
Accelerated Time Integrator for Multiple Time Scale

Homogenization

Robert Crouch and Caglar Oskay∗

Department of Civil and Environmental Engineering
Vanderbilt University
Nashville, TN 37235

Abstract

This manuscript presents an accelerated time domain homogenization methodology

for prediction of material and structural failure under fatigue loading. The method-

ology is based on mathematical homogenization theory applied to the time domain.

The method addresses the computational challenge associated with the scale disparity

between the characteristic fatigue load period and the overall fatigue life. Cycle sensi-

tive continuum damage mechanics modeling is used to describe the progressive damage

accumulation under fatigue loading. The original initial boundary value problem is de-

composed into coupled fast and slow time scale problems. A quasilinear approximation

to the fast time scale problem is introduced to efficiently evaluate the response under a

fatigue load cycle. The effect of the new time integrator on the thermodynamic consis-

tency of the resulting system of discrete equations is demonstrated for a general class

of continuum damage mechanics models. The proposed method is numerically verified

based on a scalar damage model and a spatially multiscale damage model used for pre-

dicting fatigue life of composite materials. The proposed accelerated time integrator is

shown to have reasonable accuracy and is orders of magnitude more computationally

efficient when compared to previously proposed time homogenization methods.

KEY WORDS: multiscale; fatigue; homogenization; model reduction; composite ma-

terials

1 Introduction

Modeling and prediction of the progressive damage accumulation and failure of brittle and

quasibrittle materials subjected to cyclic loading has been a significant challenge for the
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computational community for many decades. A trend towards widespread use of composite

materials in a range of industries such as aerospace and automotive has increased the stakes

of predicting the long term behavior and durability of such materials. For instance, a lack of

fatigue modeling capability for polymer composite materials and structures has led to overly

conservative design strategies to prevent the sudden and catastrophic failures foretold with

few visible indications. Highly conservative design strategies in turn offset the benefits of

the composite materials, limiting their potential to provide higher performance.

One of the main approaches to modeling the initiation and growth of diffuse and widespread

damage observed in materials has been Continuum Damage Mechanics (CDM) [7, 24]. CDM

has been shown to describe the behavior of composite materials, particularly under mono-

tonic loading conditions [26]. In CDM, a set of internal state variables (denoted as damage

variables) track the evolution of microcrack or microvoid densities as a function of the re-

sponse fields (i.e., strain, stress, strain energy) and as a function of the field gradients.

The inclusion of the field gradients is necessary to regularize the problem, which otherwise

exhibits damage localization and mesh sensitivity [38]. The resulting system of equations

is often highly nonlinear, regardless of the evaluation method that includes the classical

assumed strain approach [35] or the more recent phase-field method [6].

Extending the CDM framework to model damage accumulation under cyclic loading

presents a significant challenge. The main issue is the computational intractability associated

with solving a highly nonlinear problem that includes a very large number of time steps

required to resolve each load cycle in a structure’s load trajectory. This intractability has

been recently addressed using a number of approaches including the cycle jump method [7, 9,

32, 18], manifold-based multitemporal modeling [2, 36], wavelet transformation [8, 22], and

the multiple time scale homogenization [29, 30]. The common idea in these computational

approaches is to approximate the evolution of a structure using the response from a small

number of resolved cycles within the load trajectory of the structure and interpolating the

response evolution between the resolved cycles.

We adopt the multiple time scale computational homogenization approach in this study.

Computational homogenization [16, 19, 37] (CH) is a multiscale modeling approach, which is

derived based on the mathematical homogenization theory [3, 4]. CH with multiple spatial

scales has been employed to idealize the failure behavior of many heterogeneous materi-

als, including composites under monotonic loads [13]. One of the key benefits of CH is

the prediction of macroscale failure directly from a multiplicity of microscale failure mecha-

nisms [11, 31]. The idea of CH has also been applied to the time domain to predict the cyclic

response [29, 30]. Under fatigue loading, a time scale disparity exists between the charac-

teristic period of the cyclic load and the overall life of the structure. The multiple time

scale homogenization method bears a resemblance to the cycle jump techniques previously

2



proposed in the context of continuum damage mechanics models, but provides a rigorous

computational framework for evolution of fatigue damage accumulation and prediction of

life. More recently, Crouch and Oskay [12] developed a space-time homogenization method

to study the fatigue behavior of composite materials that accounted for the presence of

multiple spatial scales to address the material heterogeneity and multiple time scales. The

space-time homogenization leads to a series of four coupled nonlinear space-time problems

compared to the two-coupled spatial problems in CH with multiple spatial scales. While the

homogenization method has been applied successfully for life prediction of problem domains

with small size (i.e., coupon scale), it remains computationally very costly for performing

large size structural analysis - a class of problems to which fatigue modeling offers the greatest

potential benefit.

In this manuscript, an accelerated time integration scheme is proposed for the multiple

time scale homogenization method. The approach in this manuscript admits a field decompo-

sition of the form: u(t) = ũ(t)+um(t, τ), in which the oscillatory and the smooth components

of the response field are of the same order of magnitude. In this regard, the approach is more

akin to the variational multiscale method or multiscale finite element method [21, 28, 15] than

the asymptotic expansions, which admit decomposition of the form: u(t) = ũ(t) + ηum(t, τ).

The expansions employed in the manuscript for evolution equations, when combined with

the almost periodicity operator, result in O(1) terms only. The proposed scheme relies on

a stepwise-linear approximation of microchronological (single-cycle) problems using the as-

sumption that damage accumulation within a single cycle remains small. The two key novel

contributions of this manuscript are: (1) Formulation and implementation of the accelerated

multiple time scale homogenization method. The proposed method is capable of accelerat-

ing the multiple time scale evaluation of damage accumulation response compared to those

homogenization approaches previously proposed; and (2) Demonstration of the thermody-

namic consistency of damage models integrated using the multiple time scale homogenization

methods, in general, and the proposed accelerated time integration scheme, in particular, for

a large class of CDM models. The proposed approach is thoroughly verified for two different

CDM models to demonstrate the generality of this approach.

The remainder of this manuscript is organized as follows: Section 2 describes a general

formulation of the fatigue damage accumulation and life prediction problem in the context

of CDM. In Section 3, the fundamentals of the multiple time scale modeling is described.

Section 4 details the application of the multiple time scale modeling principles to the fatigue

damage accumulation and life prediction problem, along with the conditions which lead to

the accelerated time integrator. Section 5 describes the computational implementation of

the proposed method and the thermodynamic consistency of the accelerated time integration

algorithm. In Section 6, a series of numerical verification studies are provided to assess the
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Figure 1: Schematic description of the problem domain subjected to fatigue loading.

performance and accuracy of the proposed method. Section 6 discusses the conclusions and

future research in this area.

2 Problem formulation

Consider a body with its domain denoted as Ω subjected to a periodic and quasi-static

excitation as illustrated in Fig. 1. x denotes the spatial coordinate within Ω. Let t ∈ [0, tl]

be the time coordinate, where tl is the fatigue life of the body, taken as an unknown. The

response of the body subjected to the periodic excitation is modeled using the following

equilibrium equation:

∇ · ση(x, t) + b(x) = 0; x ∈ Ω, t ∈ [0, tl] (1)

where ση is the stress tensor, b the body force per unit volume, and ∇ · (·) the divergence

operator. Fluctuation of the response fields in time due to the oscillatory (i.e. fatigue)

loading is indicated by a superscript η. The loading rate is taken to be slow enough such

that the inertial effects can be neglected.

