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Abstract

This manuscript presents a high order homogenization model for wave propagation in

viscoelastic composite structures. Asymptotic expansions with multiple spatial scales are em-

ployed to formulate the homogenization model. The proposed multiscale model operates in

the Laplace domain allowing the representation of linear viscoelastic constitutive relationship

using a proportionality law. The high order terms in the asymptotic expansion of response

fields are included to reproduce micro-heterogeneity induced wave dispersion and formation

of bandgaps. The first and second order influence functions and the macroscopic deformation

are evaluated using the finite element method with complex coefficients in the Laplace do-

main. The performance of the proposed model is assessed by investigating wave propagation

characteristics in layered and particulate composites, and verified against direct numerical

simulations and analytical solutions. The analysis of dissipated energy revealed that material

dispersion may contribute significantly to wave attenuation in dissipative composite materials.

The wave dispersion characteristics are shown to be sensitive to microstructure morphology.

Keywords: homogenization, bandgap, wave dispersion, Laplace transform, viscoelastic behav-

ior.

1 Introduction

Wave propagation in heterogeneous media introduces complicated dynamic phenomena due to

the reflections and refractions that occur at constituent material interfaces. Wave dispersion in

heterogeneous materials has been routinely observed in many engineering applications that in-

volve various waves including electro-magnetic, optical and acoustic waves. Material dispersion

(i.e., dispersion introduced by material heterogeneity) becomes prominent when wavelength

approaches the microstructural length scale, which allows interactions to take place. In addi-

tion, different waves usually coexist within the same structural domain and interact with each
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other. The wave dispersion due to micro-heterogeneities and the wave interactions influence

the propagation characteristics in terms of wave velocity, wave shape and wavenumber.

Dispersion and dispersion-induced dynamic response phenomena have been subject to a

number of investigations particularly on composites with elastic constituents. The realization

and modeling of these phenomenon dates back to the classical works of Cosserat and Cosserat

[5], Mindlin [17], Eringen and Suhubi [9]. Material dispersion in composites has been modeled

using a number of approaches including gradient elasticity [7], mathematical homogeniza-

tion [13], Floquet-Bloch expansions [26], scale bridging through Hamilton’s principle [34], and

Mindlin’s theory [8, 10]. The dispersion relation between wave frequency and wavenumber in

the frequency domain displays a banded structure with alternating passbands and stopbands.

Stopbands refer to frequency bands within which the wave propagation is completely blocked.

Band structures were found in the electromagnetic range (i.e., photonic bandgaps) [36, 35]

as well as in the acoustic range (i.e., phononic bandgaps) [27, 14, 33]. In order to reveal the

evanescent wave fields and bandgap structure, both the real and imaginary components of the

wavenumber must be included [28]. Suzuki and Yu [29] and Andrianov et al. [2] employed

the Floquet-Bloch theorem to model the appearance of bandgaps in photonics and phononic

ranges, respectively. Hui and Oskay [13] proposed a multiscale homogenization model based

on asymptotic expansion for wave propagation in elastic composite structures, which predicted

bandgap formation and behavior up to and within the first stopband.

In composite materials with viscoelastic constituents, wave attenuation could be due to

viscous dissipation, dispersive behavior or both. Studies on wave dispersion in viscoelastic

composites are relatively scarce compared to elastic problems (see Refs. [23, 31, 25] for some

recent investigations). Modeling research has typically focused on layered or lattice struc-

tures [30, 19, 1, 32, 20] based on analytical and semi-analytical approaches. The literature

on bandgap in viscoelastic composites is even more limited. Zhao and Wei [37] studied the

bandgap of one-dimensional phononic crystal with viscoelastic host material using the Bloch-

Floquet wave solution. Moiseyenko and Laude [18] investigated the influence of material loss

on the complex band structure of two-dimensional phononic crystals by incorporating vis-

coelastic constitutive model in the extended plane-wave expansion. Psarobas [24] discussed

the effect of viscoelastic losses in a high-density contrast sonic bandgap material of closed

packed rubber sphere in air. Merheb et al. [16] provided a theoretical and experimental study

of rubber/air acoustic bandgap structures. Oh et al. [21] investigated wave attenuation and

dissipation mechanisms in viscoelastic phononic crystals having different inclusion types in a

long-wavelength regime. Hui and Oskay [12] demonstrated the formation of bandgaps in a

one-dimensional layered viscoelastic composite using a semi-analytical solution based on the

multiscale homogenization theory. This work helps to elucidate the possibility of the high or-

der homogenization model applied in viscoelastic materials. Available computational models

capable of describing multi-dimensional wave propagation in viscoelastic composites including

dispersion and bandgap phenomena appear very limited.

In this manuscript, a multi-dimensional, high order homogenization model for wave prop-
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agation in viscoelastic composite structures is presented. This model is formulated based on

the method of asymptotic expansions with multiple spatial scales. The proposed formulation

builds on the modeling approach presented in Ref. [13]. Three key novel contributions of

the present manuscript are: (1) the proposed approach leads to a numerical model that can

capture wave dispersion and behavior within the bandgaps of composites with viscoelastic con-

stituents; (2) composite microstructures with arbitrary morphological complexity is possible

since the proposed approach relies on the computational homogenization method; and (3) the

asymptotic analysis is performed in the Laplace domain, which allows the representation of

the linear viscoelastic constitutive relationship using a proportionality law. The performance

of the proposed model is assessed by investigating wave propagation characteristics in layered

and particulate composites, and verified against direct numerical simulations and analytical

solutions. A method to compute the dissipated energy, including the microstructure effects,

is provided. The analysis of dissipated energy revealed that material dispersion may con-

tribute significantly to wave attenuation in dissipative composite materials at or near bandgap

frequencies. The wave dispersion characteristics are shown to be sensitive to microstructure

morphology.

