 0 direction) computed using the
u6p3 elements with element edge lengths of 2µm, 1µm and 0.5µm.
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Figure 10: Pressure distribution along the notch tip: θ = 45.

must be approximated to extract the pressure gradient fields. It is convenient and accurate

to use the mixed approach since the pressure is available as a continuous field. Additionally,

the mixed finite element method addresses the well-known numerical issues related to incom-

pressible materials and incompressible flow within the plastic deformation process. Figure 10

shows the pressure distributions as a function of distance from the notch tip plotted along

the direction 45◦ to the horizontal at loading magnitudes of 1.84e−4 mm, 4.32e−4 mm and

6.32e−4 mm, respectively. The pressure distributions computed using the u9p4 and u4 models

are compared. The pressure profile of the u4 model is obtained by interpolating the point-wise

pressure values at the integration and smoothing the interpolated response. When the applied

loading is low and the accumulated plastic strains are small, the pressure distributions from the

displacement-based and mixed formulations are very similar. At higher loading amplitudes,

significant discrepancy is observed between the mixed and displacement-based formulations

close to the notch tip. The mixed formulation also results in a relatively smooth pressure field

as a function of distance from the notch tip compared to the displacement-based formulation,

which displayed some oscillations. Away from the notch tip, where the pressure gradients are

low, the pressure plots from the mixed- and displacement-based formulations are very similar.

Next, the performance of the proposed stabilized transport model is investigated in the con-

text of a mechanical pressure dependent oxygen transport problem. The numerical specimen is

heated to a uniform temperature of 650◦C and kept at this constant temperature level for the

duration of 420 hours. The time step size employed in the simulations below is set to 1 hour.

The nonuniform pressure field computed in the example above is employed in the simulations.

The pressure field is taken to be time-invariant throughout the duration of the simulation.

While, stress relaxation would likely occur at such high temperatures, the pressure field is set
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Table 2: Material parameters for oxygen transport in Ti-6Al-2Sn-4Zr-2Mo-0.1Si.

D0 [mm2/sec] c∞ [%] Q [KJ/mole] ωc ωec a V̄O [cm3/mole]
5.39 0.15 184.0 0.1 0.7 3.56 3.5
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Figure 11: Concentration distribution along the notch tip: θ = 0.

as constant (but spatially non-uniform) to assess the performance of the transport model in

the presence of significant pressure gradient fields. The transport properties that control the

oxygen ingress process into the titanium alloy are summarized in Table 2. The diffusivity is

taken to be independent of concentration magnitude. In the transport simulations, no external

boundary concentrations or boundary fluxes are imposed, and the transport is taken to be due

to pressure gradient induced internal advection only. The pressure induced oxygen transport

within the specimen is observed for the duration of high temperature exposure. The transport

problem is discretized using four-node bi-linear elements for concentration degrees of freedom.

Figure 11 displays the oxygen concentration profiles obtained by the transport model plotted

as a function of distance from the notch tip along the horizontal line (i.e., θ = 0). The two

plots compare the concentration profiles computed using the pressures from u4p1 and u4p9

deformation models. Elevated pressures lead to increased advection flow of oxygen and higher

oxygen concentrations. The concentration profiles computed using the pressures from u4p1

and u9p4 models are close to each other and computation of the pressure fields using both

models provide reasonable approximations.

In order to verify the stabilization scheme employed in the transport model, a parametric

study is performed by varying the Peclet number of the transport equation. The Peclet num-

ber (i.e., Eq. 41) controls the contribution of the advection component of the transport with
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respect to the diffusion component. At high Peclet numbers, unstabilized transport models

exhibit instability and inaccuracy. For all simulations in the parametric study, the pressure

profile computed using the u9p4 deformation model is employed. Figures 12-14 compares the

oxygen concentration fields generated using the stabilized and unstabilized transport models.

The normalized concentration fields are plotted along the horizontal line (θ = 0) from the

notch tip. Figures 12, 13 and 14 shows simulations conducted using the value of the Peclet

numbers of Pe = 1.52 × 10−4‖p,i‖he; 1.52 × 10−2‖p,i‖he and 6.08 × 10−2‖p,i‖he; respectively,

the former computed by the material parameters shown in Table 2. The exact value of the

Peclet number varies as a function of the pressure gradient as well as the characteristic size

of the element. The Peclet numbers are achieved by varying the coefficient of advection, α.

When the original Peclet number is employed, the stabilized and the unstabilized simulations

coincide, indicating that the transport is diffusion dominated. For increased values of the

Peclet numbers, the unstabilized model exhibits significant errors. When the Peclet num-

ber is equal to 1.52 × 10−2‖p,i‖he, significant deviations in the concentration values between

the stabilized and unstabilized simulations are observed. When the Peclet number is set to

6.08 × 10−2‖p,i‖he, severe oscillations are generated by the unstabilized model with negative

concentration values. In all cases considered, the stabilized model displays concentration dis-

tribution free of oscillations around the notch tip. The present parametric study artificially

varied the Peclet number to investigate the stability of the proposed transport model and in-

stability was only observed when the Peclet number is set to a higher than the original value.

There exists a significant variability in the transport parameters measured even in a single

alloy type [18], which contributes to wide variations in the Peclet numbers. In addition, the

presence of high thermal gradients and cracks may also lead to high advection coefficients and

high Peclet number transport.

5 Conclusion

This manuscript provided a three-field computational model for coupled transport-deformation

problems. The proposed model is based on a tightly coupled two-field formulation for the

viscoplastic deformation response to provide accurate pressure and pressure gradient fields to

a transport problem. It is demonstrated that modeling the transport processes at the high

stress gradient zones such as around notch tips requires accurately approximating the pressure

and pressure gradient fields. The proposed computational model conveniently and accurately

computes these fields based on the mixed finite element approach.

A number of challenges remain to be investigated in predictive modeling of transport-

deformation problems. One of the main challenges is because of the localized character of the

transport process. In some practical problems, the oxygen ingress is localized within a very

small boundary region of the structure with a thickness of the order of a few grain diameters.

Accurate characterization of localized deformation and failure within this zone necessitates
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Figure 12: Normalized concentration distribution along the notch tip: θ = 0 computed using
the Pe = 1.52× 10−4‖p,i‖he.
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Figure 13: Normalized concentration distribution along the notch tip: θ = 0 computed using
the Pe = 1.52× 10−2‖p,i‖he.
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Figure 14: Normalized concentration distribution along the notch tip: θ = 0 computed using
the Pe = 6.08× 10−2‖p,i‖he.

resolution of the grain scale deformation and transport processes within the boundary region.

Multiscale computational models that can accurately incorporate such grain scale information

into a structural scale problem remain an outstanding issue. Such models are currently un-

der investigation [19] and will be employed to address localized coupled transport - inelastic

deformation problems.
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