Assuming small deformations, the strain tensor is expressed as the symmetric gradient

of the displacement field:

εη(x, t) = ∇suη(x, t) (2)

where εη is the strain tensor, uη the displacement field, and ∇s(·) = 1
2
[∇(·) + (·)∇] the

symmetric gradient operator.

The fatigue loading is imparted on the body through the displacement and traction

boundary conditions on Γu ∈ ∂Ω and Γt ∈ ∂Ω (such that Γu ∪ Γt = ∂Ω and Γu ∩ Γt = ∅),
respectively, as:

uη(x, t) = ûη(x, t); x ∈ Γu, t ∈ [0, tl] (3)

ση(x, t) · n(x) = t̂η(x, t); x ∈ Γt, t ∈ [0, tl] (4)
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in which, ûη and t̂η are prescribed boundary displacement and traction functions, taken to be

oscillatory, and n is the outward normal vector to the boundary of the body. For simplicity,

the initial state of the body is taken to be stress and displacement free.

The constitutive relationship that describes the progressive accumulation of fatigue dam-

age as a function of load cycles is modeled based on a thermodynamics-based continuum

damage mechanics approach. Rigorous treatments of the classical and modern CDM ap-

proaches can be found in Refs [1, 23]. One key distinction in the damage evolution descrip-

tion for fatigue damage accumulation is cycle sensitivity. Unlike monotonic CDM evolution

laws, fatigue damage laws must accommodate accumulation at subcritical load states [32].

In this section, the general description of the constitutive model is presented. The specific

forms of the damage accumulation laws are described as part of the numerical verification

section.

Consider the free energy per unit volume of the form:

Ψη = Ψ (εη,Dη) :=
1

2
εη : Cη(Dη) : εη (5)

where Cη is the secant modulus tensor, that evolves as a function of the damage variables,

Dη; and the colon indicates double inner product. The Dη tensor tracks the evolution of the

damage state at the material point:

Dη = {Dη
1 , D

η
2 , . . . , D

η
n} (6)

n is the number of damage variables, each of which tracks the evolution of a separate damage

mechanism, possibly coupled to the others. Considering an isothermal response and assuming

that the damage accumulation is slow enough to prohibit significant damage induced localized

heating, the Clausius-Duhem inequality reduces to the mechanical dissipation:

−Ψ̇η + ση : ε̇η = δ ≥ 0 (7)

in which, δ denotes the mechanical dissipation and, superposed dot indicates time derivative.

Taking the time derivative of the free energy function in Eq. 5, and substituting it into the

Clausius-Duhem inequality yields:

ε̇η : [ση −Cη : εη]− 1

2
εη : Ċη : εη ≥ 0 (8)

Considering arbitrary strain rates in Eq. 8, we arrive at the constitutive relationship:

ση = Cη : εη (9)
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along with the dissipative inequality

−1

2
εη : Ċη : εη = δ ≥ 0 (10)

which implies that the time derivative of the secant modulus tensor should be negative

definite to ensure thermodynamic consistency. By the chain rule the dissipation is expressed

as:

εη : (Gη · gη) : εη = δ ≥ 0 (11)

where,

Gη := −1

2

dCη

dDη
(12)

Ḋη = gη (Dη, ε,hη) (13)

gη denotes the set of evolution equations for the damage variables, and hη are additional

internal state variables defining the time evolution of the damage variables. The dissipation

inequality imposes constraints on the form of these evolution equations. Let gηζ denote the

evolution equation of the damage variable Dη
ζ , and Gη

ζ = (−1/2)∂Cη/∂Dη
ζ , the dissipation

becomes:

εη :

(
n∑
ζ=1

Gη
ζ · g

η
ζ

)
: εη = δ ≥ 0 (14)

Taking Gη
ζ to be positive semi-definite and since sum of positive semi-definite tensors is

positive semi-definite, the dissipation inequality is satisfied for nonnegative evolution of the

damage variables:

gηζ = gζ (Dη, ε,hη) ≥ 0 (15)

In what follows, the analysis of the thermodynamic consistency of the discrete time evolution

operators that results from time domain homogenization is performed by assuming that the

evolution of the damage variables are nonnegative (i.e., Eq. 15) and that all derivatives of

the tensor of secant moduli are positive semi-definite. In the discussion above, we adopted

the formalism of strict dissipation [20], in which all damage induced inelastic deformation is

dissipated. Some alternative thermodynamic damage formulations consider a defect energy

component to the free energy, which is a function of the internal state variables, hη. The

dissipation δ then takes an alternative form, which simply considers a part of mechanical

dissipation to be stored in the material microstructure as an energetic contribution. The re-

sulting evolution equations from either formulation are identical and the dissipative-energetic

split of the mechanical dissipation is arbitrary, unless thermal contributions are included in

the formulation [34].
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The energy function (Eq. 5) is not an explicit function of the spatial coordinate, x, which

implies that the resulting damage model is local. Local damage formulations fail to capture

the size scale effect and the numerical implementation of these formulations are known to

exhibit mesh sensitivity when loading extends to the softening regime. Mesh sensitivity is

characterized by localization of the strain and damage to a single finite element, regardless

of the level of discretization. A number of thermodynamically consistent nonlocal damage

formulations exist including gradient (e.g., [25]) and integral (e.g., [5]) type, and others

(e.g., [33]). The demonstration of the thermodynamic consistency of the multiple time scale

method is not affected by the nonlocal arguments, and this discussion is not included for the

simplicity of the presentation.

3 Multiple time scales

Straightforward evaluation of the governing equations above using a standard incremental

solution algorithm is computationally prohibitive. This is because the time to final failure

is many orders of magnitude larger than the time step size needed to traverse a load cycle,

and fatigue life prediction typically entails many millions of increments. Multiple time scale

homogenization of the governing equation leads to more effective time integration algorithms,

where only a subset of the load cycles throughout the loading history are resolved. To this

end, two time scales are introduced: a slow time scale represented by the macrochronological

coordinate, t ∈ [0, tl], and a fast time scale represented by the microchronological coordinate,

τ ∈ [0, τ0]. τ0 is the scaled period of a single loading cycle. The micro- and macro- time

scales are related by the scaling parameter, η, as:

τ(t) =
t

η
(16)

All fields that fluctuate in time (indicated with superscript η) are then expressed as a function

of both the macrochronological and the microchronological time coordinates:

φη(t) = φ(t, τ(t)) (17)

in which, φη denotes an arbitrary response function. The time derivative of a fluctuating

field is obtained using the chain rule.

φ̇η(t) = φ̇(t, τ(t)) =
∂φ

∂t
+

1

η

∂φ

∂τ
(18)

When applied to the spatial scales, the computational homogenization procedure requires

imposing particular boundary conditions defined over the unit spatial cell (i.e., representa-
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tive volume) to fully describe the microscale problem. The boundary conditions must also

ensure energy compatibility during the micro-macro transition (i.e., the Hill-Mandel condi-

tion). While a number of such boundary conditions have been proposed (see, e.g., [10, 27]),

the most commonly used assumption is local periodicity of the response fields (i.e., displace-

ments, stresses, strain, etc.) over the spatial cell. The generalization of the local periodicity

condition to the time domain is usually not possible because of the presence of irreversible

fields, such as the damage variables, in the underlying governing equations. For instance, the

value of each damage variable only increases within a unit temporal cell (or microchrono-

logical cell) by Eq. 15. The magnitude of the damage variable at the end of a load cycle

will therefore be higher than at the beginning, clearly violating the periodicity condition.