The remainder of this manuscript is organized as follows: Section 2 describes the problem

setting defined in the time domain and in the Laplace domain. Section 3 provides the formu-

lation based on the mathematical homogenization theory with multiple spatial scales. Section

4 presents the calculation of dissipated energy using the high order homogenization model.

Section 5 describes the strategy for the numerical implementation of the multiscale model.

The numerical examples are discussed in Section 6. Section 7 provides the conclusions and the

future research directions.

2 Problem setting

The illustrative description of multiscale problem is provided in Fig. 1. Let Ω denote the open

bounded domain of the composite structure. The momentum balance under dynamic loading

is expressed as:

σζij,j(x, t) = ρζ(x)üζi (x, t) (1)

where, σζ denotes the stress tensor; ρζ the density; and uζ the displacement vector. The

superscript, ζ, indicates that the response fields oscillate spatially due to the microstructural

heterogeneity; x and t denote the spatial coordinate vector and time coordinate, respectively.

Superimposed dot indicates derivative with respect to time; and subscript comma denotes

spatial derivative. The indicial notation follows the Einstein summation convention unless

otherwise specified.

The constituents of the composite domain are taken to be linear viscoelastic, expressed

using the hereditary integral:

σζij(x, t) =

∫ t

0
gζijkl(x, t− τ)ε̇ζkl(x, τ)dτ (2)
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Figure 1: Schematic representation of multiscale problems.

in which, εζ is the strain tensor and gζ the time-varying relaxation moduli. Equation 2

indicates that the current stress state at a material point is a function of the entire strain

history, but the constitutive response remains spatially local. For linear elastic materials, the

standard linear-elastic constitutive law is recovered by taking gζ independent of time and equal

to the generalized Hooke’s tensor. Under the assumption of small deformation:

εζij(x, t) =
1

2

(
uζi,j(x, t) + uζj,i(x, t)

)
(3)

The boundary conditions are:

uζi (x, t) = ūi(x, t); x ∈ Γu (4a)

σζij(x, t)nj = t̄i(x, t); x ∈ Γt (4b)

where, n denotes the outward unit normal vector along the traction boundaries; ū(x, t) and

t̄(x, t) are the displacement and traction data prescribed on Γu and Γt, respectively. The

boundary conditions are defined such that Γ ≡ ∂Ω = Γu ∪ Γt; Γu ∩ Γt = ∅. The initial

displacement and velocity conditions are:

uζi (x, 0) = ûi(x); x ∈ Ω (5a)

u̇i
ζ(x, 0) = v̂i(x); x ∈ Ω (5b)

in which, û and v̂ denote the initial displacement and velocity data, respectively. In this

work, homogeneous initial conditions are assumed for simplicity (i.e., û = v̂ = 0).

4



2.1 Governing equations in the Laplace domain

It is possible to proceed with the asymptotic expansions of the governing system of equations

defined in the time domain (Eqs. 1-5) to formulate a multiscale homogenization model. From

the computational perspective, this approach requires the evaluation and storage of separate

microstructure problems at each integration point of a macroscale mesh. The form of the

hereditary integral along with the momentum balance equation allows a simpler description

of the problem when posed in the Laplace domain. In what follows, the governing initial

boundary value problem is recast in the Laplace domain, and the key characteristics of the

Laplace transform is provided.

The Laplace transform of an arbitrary, real valued, time varying function, f , is defined as:

F (s) ≡ L (f(t)) =

∫ ∞
0

e−stf(t)dt (6)

where, the Laplace argument, s, and the transformed function, F , are complex valued. The

derivative rule for the Laplace transform is given as:

L (f, tt . . . t︸ ︷︷ ︸
n times

(t)) = snF (s)− sn−1f(0)− . . .− f, tt . . . t︸ ︷︷ ︸
n−1 times

(0) (7)

and the convolution integral rule is given as:

L

(∫ t

0
f1(t− ξ)f2(ξ)dξ

)
= L

(∫ t

0
f1(ξ)f2(t− ξ)dξ

)
= L (f1)L (f2) (8)

Applying Eq. 8 to Eq. 2, the constitutive equation in the time domain is transformed to the

proportional form in the Laplace domain:

σζij(x, s) = Cζijkl(x, s)ε
ζ
kl(x, s) (9)

where, Cζ is the material moduli tensor expressed in the Laplace domain as a function of the

complex argument, s. The equation of motion in the Laplace domain is obtained by applying

Eq. 6 to Eq. 1, using Eq. 7 and considering the stationary initial conditions:

σζij,j(x, s) = ρζ(x)s2ui
ζ(x, s) (10)

The kinematical relationship in the Laplace domain is:

εζij(x, s) =
1

2

(
uζi,j(x, s) + uζj,i(x, s)

)
(11)
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and the boundary conditions are:

uζi (x, s) = ūi(x, s); x ∈ Γu (12a)

σζij(x, s)nj = t̄i(x, s); x ∈ Γt (12b)

where, ū(x, s) and t̄(x, s) are the prescribed displacement and traction boundary conditions

in the Laplace domain.

3 Mathematical homogenization

In this section, the mathematical homogenization of the governing equations defined in the

Laplace domain (i.e., Eqs. 9-12) is performed. Two spatial scales, denoted by x and y, are

considered as shown in Fig. 1. x and y represent the coordinate vectors at the macro- and mi-

croscales, respectively. The two coordinate vectors are related to each other as y = x/ζ, where

ζ (0 < ζ < 1) is the scaling factor. In the homogenization of static problems where inertial

effects are small, the scaling factor is typically defined as the ratio between the characteristic

length of the microstructural cell (e.g., representative volume or unit cell) and the size of the

structural domain. In dynamic problems of interest, the length of the pertinent deformation

and stress waves are smaller than the structural domain size, and dictate the scaling factor.