Furthermore, the time domain evolution of the response fields is an initial value problem

and the values of the response fields at the end of a microchronological cell are unknowns

rather than prescribed fields. In contrast, defining the micro-macro transition still necessi-

tates information on the evolution over the microchronological cell. The concept of almost

periodicity, previously proposed in Ref. [29], resolves this difficulty by allowing small changes

in the values of the response function at the boundaries of the microchronological cell. We

denote the temporal averaging operator as:

〈φ〉τ (x, t) :=
1

τ0

∫ τ0

0

φ(x, t, τ)dτ (19)

The almost periodic temporal homogenization operator in the rate form is expressed as:

˙̃φ :=
∂M(φ)

∂t
= ˜̇φ+ φ̇ap (20)

φ̇ap =
1

η

〈
∂φ

∂τ

〉
τ

(21)

in which, (̃·) is a time homogenization operator, and φ̇ap denotes the almost periodic compo-

nent of the time rate of evolution of the temporally homogenized response field. Equation 20

implies that the time differentiation and the time homogenization operators do not commute.

Choosing the temporal averaging operator as the time homogenization operator is natural

and has been previously considered [29]. A more computationally convenient homogenization

operator is the fixed point operator [12]:

φ̃(t) = φ(t, τ ∗) (22)

in which, τ ∗ ∈ [0, τ0] is an arbitrary but fixed point within the microchronological cell.

One attractive property of the fixed point operator compared to the averaging operator

is its distributive property, which allows simple decomposition of the nonlinear fields (i.e.,

8



φ = ψξ → φ̃ = ψ̃ξ̃ ).

Herein, we demonstrate that the micro-macro transition is also accurate (but not exact)

using an arbitrary choice of the fixed point. Of particular interest are power-like quantities

ensuring accurate tracking of the dissipation and damage processes through time. Consider

the micro-macro transition of the rate of strain energy defined using the almost periodic

homogenization operation:

Φ :=M(σ : ε̇)− σ̃ : ˙̃ε ≈ 0 (23)

Eq. 23, in which the terms on the right hand side denote the time homogenized strain

energy rate at the micro-time scale and the energy rate computed using the mean stress and

strain, respectively, is analogous to the Hill-Mandel condition used in spatial homogenization,

but applied in the time domain and in rate form. Using the fixed point operator and its

distributive property:

M(σ : ε̇) = σ̃ : ˜̇ε = σ (t, τ ∗)

[
∂ε (t, τ ∗)

∂t
+

1

η

∂ε (t, τ ∗)

∂τ

]
(24)

and

σ̃ : ˙̃ε = σ (t, τ ∗)

[
∂ε (t, τ ∗)

∂t
+

1

η

〈
∂ε (t, τ)

∂τ

〉
τ

]
(25)

Substituting Eqs. 24 and 25 into Eq. 23:

Φ =
1

η
σ̃ :

[
∂ε (t, τ ∗)

∂τ
− ε (t, τ0)− ε (t, 0)

τ0

]
(26)

Expanding the time derivative of the strain with respect to the fast time scale using the

Taylor series expansion up to the third order, we obtain:

Φ =
τ0 − 2τ ∗

η
σ̃ :

∂2ε (t, τ ∗)

∂τ 2
(27)

which implies the micro-macro transition is satisfied up to the third order term when the

fixed point operator is chosen to be the mid-point (i.e., τ ∗ = τ0/2). Despite a slightly larger

error, the choice of τ ∗ = 0 is computationally more convenient since the fixed point operator

then coincides with the initial value of the microstructure cell problem and a standard

incremental solution strategy is achieved. Provided that the evolution of the response fields is

relatively smooth, the proposed operator homogenizes the microchronological scale response

with reasonable accuracy.

The boundary tractions and displacements are prescribed such that they can be decom-
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posed into slow and fast loading components as follows:

ûη(x, t) = û(x, t, τ) = û0(x, t) + û1(x, τ) x ∈ Γu (28)

t̂η(x, t) = t̂(x, t, τ) = t̂0(x, t) + t̂1(x, τ) x ∈ Γt (29)

such that û1(x, 0) = 0 and t̂1(x, 0) = 0 (Fig. 1). The vanishing initial conditions of the

prescribed tractions and displacements are not a restriction on the loading. For instance, for

a nonhomogeneous initial prescribed displacement, û1(x, τ) = c, the slow and fast loading

components can be shifted as: ûnew
0 ≡ û0+c and ûnew

1 ≡ û1−c to bring the overall prescribed

load to the required form.

4 Time scale homogenization

In this section, the original boundary value problem that defines the evolution of failure under

the fatigue loading is decomposed into microchronological and macrochronological problems

based on the time scale homogenization with almost periodic and fixed point operators. The

microchronological problem is an initial boundary value problem (IBVP) that defines the

evolution of the response subjected to a single microchronological cell (i.e., a single period

of fast time scale loading), whereas the macrochronological problem is the homogenized

IBVP, which provides the system response under slowly varying loads. Application of time

homogenization results in a fully coupled pair of micro- and macrochronological problems.

We also present a simplification, which leads to a partially decoupling and accelerated time

integration of the multiscale problems.

4.1 Microchronological IBVP

Let φm(x, τ) := φ(x, t∗, τ) denote a response field at a fixed but arbitrary macrochronolog-

ical time, t∗. The microchronological IBVP is obtained by stating the original governing

equations at the fixed macrochronological time, t∗. Accordingly, the equilibrium equation

for the microchronological problem becomes:

∇ · σm(x, τ) + b(x) = 0; x ∈ Ω, τ ∈ [0, τ0] (30)

in which, the stress, σm, is obtained by applying Eq. 17 to the original constitutive relation-

ship (Eq. 9) at t = t∗:

σm(x, τ) = Cm (x; Dm(τ)) : εm(x, τ) (31)
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The strain, εm is related to the displacement field using the small strain kinematic relation-

ship by applying Eq. 17 to Eq. 2 at t = t∗:

εm(x, τ) = ∇sum(x, τ) (32)

The evolution equation of the microchronological damage tensor, Dm is obtained by the

asymptotic analysis of the damage evolution laws. Applying Eq. 18 to Eq. 13 and collecting

the same order terms with respect to the scaling parameter, η yields:

O(η−1) :
∂D

∂τ
(x, t, τ) = g0 (x, t, τ ; D, ε,h) (33a)

O(1) :
∂D

∂t
(x, t, τ) = g1 (x, t, τ ; D, ε,h) (33b)

The decomposition of the damage evolution equation implies that the damage evolution

functions can be expressed as an asymptotic series, i.e.: g = (1/η)g0 + g1. An evolution

equation of the general form:

g = P(D, ε,h) · ḣ (34)

where P is of order O(1), satisfies the above constraint, and is admissible. We note that when

the almost periodic homogenization operator is applied to the damage evolution expansion,

the resulting terms are of the same order of magnitude, O(1), in view of the definition of

almost periodicity. Evaluating Eq. 33a at t = t∗ yields the evolution equation for Dm with

respect to the microchronological time scale:

∂Dm

∂τ
(x, τ) = g0m (x, τ ; Dm, εm,hm) (35)

The boundary conditions for the microchronological problem are obtained by evaluating

Eqs. 28 and 29 at t = t∗.

um(x, τ) = ûm
0 (x) + û1(x, τ) x ∈ Γu (36)

tm(x, τ) = t̂m
0 (x) + t̂1(x, τ) x ∈ Γt (37)

The initial conditions of the microchronological problem are established using the fixed

point homogenization operator and constitute the coupling between the micro- and macrochrono-

logical problems. When the fixed point operator is chosen as τ ∗ = 0, the initial state of the

microchronological problem coincides with the homogenized state:

um(x, 0) = ũ (x, t∗) , Dm(x, 0) = D̃ (x, t∗) , hm(x, 0) = h̃ (x, t∗) ; x ∈ Ω (38)
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in which, ũ, D̃ and h̃ are evaluated within the macrochronological IBVP defined below.

Equations 30-38 along with the explicit form of the evolution equations fully define the

microchronological IBVP as a function of the macrochronological response. When an alter-

native fixed point operator is chosen (τ ∗ 6= 0), the initial conditions of the microchronological

problem remain unknown. The IBVP is closed by considering the fixed point state as a con-

straint:

um(x, τ ∗) = ũ (x, t∗) , Dm(x, τ ∗) = D̃ (x, t∗) , hm(x, τ ∗) = h̃ (x, t∗) ; x ∈ Ω (39)

In the context of a time incremental solution algorithm, the microchronological problem,

using Eq. 39, requires an iterative solution scheme, since the initial conditions of the problem

are also unknowns. Despite the higher accuracy that can be achieved by using a nonzero

fixed point operator (i.e., Eq. 27), the computational complexity of the resulting formulation

is high. Therefore, τ ∗ = 0 is the computationally efficient choice, and adopted herein.

4.2 Macrochronological IBVP

The governing equations of the macrochronological problem are obtained by applying the

fixed point operator to the original governing equations. The equilibrium and kinematic

equations become:

∇ · σ̃(x, t) + b(x) = 0 (40)

ε̃(x, t) = ∇sũ(x, t) (41)

Applying the fixed point operator to the constitutive relationship in Eq. 9 and using the

distributive property of the fixed point operator yields:

σ̃(x, t) = C̃
(
x; D̃(t)

)
: ε̃(x, t) (42)

The evaluation of the time homogenized secant moduli, C̃, requires the time evolution of the

time homogenized damage variables, D̃. The macroscale evolution functions for the damage

variables are obtained through the almost periodic operator. Applying Eq. 20 to the damage

tensor, and considering Eqs. 33a-b:

˙̃D(x, t) = g̃1 (x, t; D, ε,h) + Ḋap (x, t) (43)
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in which, the almost periodic component is obtained based on the microchronological time

evolution of the damage variables:

Ḋap (x, t) =
1

η

〈
g0
〉
τ

(44)

The boundary conditions are obtained by applying the fixed point operator (τ ∗ = 0)

to the boundary conditions and considering the homogeneity conditions imposed on the

prescribed fields (i.e., û1(x, 0) = 0 and t̂1(x, 0) = 0):

ũ(x, t) = û0(x, t) x ∈ Γu (45)

σ̃(x, t) · n(x) = t̂0(x, t) x ∈ Γt (46)

The initial state of the macrochronological IBVP follows from the initial state of the original

problem. The initial stress, displacement and the internal state variables of the homogenized

fields are taken as zero.

4.3 Quasi-linear approximation of the microchronological problem

The microchronological IBVP defined by Eqs. 30-32 and 35-38 is nonlinear and evaluation of

the system of equations over a large domain requires significant computational effort, partic-

ularly since the microchronological problem is evaluated at multiple discrete macrochrono-

logical time steps (i.e., each t∗) throughout the fatigue life of the structure. We seek to

significantly improve the efficiency of the ensuing life prediction methodology by consid-

ering a simplification in the evaluation of the microchronological problem. The idea of

almost periodicity tacitly presumes that the change in the response fields over a single mi-

crochronological cell is small. In line with this assumption, the equilibrium state over a

single microchronological cell is taken to be unaffected by the variation in the damage state:

σm(x, τ) ≈ Cm (x; Dm(τ ∗)) : εm(x, τ) (47)

where, Cm is the value of the secant modulus tensor evaluated at the fixed point, τ ∗. The

secant modulus tensor is therefore taken to be constant over a single microchronological cell.

By this simplification, the microchronological equilibrium is expressed as:

∇ · [Cm(x) : ∇sum(x, τ)] + b(x) = 0; x ∈ Ω, τ ∈ [0, τ0] (48)

subjected to the boundary and initial conditions stated in Eqs. 36-38. The microchronological

equilibrium equation decouples from the microchronological damage evolution equations (i.e.,

Eq. 35). Two major simplifications arise by considering the quasi-linear approximation to the
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microchronological equilibrium. First, when the loading within the microchronological cell is

proportional, the evaluation of the microchronological equilibrium reduces to obtaining the

linear elastic responses subjected to unit loads along the direction of the prescribed boundary

loads, and employing superposition to compute the displacement, strain and stress response

under the prescribed boundary loading. Second, while the damage evolution equations are

nonlinear, they are local ODEs (in view of the local character of the damage evolution

functions) to be evaluated independent of each other at each integration point throughout the

domain. Parallelization of the microchronological damage evolution computation is therefore

trivial and completely scalable.

5 Computational implementation

The framework outlined in this manuscript was implemented and numerically verified. The

implementation of the micro- and macro-chronological problems defined in Section 4 is per-

formed by considering: (1) The fixed point homogenization operator set as τ ∗ = 0; and

(2) the quasi-linear approximation of the micro-chronological problem. The implementation

uses the commercial finite element software, Abaqus. Choosing the fixed point operator

as τ ∗ = 0 implies that the macrochronological state at a fixed macrochronological time

coincides with the initial state of a microchronological problem. Along with forward dis-

cretization of the almost periodic damage rate, the resulting computational algorithm is

staggered such that the micro- and macro- problems are evaluated in turn, without a need

for micro-macro convergence iterations. Employing the approximation for the microchrono-

logical problem introduced in Section 4.3, the microchronological problems themselves are

quasilinear, whereas the macrochronological problem remains nonlinear and is evaluated us-

ing an iterative scheme. In this section, we first present an adaptive macrochronological

time stepping methodology and the resulting computational algorithm. We then present an

analysis of the implementation for thermodynamic consistency. In particular, the dissipative

inequality is checked, and conditions to ensure the thermodynamic consistency are stated.

5.1 Adaptive macrochronological time stepping

The details of the adaptive macrochronological time stepping algorithm are described in

Ref. [12]. In this manuscript, we summarize the algorithm to provide the context for the

thermodynamic analysis detailed in the next section. The macrochronological time step size

is chosen as a function of damage accumulation under cyclic loading (i.e., microchronological

cell), which implies that the homogenized damage accumulation rate is largely due to the

almost periodic contribution.
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The proposed computational algorithm involves solving the macrochronological problem

by incrementally stepping through macrochronological time in increments adaptively chosen

throughout the life of the body (e.g., t0, t1, t2, . . . ). In space, the macrochronological prob-

lem is discretized and solved using the finite element method. Let x1,x2, . . . ,xng be the

coordinates of the Gauss points within the discretized domain. D′(t) is the set of all almost

periodic rates of damage at the integration points:

D′(t) =
[
Ḋap(x1, t), Ḋap(x2, t), . . . , Ḋap(xng , t)

]
(49)

which is assumed to vary smoothly during a macrochronological step: (i.e., ti ≤ t < ti+1).