The scaling factor is therefore defined as the ratio between the microstructure cell size and the

length of the pertinent deformation or stress waves.

Let f ζ(x, s) be the Laplace transform of an arbitrary function defined in the time domain,

f ζ(x, t). The Laplace transform of the function is expressed in terms of the two spatial scales

as:

f ζ(x, s) = f(x,y(x), s) (13)

The spatial derivative of f ζ(x, s) is obtained using the chain rule:

f ζ,xi(x, s) = f,xi(x,y, s) +
1

ζ
f,yi(x,y, s) (14)

where, subscript comma followed by xi and yi denote the spatial derivative with respect to the

macro- and microscale variables, respectively. The response fields are assumed to be spatially

periodic over the characteristic volume throughout the deformation process:

f(x,y, s) = f(x,y + kŷ, s) (15)

where, ŷ denotes the period of microstructure; and k is a nsd × nsd diagonal matrix with

integer components and nsd the number of spatial dimensions.

We start with the asymptotic expansion of the displacement field based on the scaling

factor, ζ:

uζi (x, s) = ui(x,y, s) = u0
i (x, s) + ζu1

i (x,y, s) + ζ2u2
i (x,y, s) + ζ3u3

i (x,y, s) +O(ζ4) (16)
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The expansion above that is performed on the transformed displacement field is equivalent

to the asymptotic expansion of the displacement field in the time domain. The physical

meaning of the scaling factor, ζ, is retained since the Laplace transform only affects the

temporal distribution of the field. The leading order displacement term, u0, is a function of

the macroscopic coordinate vector, x, only and the higher order displacement terms depend

on both the macro- and microscopic scales. Applying the displacement expansion above to

Eq. 11, the strain is expressed as follows:

εij(x,y, s) = ε0ij(x,y, s) + ζε1ij(x,y, s) + ζ2ε2ij(x,y, s) +O(ζ3) (17)

where, the strains at each order of ζ are expressed as:

εαij(x,y, s) = exij(u
α(x,y, s)) + eyij(u

α+1(x,y, s)); α = 0, 1, 2 . . . (18)

eξij(u
α) = uα(i,ξj)(x,y, s) =

1

2

(
uαi,ξj (x,y, s) + uαj,ξi(x,y, s)

)
; ξ = x, y (19)

Substituting Eq. 17 into Eq. 9, the stress field is obtained in the series form:

σij(x,y, s) = σ0
ij(x,y, s) + ζσ1

ij(x,y, s) + ζ2σ2
ij(x,y, s) +O(ζ3) (20)

in which, the stress component at each order of ζ is expressed as:

σαij(x,y, s) = Cijkl(y, s)ε
α
kl(x,y, s); α = 0, 1, 2, . . . (21)

Due to the periodic assumption of microstructures in the problem domain, elastic moduli

and density depend on the microscopic coordinate vector, y, only (i.e. ρζ(x) = ρ(y) and

Cζ(x, s) = C(y, s)). Substituting Eqs. 16 and 20 to Eq. 10, and collecting the terms of equal

orders yield the equilibrium equations at each order of ζ:

O(ζ−1) : σ0
ij,yj (x,y, s) = 0 (22a)

O(1) : σ0
ij,xj (x,y, s) + σ1

ij,yj (x,y, s) = ρ(y)u0
i (x, s)s

2 (22b)

O(ζ) : σ1
ij,xj (x,y, s) + σ2

ij,yj (x,y, s) = ρ(y)u1
i (x,y, s)s

2 (22c)

O(ζ2) : σ2
ij,xj (x,y, s) + σ3

ij,yj (x,y, s) = ρ(y)u2
i (x,y, s)s

2 (22d)

The classical homogenization models rely on the first order effect of the microscale (i.e.,

O(ζ)) on the overall response of the composite. In transient dynamics, the micro-inertia effects

that results in dispersive behavior are present in the higher order equilibrium equations. To

account for the dispersive behavior, we therefore include the high order terms in the formulation

of the dispersive-dissipative homogenization model.
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3.1 Homogenization procedure

The general structure of the asymptotic analysis applied in the Laplace domain largely follows

the procedure applied in the time domain, with the exception that the response fields are

complex valued and functions of the complex argument, s. The details of the high order

homogenization in the time domain is provided in Ref. [13]. In this section, the principal

equations in the Laplace domain are provided.

The first order displacement term, u1, as a function of both x and y, is expressed in the

following form using the separation of variables:

u1
i (x,y, s) = U1

i (x, s) +Hikl(y, s)exkl(u
0(x, s)) (23)

where, H is the first order influence function of the microscale. H is a 3rd rank tensor with the

symmetry on the second and third indices (i.e. Hikl = Hilk) only. The microscopic balance

equation is derived by substituting Eq. 23 to Eq. 22a and considering the balance within the

microstructure domain, Θ, as:

{Cijkl(y, s)(hklmn(y, s) + Iklmn)},yj = 0; y ∈ Θ (24)

in which hijmn(y, s) = H(i,yj)mn(y, s) is the first order polarization function. The local period-

icity of the first order displacement term, u1, implies that the first order influence function is

also periodic. In addition, the normalization condition is enforced to ensure a unique solution

for H:

〈Hikl(y, s)〉 =
1

|Θ|

∫
Θ
Hikl(y, s)dy = 0 (25)

in which 〈·〉 =
1

|Θ|

∫
Θ
· dy denotes the averaging operator, and |Θ| is the volume of Θ. By en-

suring that the average of the influence function vanishes, the rigid body modes are eliminated

from the solution. Eqs. 24 and 25 together with the periodic boundary conditions uniquely

determine H.