The ith macrochronological time step is denoted as: ∆ti = ti+1 − ti. The D′(t) within

ti ≤ t < ti+1 is approximated with a linear function constructed from D′(ti) and D′(ti−1) as

follows:

D′(t) ≈ D′(ti) +
∆t

∆ti−1

(D′(ti)−D′(ti−1)) ; ti ≤ t < ti+1 (50)

We also consider the following simpler constant approximation of D′(t):

D′(t) ≈ D′(ti) (51)

The approximation of the almost periodic rates using Eq. 50 is a forward discretization; i.e.,

does not include information beyond, ti. This approximation, along with the specific choice

of the fixed point operator (τ ∗ = 0) leads to an explicit computational algorithm. The change

in the almost periodic components of the damage variables during the macrochronological

increment are approximated by integrating Eq. 50:

∆Di ≈
∫ ∆ti

0

D′(t)dt = D′(ti)∆ti +
∆t2i

2∆ti−1

(D′(ti)−D′(ti−1)) (52)

and integrating Eq. 51 yields a similar result for the constant approximation.

∆Di ≈
∫ ∆ti

0

D′(t)dt = D′(ti)∆ti (53)

The macrochronological time step size, ∆ti, is adaptively chosen by limiting the difference

in the damage change predicted by the constant and linear approximations of D′(t) (Eqs. 50

and 51).

find ∆ti s.t.;

∥∥∥∥ ∆t2i
2∆ti−1

(D′(ti)−D′(ti−1))

∥∥∥∥
p

≤ tol (54)

where tol is the damage accumulation tolerance, and ‖ · ‖p denotes the discrete lp-norm.

Comparing higher and lower order methods to adaptively choose the stepsize is also com-
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monly used for adaptive Runge-Kutta methods. The following alternative adaptive step size

criterion is used for the constant approximation of D′(t).

∆ti = ∆Dp/ ‖D′(ti)‖p (55)

where ∆Dp is a numerical parameter controlling the restrictiveness of the adaptive step size.

The multiscale solution strategy is implemented as follows. A driver program (imple-

mented in Python) controls the evaluation of the microchronological and macrochronolog-

ical problems at each macro time step. The driver also sets the initial conditions for the

microchronological problems at each macro time step and computes the macrochronological

time step size using Eq. 54 or 55. The evaluation of a microchronological step requires only

a single linear perturbation due to the quasi-linear approximation. The microchronological

damage evolution is computed by integrating the microchronological damage evolution laws

(Eq. 35) for each integration point using strain values determined from the linear perturba-

tion. The almost periodic damage rates computed within the microchronological problem

solution is stored in an external database, and in turn used by the driver to compute the

time step sizes. No microchronological equilibrium step beyond the linear perturbation step

is needed. The macrochronological problem is evaluated using the incremental, nonlinear

solver within Abaqus. The user material subroutine (UMAT) feature of Abaqus is utilized

to implement the macrochronological constitutive law (Eq. 42), and the associated damage

evolution laws (Eq. 43).

The computational algorithm for determining the structural response over the lifetime of

a structure is summarized as below:

1. Evaluate a microchronological step without the quasi-linear approximation to deter-

mine D′(t0).

2. Evaluate a microchronological step without the quasi-linear approximation to deter-

mine D′(t1) using the final state of the previous evaluation as initial conditions.

3. Initialize i = 1.

4. Check for structural failure and repeat until failure is detected.

(a) Calculate ∆ti using Eq. 54 (or Eq. 55).

(b) Calculate D′(t) using Eq. 50 (or Eq. 51).

(c) Evaluate a macrochronological step.

(d) Evaluate a microchronological step with the quasi-linear approximation to de-

termine D′(ti+1) using the final state of the macrochronological step as initial

conditions.
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(e) Increment i

5. End

5.2 Thermodynamic consistency

Satisfying the dissipative inequality using the adaptive time stepping methodology imposes

an additional constraint on the macrochronological time step size. Considering the two

term asymptotic expansion of the damage evolution function, Eq. 13, and the non-negative

constraint on the evolution equation imposed by the dissipation inequality (i.e., Eq. 15)

yields:
1

η
g0
ζ (D, ε,h) + g1

ζ (D, ε,h) ≥ 0 (56)

for each damage variable, ζ. The first and the second terms in Eq. 56 denote damage

accumulation induced by the fast and slow varying loads, respectively. Since the inequality

must be satisfied for the cases of pure fatigue loading (i.e., g1
ζ = 0) and pure monotonic

loading (i.e., g0
ζ = 0), the thermodynamic consistency implies:

g0
ζ (D, ε,h) ≥ 0; g1

ζ (D, ε,h) ≥ 0 (57)

The macrochronological damage evolution law, with the quadratic time stepping approx-

imation, results in the following expression (ti ≤ t < ti+1): By considering Eqs. 33a, 43, 44,

49, and 50, we arrive at the following expression:

˙̃D(x, t) = g̃1(x, t; D̃, ε̃, h̃) +
1

η

〈(
1 +

∆ti
∆ti−1

)
∂D

∂τ
(x, ti, τ)−

(
∆ti

∆ti−1

)
∂D

∂τ
(x, ti−1, τ)

〉
τ

(58)

To ensure the thermodynamic consistency of the proposed time stepping strategy, it suffices

to show that the two terms on the right hand side of Eq. 58 are nonnegative. By Eq. 57b

it is trivial to see that the first term, g̃1, is nonnegative. To ensure that the second term

remains positive, we set the kernel of the integral to be positive (for all x):

∂D

∂τ
(ti, τ)

(
1 +

∆ti
∆ti−1

)
− ∂D

∂τ
(ti−1, τ)

(
∆ti

∆ti−1

)
=
∂D

∂τ
(ti, τ) +

(
∂D

∂τ
(ti, τ)− ∂D

∂τ
(ti−1, τ)

)
∆ti

∆ti−1

≥ 0 (59)

By Eq. 57a:
∂D

∂τ
(ti, τ) ≥ 0 (60)
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Considering the following time step size constraint guarantees that Eq. 59 is satisfied.

∆ti = min
j=1,..,n

{
∆ti−1

∂Dj

∂τ
(ti, τ)

∂Dj

∂τ
(ti−1, τ)− ∂Dj

∂τ
(ti, τ)

}
(61)

and ∆ti ≥ 0. If for any j’s ∂Dj

∂τ
(ti, τ) = 0, then Eq. 61 would provide ∆ti = 0. We construct

two sets of integers A = {j ∈ 1, ..., n|∂Dj

∂τ
(ti, τ) = 0} and B = {j ∈ 1, ..., n|∂Dj

∂τ
(ti, τ) 6= 0}.

Eq. 61 then becomes

∆ti = min
B

{
∆ti−1

∂Dj

∂τ
(ti, τ)

∂Dj

∂τ
(ti−1, τ)− ∂Dj

∂τ
(ti, τ)

}
(62)

and we fix ˙̃Dj(x, t) = 0 for every j in A. Therefore, Eq. 62 is maintained alongside Eq. 54 as

an additional constraint on the size of ∆ti, thereby ensuring satisfaction of the dissipative

inequality.

6 Model Verification

In this section, the proposed multiple time scale homogenization formulation with the ac-

celerated time integration scheme is numerically verified. The proposed model is compared

to the direct cycle-by-cycle simulations, in which the standard nonlinear time increment

strategy that resolves every load cycle throughout the loading history is employed. The first

verification case is concerned with the time domain integration only, based on the response

of a 1-D nonlinear spring model. The second verification case includes a spatially multiscale

3-D damage evolution model for composite materials.

6.1 One-dimensional nonlinear spring model

The governing equations for the one-dimensional nonlinear spring problem are shown in

Box 1. ση is the stress on the spring, εη the strain; uη the displacement, T η(t) is the applied

traction, and L is the length of the spring. Dη denotes the damage state of the spring, E

the Young’s modulus, g is the evolution law for the damage variable. T0 and T1 are slowly

varying and cyclic applied tractions, respectively.

The fatigue sensitive damage evolution function is given as [17]:

g (εη(t), Dη(t)) =

[
Φη(t)

Dη(t)

]γ
〈Φ̇η(t)〉+ (68)

where 〈·〉+ = [(·) + | · |] /2 denotes the Macaulay brackets. γ is a material parameter that
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controls the sensitivity of the damage accumulation model to the fatigue loads.

Φη(υη(t)) =
arctan(aυη(t)− b) + arctan(b)

π

2
+ arctan(b)

(69)

where, a and b are material parameters that control the damage accumulation under mono-

tonic loads. The damage accumulates as a function of the damage equivalent strain, υη:

υη(εη(t)) =

√
E

2
|εη(t)| (70)

Applying the multiple time scale homogenization method to the governing equations of

the nonlinear spring yields the micro- and macrochronological problems, which are summa-

rized in Boxes 2 and 3, respectively.

In all simulations considered in this section, the following parameters are used: L = 1.0 m,

E = 10 MPa, a = 0.1, b = 12.0, and γ = 2.5. In the first set of simulations, a sinusoidal

loading of the following form is imparted on the spring:

T (t, τ) = T0(t) + T1(τ) (81)

where,

T0(t) =
σmax + σmin

2
+
σmax − σmin

2
sin(−2πc) (82)

T1(τ) =
σmax − σmin

2
[sin(2π(τ − c))− sin(−2πc)] (83)

The maximum and minimum values of the applied loading are denoted as σmax and σmin,

respectively. 0 ≤ c < 1 is a phase shift factor, which changes the initial state of the loading

while leaving the loading rate and the minimum and maximum applied tractions unchanged.

Introducing the phase shift is a convenient way to explore the effect of the choice for the

Equilibrium: ση(t) = T η(t) (63)

Strain-displacement: εη(t) =
uη(t)

L
(64)

Constitutive relationship: ση(t) = [1−Dη(t)]Eεη(t) (65)

Damage evolution: Ḋη(t) = g (εη(t), Dη(t)) (66)

Initial conditions: D (t = 0) = 0; u(t = 0) = 0 (67)

Box 1: Governing equations of the one-dimensional nonlinear spring problem.
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Find um(τ) and Dm(τ) in τ ∈ [0, τ0] such that:

Equilibrium: σm(τ) = Tm
0 + T1(τ) (71)

Constitutive relationship: σm(τ) = [1−Dm(0)]Eεm(τ) (72)

Strain-displacement: εm(τ) =
um(τ)

L
(73)

Damage evolution:
∂Dm (τ)

∂τ
=

[
Φm(υm(τ))

Dm(τ)

]γ 〈∂Φm(υm(τ))

∂τ

〉
+

(74)

Initial conditions: Dm (τ = 0) = D̃ (t∗) ;um (τ = 0) = ũ (t∗) (75)

Box 2: Governing equations of the microchronological nonlinear spring problem.

Find ũ(t) and D̃(t) in t ∈ [0, tf ] such that:

Equilibrium: σ̃(t) = T0(t) (76)

Constitutive relationship: σ̃(t) =
[
1− D̃(t)

]
Eε̃(t) (77)

Strain-displacement: ε̃(t) =
ũ(t)

L
(78)

Damage evolution: ˙̃D(t) =

[
Φ̃(υ̃(t))

D̃(t)

]γ 〈
∂Φ̃(υ̃(t))

∂t

〉
+

+ Ḋap(t) (79)

Initial conditions: D̃ (t = 0) = 0; ũ(t = 0) = 0 (80)

Box 3: Governing equations of the macrochronological nonlinear spring problem.

fixed point operator as a function of the level of the applied traction. For instance, the choice

of c = 1/4 implies that T0(t) = σmin, and c = 3/4 leads to T0(t) = σmax. Since the fixed

point operator is set to τ ∗ = 0, the position of the fixed point operator coincides with the

minimum and maximum of the loading profile, respectively.

The performance of the methodology is tested at three different loading magnitudes with

the load shift factors of c = 1/4 and c = 3/4. The maximum applied load amplitude, σmax,

was set to 330 kPa, 265 kPa, and 205 kPa with an R-ratio of 0.1 (i.e., σmin = 0.1σmax) for

each case. In these simulations, the macrochronological time increment is set to the length

of a single loading cycle; i.e., the adaptive step size selection was not used. Since no cycle

jump is considered, the sources of errors are limited to the choice of the fixed point operator

and the accelerated time integration scheme only (i.e., Eq. 72).

Figures 2-4 show the evolution of damage in the spring as a function of the number of load
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Figure 2: Nonlinear spring subjected to cyclic loading with maximum amplitude of 330 kPa.

cycles for the high, medium, and low amplitude loading, respectively. The high amplitude

loading corresponds to low cycle fatigue (Nf = 63, Nf denotes number of cycles to failure),

whereas the low amplitude loading corresponds to the high cycle fatigue (Nf = 8599). In

the case of low cycle fatigue (Fig. 2), the choice for the phase shift factor (i.e., fixed point

operator) has a significant effect on the accuracy. The choice of c = 3/4, which implies that

the fixed point operator coincides with the maximum applied traction, leads to an accurate

description of the damage evolution using the accelerated time integration scheme, whereas

c = 1/4 displays a slightly lower accuracy. As the number of cycles to failure is increased

(Figs. 3 and 4), the proposed approach converges to the reference solution, regardless of the

phase shift (i.e., the position of fixed point operator with respect to the loading amplitude)

fatigue load suggesting that for high cycle fatigue the effect of the phase shift on the solution

accuracy is not significant. In the remainder of the simulations, c = 3/4 is employed.

Figures 2-4 also show the effect of the value of the scaling parameter on the performance

of the proposed multiscale approach. The scaling parameter is a function of the ratio between

cycle duration, which is kept constant, and the total time to failure, which increases as the

load is reduced. Therefore, the scaling parameter is reduced from Figures 2-4. The increase

in accuracy as the scaling parameter is reduced points to convergence as η → 0.

A second set of simulations was conducted to assess the accuracy of the proposed method

including the adaptive time stepping strategy in the context of linear and quadratic macrochrono-

logical time stepping criteria. Figure 5 shows the evolution of damage as a function of the

number of loading cycles when a linear time stepping criterion is used. The simulations were

performed by setting σmax = 125kPa and R-ratio = 0.1. At time step, i, the time increment
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Figure 3: Nonlinear spring subjected to cyclic loading with maximum amplitude of 265 kPa.
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Figure 4: Nonlinear spring subjected to cyclic loading with maximum amplitude of 205 kPa.
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Figure 5: Performance of the adaptive time stepping algorithm with linear time stepping
criterion.

is chosen based on the infinity norm:

∆ti = ∆Dmax/ ‖D′(ti)‖∞ (84)

in which, ∆Dmax is the error tolerance. In Fig. 5, the macrochronological time steps for the

simulations with the tolerance values of ∆Dmax = 0.1 and ∆Dmax = 0.05 are indicated using

the markers. The total number of resolved quasilinear microchronological cell evaluations

are 10 and 17 for ∆Dmax = 0.1 and ∆Dmax = 0.05, respectively. When the tolerance is set

to ∆Dmax = 0.01, the damage evolution curve of the proposed multiscale algorithm is nearly

indistinguishable from the reference simulation, but it required 76 quasilinear microchrono-

logical cell evaluations in contrast to the 214,932 nonlinear cycles resolved in the reference

simulation. The proposed approach clearly indicates convergence to the reference solution

as stricter tolerance is chosen.