The homogenized equation of motion atO(1) is obtained by applying the averaging operator

on Eq. 22b and exploiting the local periodicity of σ1:

ρ0u
0
i (x, s)s

2 = D0
ijmn(s)exmn(u0),xj ; x ∈ Ω (26)

where ρ0 = 〈ρ〉 is the volume-averaged density; and

D0
ijmn(s) = 〈C0

ijmn(y, s)〉 (27)

C0
ijmn(y, s) = Cijkl(y, s)(hklmn(y, s) + Iklmn) (28)

in which, D0 is the zeroth order homogenized modulus tensor in the Laplace domain and I
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the fourth rank identity tensor.

We proceed with the analysis of the O(ζ) balance equations. u2 is approximated by intro-

ducing the second order influence function, P(y, s), as:

u2
i (x,y, s) = U2

i (x, s) +Hikl(y, s)exkl(U
1) + Pijkl(y, s)exkl(u

0),xj (29)

where, P is a fourth rank tensor and symmetric with respect to the last two indices, but

not necessarily with respect to the first two indices (i.e., Pijkl 6= Pjikl and Pijkl 6= Pklij) for

arbitrary microstructural configurations. Substituting Eq. 29 into Eq. 22b and considering

Eq. 29, the microscopic equation of motion at O(ζ0) becomes:

C1
ijpmn,yj (y, s) = θ(y)D0

ipmn(s)− C0
ipmn(y, s); y ∈ Θ (30)

and

C1
ijpmn(y, s) = Cijkl {pklpmn(y, s) +Hkmn(y, s)δlp} (31)

where, θ(y) = ρ(y)/ρ0; pklpmn = P(k,yl)pmn; and δ is the Kronecker delta. The local periodicity

and the normalization conditions are employed in the same manner as for H. The homogenized

equation of motion at O(ζ) is derived by substituting Eqs. 23 and 29 to Eq. 22c and applying

the averaging operator, in addition to considering the local periodicity of σ2:

ρ0U
1
i s

2 + 〈ρ(y)Hikl(y, s)〉exkl(u0)s2 =

D0
ijmn(s)exmn(U1),xj +D1

ijkmn(s)exmn(u0),xkxj ; x ∈ Ω (32)

in which, the first order homogenized stiffness tensor, D1, is defined as:

D1
ijpmn(s) = 〈C1

ijpmn(y, s)〉 (33)

Next we consider the balance equation at order O(ζ2). The third order displacement, u3,

is approximated by introducing the third order influence function, Q(y, s) as:

u3
i (x,y, s) = U3

i (x, s) +Hikl(y, s)exkl(U
2) + Pijkl(y, s)exkl(U

1),xj

+Qijkmn(y, s)exmn(u0),xkxj (34)

Substituting Eq. 34 to Eq. 22c, the governing equation for the third order influence function,

Q, after some algebra, becomes:

C2
ijprmn,yj (y, s) = θ(y)D1

irpmn(s)− C1
irpmn(y, s)

+ θ(y)
{
Hikp(y, s)− ρ−1

0 〈ρ(y)Hikp(y, s)〉
}
D0
krmn(s); y ∈ Θ (35)
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and

C2
ijprmn(y, s) = Cijkl(y, s) {qklprmn(y, s) + Pkrmn(y, s)δlp} (36)

in which, qklprmn(y, s) = Q(k,yl)prmn(y, s). The third order influence function, Q, is a fifth

rank tensor with the minor symmetry only on the last two indices (i.e. Qijkmn = Qijknm).

Since the explicit computation of Q is not necessary in the high order homogenization model

described below, the boundary value problem for Q is not discussed further. Substituting

Eqs. 23, 29 and 34, and applying the averaging operator to Eq. 22d in addition to σ3 being

locally periodic, the macroscopic homogenized equation of motion at O(ζ2) is derived as:

ρ0U
2
i (x, s)s2 + 〈ρ(y)Hikl(y, s)〉exkl(U1)s2 + 〈ρ(y)Pijkl(y, s)〉exkl(u0),yjs

2

= D0
ijmn(s)exmn(U2),xj +D1

ijrmn(s)exmn(U1),xrxj +D2
ijprmn(s)exmn(u)0

,xrxpxj ; x ∈ Ω (37)

where, the second order homogenized stiffness tensor, D2, is expressed as:

D2
ijprmn(s) = 〈C2

ijprmn(y, s)〉 (38)

The homogenized displacement field is obtained by averaging the displacement over the

microstructure domain:

Ui(x, s) = 〈ui(x,y, s)〉 = u0
i (x, s) + ζU1

i (x, s) + ζ2U2
i (x, s) +O(ζ3) (39)

The summation of Eqs. 26, 32 and 37 leads to a high order homogenized equation of motion

in terms of the mean displacement, U, neglecting O(ζ3) and the higher order terms:

ρ0Ui(x, s)s
2 + ζ〈ρ(y)Hikl(y, s)〉exkl(U)s2 + ζ2〈ρ(y)Pijmn(y, s)〉exmn(U),xjs

2 =

D0
ijmn(s)exmn(U),xj + ζD1

ijkmn(s)exmn(U),xkxj + ζ2D2
ijprmn(s)exmn(U),xrxpxj ; x ∈ Ω (40)

The terms inducing micro-inertia effects in the macroscopic equation of motion defined in

Eq. 40 are scaled by the orders of ζ, which leads to zero at the asymptotic limit. This appears

to indicate that the contribution of the high order terms is trivial. This apparent contradiction

is resolved by observing that the coefficients in these terms themselves are size dependent. It

can be shown that D1 and 〈ρH〉 are proportional to l̂, and D2 and 〈ρP〉 are proportional to

l̂2 [3]:

D1 = O(Cl̂); 〈ρH〉 = O(ρl̂) (41a)

D2 = O(Cl̂2); 〈ρP〉 = O(ρl̂2) (41b)

where l̂ = l/ζ is the characteristic length of the microstructure in the stretched coordinate

system, y, and l the characteristic length of microstructure in the macroscopic coordinate
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system, x. D1, D2, 〈ρH〉 and 〈ρP〉 are homogeneous functions of degree 1. Consequently:

ζD1 = O(Cl); ζ〈ρH〉 = O(ρl) (42a)

ζ2D2 = O(Cl2); ζ2〈ρP〉 = O(ρl2) (42b)

In this study, ζD1, ζ2D2, ζ〈ρH〉 and ζ2〈ρP〉 which are directly calculated using the physical

geometric size as opposed to stretched configurations. The coefficients are therefore expressed

at order O(1).

3.2 A simplified high order homogenization model

When the homogenized material is taken to exhibit orthotropy or higher symmetry, the first

order homogenized moduli vanishes (i.e., D1 = 0). When the moduli and density variation

within the microstructure domain are spatially piecewise constant (i.e., the moduli and the

density within a constituent phase is constant), it can be shown that:

〈ρ(y)Hikl(y, s)〉 = 0 (43)

Equation 43 has been demonstrated in the context of elasticity problems in the time domain

by Hui and Oskay [13]. The extension to the Laplace domain is straightforward, by observing

that the governing equations have identical form to the time domain equations for a fixed s.

The complete result follows from the arbitrariness of the complex argument, s.

The resulting homogenized balance equation includes higher order spatial derivatives of the

homogenized displacement field, U. The standard finite element method with C0-continuous

shape functions therefore cannot be employed to evaluate this system. We seek to find an

approximate simplified model which permits the use of C0-continuous shape functions and

accurately account for dispersion. We consider the following approximation of high order

term:

D2
ijprmn(s) ≈ Âijpq(s)D0

qrmn(s) (44)

Since the multiplication on the right hand side of the above equation only permutes over the

fourth subscript, D0 cannot be inverted to obtain Â. Instead, we utilize the Moore-Penrose

pseudo-inversion of D0:

A∗ijpq(s) = D2
ijprmn(s)D0 -mp

qrmn (s) (45)

where, superscript ’-mp’ denotes the Moore-Penrose pseudo-inverse. The Moore-Penrose in-

version provides the closest approximation to D2 in the assumed form (the right hand side of

Eq. 44) with respect to the Frobenius norm. The fourth order term in Eq. 40 then takes the

form:

ζ2D2
ijprmn(s)exmn(U),xrxpxj = ζ2A∗ijpq(s)D

0
qrmn(s)exmn(U),xrxpxj (46)
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Using Eq. 26 and neglecting O(ζ3) and the higher order terms:

ζ2A∗ijpq(s)D
0
qrmn(s)(exmn(U)),xrxpxj = ζ2ρ0A

∗
ijmn(s)exmn(U),xjs

2 (47)

Substituting Eq. 46 to Eq. 40, the macroscopic equation of motion in terms of the mean

displacement, U, becomes:

ρ0Ui(x, s)s
2 + ζ2〈ρ(y)Pijmn(y, s)〉(exmn(U)),xjs

2 =

D0
ijmn(s)(exmn(U)),xj + ζ2ρ0A

∗
ijmn(s)exmn(U),xjs

2 (48)

The second order influence function P does not exhibit minor symmetry with respect to the

first two indices. In order to ensure that the resulting simplified homogenized system satisfies

balance of angular momentum, only the symmetric component is considered:

Jijmn(s) =
1

2
(〈ρ(y)Pijmn(y, s)〉+ 〈ρ(y)Pjimn(y, s)〉) (49)

In addition, A∗ possesses the minor symmetry with respect to the first two indices only (i.e.

A∗ijpq = A∗jipq). A∗ is then decomposed into its symmetric and antisymmetric components as:

A∗ijkl(s) = Aijkl(s) +Bijkl(s) (50)

where,

Aijkl(s) =
1

2

(
A∗ijkl(s) +A∗ijlk(s)

)
(51a)

Bijkl(s) =
1

2

(
A∗ijkl(s)−A∗ijlk(s)

)
(51b)

Due to the symmetry of the strain tensor, the contribution of the antisymmetric part of A∗

to the homogenized balance equation vanishes. The equation of motion for the homogenized

system reduces to:

ρ0Ui(x, s)s
2 = D0

ijmn(s)(exmn(U)),xj − Lijmn(s)(exmn(U)),xjs
2; x ∈ Ω (52)

where, the micro-inertia induced acceleration modulus tensor, L, is defined as:

Lijmn(s) = ζ2(Jijmn(s)− ρ0Aijmn(s)) (53)

The tensor, L, satisfies minor symmetry for both the first two and last two indices (i.e.,

Lijmn = Ljimn, Lijmn = Lijnm). From Eq. 52, the constitutive equation for the high order

homogenization model at the macroscale is defined in the Laplace domain as:

Σij(x, s) =
(
D0
ijmn(s)− s2Lijmn(s)

)
exmn(U); x ∈ Ω (54)
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in which, Σ denotes the homogenized stress tensor.