Figure 6 shows the evolution of damage versus the number of loading cycles when a

quadratic time stepping strategy is used. The simulations were performed by setting σmax =

240kPa and R-ratio = 0.1. At time step, i, the time increment is chosen based on Eq. 54.

For quadratic stepping, the macrochronological time step size is further restricted by the

thermodynamic constraint (i.e., Eq. 60). Damage evolutions computed using three different

error tolerance values (i.e., tol = 8 × 10−5, tol = 1.6 × 10−4 and tol = 3.2 × 10−4) are

shown in Fig. 6. The simulations required 142, 102 and 71 quasilinear microchronological

cell evaluations for increasingly tighter error tolerances, compared to the 2309 nonlinear

resolved load cycles in the reference simulations. The case where tol = 8 × 10−5 is nearly
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Figure 6: Performance of the adaptive time stepping algorithm with linear time stepping
criterion.

indistinguishable from the reference simulation.

The next set of simulations was conducted under a more complex loading condition, in

which two cyclic loads with different frequencies are applied simultaneously. The slow and

fast components of the applied loading are of the following forms:

T0(t) =
σmax + σmin

2
+
σmax − σmin

10
sin

(
2πt

d

)
(85)

T1(τ) =
σmax − σmin

2
sin(2πτ) (86)

in which, the loading parameter, d, indicates the ratio between the fast and slow load fre-

quencies. For instance, d = 1000 means the slow load undergoes one oscillation for every

1000 fast load oscillations. The amplitude of the slow load was set at 20% of the fast load

amplitude. In contrast to the previous simulations, T0(t) is no longer constant and varies as

a function of the macrochronological time, t.

Figures 7 and 8 show the evolution of damage as a function of the number of loading

cycles when for d = 1000 and d = 100, respectively. The simulations were performed by

setting σmax = 265kPa and R-ratio = 0.1. d = 1000 case and σmax = 265kPa, R-ratio = 0.1

for the d = 100 case. The loading parameters are chosen to ensure that the two load cases

lead to the same cycles to failure (9189 for both d = 1000 and d = 100). The linear

time stepping criterion is employed in all the simulations. The effect of the slow loading
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Figure 7: Performance of the multiscale model under superimposed cyclic loads (d = 1000).

component is observed in the damage curves as oscillations. Excellent accuracy is achieved

when ∆Dmax = 2×10−3 for the d = 1000 case, and when ∆Dmax = 2×10−4 for d = 100 case,

which corresponds to 288 and 2677 resolved quasilinear microchronological cell evaluations,

respectively. The requirement of higher resolution in d = 100 case compared to the d = 1000

case, despite similar cycles-to-failure, is linked to the definition of the scaling parameter. In

the case of two superimposed cyclic loads, the scaling parameter is no longer defined by the

ratio between the life of the structure and the microchronological cell size, but rather the

ratio between the slow and fast load frequencies (i.e., η ∼ 1/d). The time stepping tolerance

is therefore required to be an order of magnitude smaller for the d = 100, case in which, the

scale separation is an order of magnitude less.

6.2 Multi-dimensional composite damage model

The performance of the proposed multiple time scale approach with the accelerated time

integration strategy is further assessed in the context of the response of three-dimensional

composite specimens. The failure response of the composite material is modeled based on

the symmetric eigendeformation-based homogenization method (SEHM) [11]. The basis of

SEHM is the mathematical homogenization theory with multiple spatial scales and the trans-

formation field theory [14]. The details of this failure modeling approach and its implemen-

tation are presented in Refs. [11, 12]. A brief overview of the model is included herein. In the

SEHM method, the response at the scale of the material microstructure (i.e., representative
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Figure 8: Performance of the multiscale model under superimposed cyclic loads (d = 100).

volume) is evaluated numerically based on the idea of precomputing certain microstructure

information such as localization operators, concentration tensors and influence functions us-

ing linear elastic microstructure simulations, prior to a macroscale simulation. The inelastic

response fields, such as damage tensors, are expressed using coarse basis functions, specified

within subdomains (i.e., parts) of the representative volume as piecewise constant functions.

Each part within the representative volume corresponds to a specific microstructural failure

mode. The evaluation of the microstructural response fields are conducted within the re-

duced basis, leading to an orders of magnitude increase in computational efficiency compared

to the standard spatial computational homogenization methods.

The equilibrium, kinematic, and boundary conditions for the SEHM composite model

are provided in Eqs. 1-4. The composite material is taken to be a unidirectionally-reinforced

polymer composite subjected to cyclic loads in the tension direction. The primary modes

of failure at the scale of the microstructure are therefore fiber failure, delamination, and

transverse matrix cracking. Using the SEHM method, the parts that correspond to the

microstructure failure modes (illustrated in Fig. 9) are precomputed based on the nonlinear

microscale simulations. The damage state within the microstructure is represented using four

damage variables that are spatially piecewise constant within the associated microstructural

subdomain (i.e., Dη = {Dη
1 , D

η
2 , D

η
3 , D

η
4}). The first three damage variables idealize the

progressive failure of the fiber, transverse matrix cracking, and delamination, respectively.

The fourth damage variable represents the interaction between the transverse matrix cracking
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Figure 9: CFRP unit cell.

and delamination.

The constitutive relationship between the macroscopic stress, ση, and the macroscopic

strain, εη, is expressed in terms of the damage variables as:

ση(x, t) =
4∑

a=1

(1−Dη
a(x, t))

(
La : εη(x, t) +

4∑
b=1

Pab : µηb (x, t)

)
(87)

where µηb denotes the eigenstrain associated with part b, which is obtained through solving

the nonlinear system of equations:

n∑
b=1

(1−Dη
b (x, t))

(
Aab : εη(x, t) +

n∑
c=1

Babc : µηc (x, t)

)
= 0 a = 1, 2, 3, 4 (88)

in which, La, Pab, Aab, and Babc tensors are computed using the microstructural influence

functions - numerical approximations to the fundamental solutions of the microstructure

problems. These coefficient tensors provide the effect of the microscale morphology on the

homogenized constitutive law (i.e., Eq. 87):

La =
1

|Θ|

∫
Θa

L(y) : (I + G(y)) dy (89)

Pab =
1

|Θ|

∫
Θa

L(y) : P̂b(y)dy (90)

Aab =

∫
Θb

P̂ᵀ
a(y) : L(y) : (I + G(y)) dy (91)

Babc =

∫
Θb

P̂ᵀ
a(y) : L(y) : P̂c(y)dy (92)
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Table 1: Material Properties

Matrix Properties (Isotropic)

E [GPa] ν a b γ

3.55 0.35 0.05 32.0 2.5

Fiber Properties (Transverly Isotropic)

E1 [GPa] E2 [GPa] G12 [GPa] ν12 ν23 a b γ

263.00 13.00 27.50 0.32 0.20 0.05 340.0 50.0

P̂a(y) =

∫
Θa

gph(y, ŷ)dŷ (93)

where Θ is the domain of the representative volume, and Θa is the domain of part a (Fig. 9).

gph and G are the damage-induced and elastic polarization functions, respectively, computed

as the symmetric gradients of the microstructural influence functions. superscript ᵀ denotes

the transpose operator.