The errors in the proposed homogenization model include both the error introduced by the

projection approximation (i.e., Eq. 44), as well as the error introduced by the homogenization

assumptions. These sources of error could be separately assessed if the higher order homoge-

nization scheme without the projection approximation is evaluated directly using higher order

(i.e., C1-continuous) finite elements [22] or other numerical approaches (e.g, isogeometric anal-

ysis [6]). The implementation of such numerical schemes is not straightforward and out of the

scope of the current manuscript. Future investigations will focus on implementation of such

numerical schemes with high order continuity to better assess the impact of each error source

separately.

4 Calculation of dissipated energy

This section provides the details of the dissipated energy calculation for the high order ho-

mogenization model. In the present work, the Prony series approximation is used in modeling

the linear viscoelastic material behavior. The modulus tensor is expressed as:

gijkl(y, t) = 3K∞(y)

(
1 +

n∑
i=1

pi(y)e−t/qi(y)

)
E1
ijkl+

2G∞(y)

(
1 +

n∑
i=1

pi(y)e−t/qi(y)

)
E2
ijkl (55)

where:

E1
ijkl =

δijδkl
3

; E2
ijkl =

δikδjl + δilδjk
2

− E1
ijkl (56)

for isotropic constituents. pi and qi are the constants of the Prony series.

u(x,y, s), is expressed in terms of the mean displacement, U(x, s), by revisiting the asymp-

totic expansion of the displacement field:

ui(x,y, s) = u0
i (x, s) + ζU1

i (x, s) + ζ2U2
i (x, s) + · · ·

+ ζHikl(y, s)
(
exkl(u

0) + ζexkl(U
1) + ζ2exkl(U

2)
)

+ · · ·

+ ζ2Pijkl(y, s)
(
exkl(u

0),xj + ζexkl(U
1),xj + ζ2exkl(U

2),xj
)

+ · · · (57)

Rearranging the terms and using the definition of the mean displacement:

ui(x,y, s) = Ui(x, s) + ζHikl(y, s)exkl(U) + ζ2Pijkl(y, s)exkl(U),xj + · · · (58)

The strain in the Laplace domain is then calculated as:

εij(x,y, s) = (Iijkl + hijkl(y, s)) exkl(U) +O(ζ) (59)

in which, the presence of the influence function indicates the effect of the heterogeneity in
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the microstructure. In order to interpret and compute energy in the time domain, the strain

tensor is first transformed from the Laplace domain to the time domain: ε(x,y, s)→ ε(x,y, t).

The rate of dissipated energy density is decomposed into its deviatoric and hydrostatic

components:

ẇ(x, t) =

n∑
k

ẇks (x, t) +

n∑
k

ẇkb (x, t) (60)

where, ẇks is the deviatoric component of the dissipated energy density rate associated with

the kth internal viscous variable; and wkb the hydrostatic component of the dissipated energy

density associated with the kth internal dissipated variable. The deviatoric component is given

as:

ẇks (x, t) =
1

Θ

∫
Θ

2G∞(y)
pk(y)

qk(y)
skijs

k
ijdy (61)

in which, sk is the deviatoric component of the dissipating strain:

skij(x,y, t) =

∫ t

0
e−(t−τ)/qk(y)ε̇′ij(x,y, τ)dτ (62)

where, ε′ is the deviatoric component of strain. The averaging over the microstructure, Θ,

in Eq. 61 incorporates the dissipated energy contribution induced by the local deformation

within the microstructure.

Similarly, the hydrostatic component of the dissipated energy density rate is:

ẇkb (x, t) =
1

Θ

∫
Θ
K∞(y)

pk(y)

qk(y)
bkijb

k
ijdy (63)

in which, bk is the hydrostatic component of the dissipated strain:

bkij(x,y, t) =

∫ t

0
e−(t−τ)/qk(y)ε̇ll(x,y, τ)δijdτ (64)

The total dissipated energy, Wd, is calculated by integration over the macrostructure, Ω, and

the time history:

Wd(t) =

∫ t

0

∫
Ω
ẇ(x, t)dxdt (65)

5 Numerical implementation

The finite element formulation and implementation of the governing microscale and macroscale

problems (i.e., Eqs. 24, 30 and 52) are performed to numerically evaluate the first and second

order influence functions H and P, as well as the homogenized displacement, U. Periodicity

(i.e., Eq.15) is enforced along the boundaries of the microstructure problems. The implemen-

tation of the periodic boundary conditions is through master-slave coupling between the corre-
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sponding boundaries. The microstructure is discretized such that nodal positions at opposing

boundaries match exactly, which allows the exact imposition of the master-slave coupling and

consequently the periodicity condition. Rigid body motion is eliminated by imposing zero

displacement at the corner nodes. The normalization conditions on the influence functions (H

and P) are subsequently enforced by subtracting the average from each nodal value.

The equilibrium equation for the first order microscale influence function, H, is brought to

the weak form on y ∈ Θ as:∫
Θ
wi,yj (y, s)Cijkl(y, s)hklmn(y, s)dy = −

∫
Θ
wi,yj (y, s)Cijmn(y, s)dy (66)

where, w ∈ Wper ⊂
[
H1

per(Θ)
]nsd ; and H1

per(Θ) is the subspace of functions in H1(Θ) that

are periodic along ΓΘ, and H1(Θ) is the Sobolev space of functions with square integrable

derivatives. We seek the solution of the first order influence function in the finite dimensional

space, H ∈ Hper(Θ) ⊂
[
H1

per(Θ)
]nsd×nsd×nsd such that:

Hper(Θ) :=

{
H(y, s) | Hikl(y, s) =

M∑
A=1

N [A](y)H
[A]
ikl (s); H

[A]
ikl (s) is Θ -periodic; 〈Hikl(y, s)〉 = 0; H

[A]
ikl (s) = H

[A]
ilk (s)

}
(67)

Similarly, the weak form of the governing equation for the second order influence function

problem reads:∫
Θ
wi,yj (y, s) (Cijkl(y, s)(pklpmn(y, s) +Hkmn(y, s)δlp)) dy =

−
∫

Θ
wi(y, s)

(
θ(y)D0

ipmn(s)− C0
ipmn(y, s)

)
dy (68)

for any weight function, w ∈ Wper(Θ). The discretization for the second order influence func-

tion belongs to the following finite dimensional space, P ∈ Pper(Θ) ⊂
[
H1

per(Θ)
]nsd×nsd×nsd×nsd :

Pper(Θ) :=

{
P(y, s) | Pijmn(y, s) =

M∑
A=1

N [A](y)P
[A]
ijmn(s);

P
[A]
ijmn(s) is Θ -periodic; 〈Pijmn(y, s)〉 = 0; P

[A]
ijmn(s) = P

[A]
ijnm(s)

}
(69)

At the macroscale, the weak form of Eq. 52 is derived as:∫
Ω
ρ0wi(x, s)Ui(x, s)s

2dx−
∫

Ω
wi,xj (x, s)Lijmn(s)exmn(U)s2dx

+

∫
Ω
wi,xj (x, s)D

0
ijmn(s)exmn(U)dx =

∫
Γt

wi(x, s)Σij(x, s)njdx (70)
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for any weight function w. The solution approximation for the mean displacement belongs to

the following finite dimensional space: U ∈ U(Ω)

U(Ω) :=

U(x, s)|Ui(x, s) =
K∑

[C]=1

N [C](x)U
[C]
i (s); U

[C]
i (s) = ū

[C]
i (s) when x ∈ Γu

 (71)

where N [C] denotes the shape function of node C within the discretization of Ω, and U
[C]
i the

nodal displacement and K the total number of nodes.

Substituting the discretization of the influence and weight functions into Eqs. 66, 68 and

70 leads to the discretized forms of the macro- and microscopic problems. For a fixed complex

argument, s, the finite element discretization and the solution procedure for the three problems

has been discussed in Ref. [13] (with the exception that the current problems involve complex

variables) and skipped in this manuscript. In what follows, we describe the solution strategy

for the evaluation of the multiscale system.

Figure 2: Computational flowchart.

The overall implementation strategy is shown in Fig. 2. The numerical implementation
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of the multiscale homogenization model includes the computation of response fields in the

Laplace domain and the transformation of the Laplace domain response fields to the time

domain. A numerical inverse Laplace transform [4] based on the Fast Fourier Transform and

the ε-algorithm [15] is used to transform the solutions from the Laplace domain to the time

domain. The transformation is performed through several steps described below:

1. A set of discrete time steps (i.e., tβ where β = 1, 2, · · ·Nt and Nt is the number of time

steps) are generated within the given observation period. A set of complex arguments

(i.e., sα where α = 1, 2, · · ·Ns and Ns is the number of complex arguments) are generated

along a vertical line (i.e., of the same real part) in the complex plane and within the

convergence region of the inverse Laplace transform integration [4]. The density and

coverage of the generated complex arguments along the vertical line are chosen large

enough for accurate inverse Laplace transform.

2. The first order influence function at sα, H(y, sα), is obtained using the finite element

solution of the boundary value problem defined by Eq. 24 in the O(1) homogenization

and the local periodicity and normalization conditions of H(y, sα). The weak form of

the governing equations is defined in Eq. 66.

3. Provided with H(y, sα), the second order influence function at sα, P(y, sα), is obtained

using the finite element solution of the boundary value problem defined by Eq. 30 in the

O(ζ) homogenization and the local periodicity and normalization conditions of P(y, sα).

The weak form of the governing equations is defined in Eq. 68.

4. The homogenized modulus tensors D0(sα) and D2(sα) defined in Eqs. 27 and 38 are

evaluated numerically based on the solutions of H(y, sα) and P(y, sα).

5. The mean displacement at sα, U(x, sα), is obtained using the finite element solution of

the boundary value problem defined by Eq. 52 at the macroscale together with the corre-

sponding boundary conditions. The weak form of the governing homogenized momentum

balance equation is defined in Eq. 70.

6. Steps 2-5 are repeated Ns times to calculate the mean displacements in the Laplace

domain for each complex argument, sα. The complex valued mean displacements are

provided to the numerical inverse Laplace transform and the mean displacements for all

the time steps in the real time domain are calculated.

7. The dissipated energy of the whole problem domain is computed at each time step using

the mean displacements in the time domain obtained in Step 6.

The computations performed in Steps 2-5 for each complex argument value are indepen-

dent of each other. This allows a straightforward and ideally scalable parallelization of the

computations. The implementation procedure is therefore implemented in a parallel environ-

ment, where a large set of computations that pertain to different complex Laplace argument

values are concurrently conducted. The discretization of the Laplace space (i.e., the number
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of computations realized in the Laplace space) was increased as a function of the expected re-

sponse frequency content. The number is chosen large enough to ensure that further increase

of resolution does not significantly alter the simulation results. In all cases, the frequency

resolution is chosen to be less than 1 Hz to ensure accuracy in capturing response frequencies.

While the Laplace space is complex, the amount of computation increases with the frequency

content linearly. This is because the discretization along an imaginary (vertical) line with a

fixed real component is sufficient for the discrete inverse Laplace transform (see e.g., [4]).

6 Numerical verification
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Figure 3: Layered and fibered composite structures under sinusoidal displacement disturbance.

A series of numerical simulations has been conducted to assess the performance of the

proposed high order homogenization model and verified against direct numerical simulations.