The evolution of the damage variables are idealized using a form similar to Eq. 68:

ga (εηa(t), D
η
a(t)) =

[
Φη
a(t)

Dη
a(t)

]γa
〈Φ̇η

a(t)〉+ (94)

where γa is a material parameter controlling the fatigue behavior of the corresponding con-

stituent material that occupies part a, and εηa(t) is the average strain within part a given

by:

εηa = εa(x, t) = Ea : εη(x, t) +
n∑
b=1

Fab : µηb (x, t) (95)

The coefficient tensors Ea and Fab are computed with the following functions:

Ea =
1

|Θ|

∫
Θa

I + G(y)dy (96)

Fab =
1

|Θ|

∫
Θa

P̂b(y)dy (97)

The expression of the damage evolution function Φη
a(υ

η
i (t)) is taken to be identical to

Eq. 69 as a function of the damage equivalent strain, which is now expressed as:

υηa = υa(ε
η
a(x, t)) =

√
1

2
εηa : Ca : εηa (98)

where Ca is the elasticity tensor of the constituent material of part a.

The values of the material parameters for the fiber and the resin employed in the verifica-

tion simulations described below are shown in Table 1. The fiber and the matrix parameters
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Figure 10: The geometry and fiber orientation used in the verification study: (a)specimen
fibers oriented in the z-direction; (b) 00 composite specimen with a notch, and (c) 900

composite specimen with a notch.

employed reflect the parameters of a graphite reinforced epoxy composite. The fiber is taken

to be insensitive to progressive fatigue damage accumulation by setting a high value for

the fatigue parameter, γf . If a part resides in the subdomain of the microstructure that is

occupied by the fiber or the resin, the material parameters of the part is set to the pertinent

material parameters.

The performance of the proposed accelerated multiple-time scale model is assessed us-

ing three sets of verification tests. The geometry and loading of the numerical specimens

employed in these three tests are illustrated in Fig. 10. All simulations are conducted in

3-D. In the first set of simulations, a uniform composite specimen was subjected to uniax-

ial sinusoidal traction. The fibers are oriented along the z-direction as shown in Fig. 10a.

The R-ratio of the loading is set to 0.1. A single hexahedral finite element is employed to

represent the macrostructure of the composite in both the reference and the multiple time

scale simulations. The adaptive step size criteria was set to ∆Dmax = 0.01. Figure 11 shows

the progressive evolution of damage variables within the matrix (i.e., D2, D3, and D4) as a

function of loading cycles. The macrochronological time steps in which a microchronological

cell is resolved in the proposed multiscale model are indicated using markers in Fig. 11. The

cyclic failure accumulation predicted by the cycle-by-cycle nonlinear reference simulations

and the multiscale model show that the transverse matrix damage accumulation (indicated

by increasing damage in D2) occurs faster than delamination. The onset of the ultimate fail-

ure is due to the transverse matrix cracking. The proposed multiscale model is in excellent

agreement with the reference model. The computational cost of the multiscale model is 38

quasilinear macrochronological cell evaluations compared to 882 nonlinear, inelastic cycles

resolved in the reference simulation.

A second set of simulations was performed to assess the capability of the multiscale model

in capturing the damage initiation behavior in the notched specimens. The geometry of the

specimen is shown in Fig. 10b. The fibers are oriented parallel to the applied cyclic loading.
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Figure 11: Single square element numerical verification for the CFRP constitutive law.

The adaptive step size criteria was set to ∆Dmax = 0.005. Figure 12 compares the damage

contours around the notch computed by the reference simulation that evaluates the fully

resolved governing equations for every cycle and the fast temporal homogenization method.

The contours display the matrix damage after 474 loading cycles, 1982 loading cycles, and at

the onset of crack formation. The onset of crack formation is predicted at 3066 load cycles

by the reference simulation and 3060 load cycles by the proposed multiscale model. The

damage state around the notch tip throughout the course of the simulation, and the time

to failure initiation are predicted with very reasonable accuracy (< 0.2% error computed in

terms of load cycles to initiation). The computational cost of the multiscale model is 113

quasilinear macrochronological cell evaluations compared to 3066 nonlinear, inelastic cycles

resolved in the reference simulation. In real CPU time, the proposed model predicted the

failure initiation approximately 30 times faster than the reference simulation.

A third set of simulations was performed to assess the capability of the multiscale model

in capturing the damage propagation behavior in the notched specimens. The third test

was conducted with the fibers oriented perpendicular to the applied sinusoidal displacement

as in Fig. 10c. The adaptive step size criteria was set to ∆Dmax = 0.005. A slightly

increased macrochronological tolerance is employed to maintain high accuracy during the

damage propagation phase. Figure 13 compares the matrix damage contours and the crack

propagation around the notch computed by the reference simulation that evaluates the fully

resolved governing equations for every cycle and the fast temporal homogenization method.

The contours display the matrix damage at the onset of crack initiation, after 750 cycles, and

1000 cycles. The onset of crack initiation was predicted as 609 load cycles by the reference
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Figure 12: Numerical verification for a 0◦ notched specimen: (a) mesh with inelastic damage
zone in red, (b) damage contours for the reference simulation (c) damage contours for the
multitemporal simulation.

simulation and 631 load cycles by the proposed multiscale model. Figure 13 indicates a close

match between the reference and the multiscale models throughout the crack incubation and

propagation periods. Figure 14 shows the evolution of the crack length as a function of the

number of applied load cycles. Despite the slightly faster crack growth predicted by the

multiscale model, the rapid growth after initiation and progressive slow-down of the crack

growth rate are accurately captured. The reduction of the crack growth rate is due to the

displacement controlled loading. As the crack grows, the specimen becomes more compliant

and needs a smaller applied stress to achieve the required displacement subsequently reducing

the stress at the critical damage zone and retarding the crack growth.

7 Conclusions

A fast temporal homogenization methodology for modeling and prediction of failure in ma-

terials and material systems undergoing fatigue loading conditions was described in this

manuscript. The time integrator achieves high computational efficiency in solving fatigue

problems due to the explicit nature of the algorithm, requiring no nonlinear iterations during

time stepping. Adaptive time stepping metrics were proposed that achieve high computa-

tional performance while maintaining accuracy in fatigue life predictions. A thermodynamic

analysis showed the method satisfies the dissipative inequality for a wide class of continuum

damage approaches. The method helps achieve the high degree of computational perfor-

mance critical to the prediction of life and failure in large-scale structures and presents a
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Figure 13: Numerical verification for a 90◦ notched specimen: (a) mesh with inelastic damage
zone in red, (b) damage contours for the reference simulation (c) damage contours for the
multitemporal simulation.
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Figure 14: Crack length versus loading cycles for the 90◦ notched specimen verification.
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path forward in tackling the difficult problem of life prediction in brittle materials. Despite

good accuracy during numerical verifications, a more detailed experimental analysis will

provide validation of the fast temporal scale homogenization. For this purpose, a detailed

experimental investigation of fatigue in the carbon fiber reinforced polymer, IM7/977-3, will

be undertaken in the near future.
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