A two-dimensional square composite domain was considered as illustrated in Fig. 3. Two

different microstructures are considered: layered and particulate. The microstructures consist

of an elastic and a viscoelastic phase as shown in Fig. 3. The material parameters for the

elastic and viscoelastic phases are summarized in Table 1. The volume fractions of the elastic

phase in the layered and the particulate microstructures are 80% and 63.6%, respectively. The

composite domain was excited using a displacement controlled sinusoidal disturbance applied

at the 50 mm segment along the vertical centerline (i.e., v-cl in Fig. 3). The maximum loading

amplitude is set to uR = 0.01mm. The domain is clamped at the bottom edge. The direct

numerical simulations employed to verify the multiscale model is the direct finite element

analysis (direct FEA), in which all heterogeneities are fully resolved throughout the composite

domain. The direct FEA simulations use the explicit time integration with time step sizes

significantly smaller than the stability limit to ensure high accuracy.
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Table 1: Material constants for elastic and viscoelastic phases.

Elastic phase

E[GPa] ν ρ[kg/m3]

2.0 0.3 7900

Viscoelastic phase

G∞[MPa] K∞[MPa] ρ[kg/m3]

22.4 431.4 1070

p1 p2 p3 p4

0.8458 1.686 3.594 4.342

q1 [ms] q2 [ms] q3 [ms] q4 [ms]
463.4 0.06407 1.163× 10−4 7.321× 10−7

6.1 Dynamic response of layered composite

Figures 4-7 show the vertical component of the macroscopic displacement field (i.e., U2) com-

puted using the multiscale model and the direct FEA. The displacement within the problem

domain is plotted at five time instances (i.e., t = 0.4, 0.8, 1.2, 1.6 and 2 ms) for four loading

frequencies: 500 Hz, 1000 Hz, 1500 Hz and 3000 Hz. The domain and loading was chosen to

ensure that within the simulation period (tR = 2 ms), boundary dispersion (i.e., the interfer-

ence due to reflection of the deformation waves off the domain boundaries) is relatively small

and that the dispersion is largely induced by micro-heterogeneity only.

The response predictions of the multiscale model at all frequencies shown in Figs. 4-7 are

in good agreement with the direct FEA. At the relatively low loading frequency of 500 Hz

(Fig. 4), the wavelength remains well above the microstructure size and the effect of micro-

heterogeneity induced wave dispersion is insignificant. The displacement contours show an

ellipsoidal shape (e.g., Fig. 4b), since the propagations along the horizontal and vertical di-

rections are governed by the s and p wave speeds, respectively (p > s). When the applied

loading frequency is 1000 Hz, the interaction of the wave with the material microstructure is

apparent as shown in Fig. 5. The interactions intensify at 1500 Hz loading frequency (Fig. 6).

The wave along the horizontal centerline (h-cl in Fig. 3) is largely attenuated, which indicates

the possibility of the occurrence of bandgaps. A second possible source of wave attenuation

is the material dissipation due to the viscoelastic phase. The contribution of material dissipa-

tion on wave attenuation is further discussed below in terms of dissipated energies. When the

loading frequency increases to 3000 Hz (Fig. 7), strong wave dispersion is observed and wave

propagation is largely attenuated in most directions. The significance of employing the high

order homogenization in capturing the band gap behavior is further verified by comparing the

results to the first order homogenization method. The first order homogenization reduces to

a form, where the micro-inertia induced acceleration moduli tensor, L, is neglected in Eq. 52.

For the layered composite structure at 3000Hz, the first order homogenization results (Fig.
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8) indicate that the high order homogenization is clearly needed to reveal the micro-inertia

effects.
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Figure 4: High order homogenization (top row) and direct FEA (bottom row) solutions when loading
frequency = 500 Hz: (a) t = 0.4 ms; (b) t = 0.8 ms; (c) t = 1.2 ms; (d) t = 1.6 ms; (e) t = 2 ms.
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Figure 5: High order homogenization (top row) and direct FEA (bottom row) solutions when loading
frequency = 1000 Hz: (a) t = 0.4 ms; (b) t = 0.8 ms; (c) t = 1.2 ms; (d) t = 1.6 ms; (e) t = 2 ms.

The occurrence of the bandgap behavior is further investigated by conducting a one-

dimensional shear wave propagation analysis in a layered media with identical composition

to the composite domain studied herein. The one-dimensional wave propagation problem in

periodic viscoelastic media has a semi analytical solution as described in Hui and Oskay [11].
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Figure 6: High order homogenization (top row) and direct FEA (bottom row) solutions when loading
frequency = 1500 Hz: (a) t = 0.4 ms; (b) t = 0.8 ms; (c) t = 1.2 ms; (d) t = 1.6 ms; (e) t = 2 ms.
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Figure 7: High order homogenization (top row) and direct FEA (bottom row) solutions when loading
frequency = 3000 Hz: (a) t = 0.4 ms; (b) t = 0.8 ms; (c) t = 1.2 ms; (d) t = 1.6 ms; (e) t = 2 ms.

The results of the one-dimensional analysis are employed to partially verify the wave propa-

gation in the 2-d multiscale simulations along the horizontal centerline since the propagation

along the horizontal centerline is relatively undisturbed. Figure 9 shows the displacement

histories of an observation point at loading frequencies of 1000 Hz, 1250 Hz and 1500 Hz as

computed using the one-dimensional solution. The observation point is four microstructures

(i.e., 200 mm) away from the loading end. An increase in wave attenuation is observed with in-

creasing load frequency. When the load frequency is set at 1500 Hz frequency, the observation
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Figure 8: First order homogenization solutions when loading frequency = 3000 Hz: (a) t = 0.4 ms; (b) t
= 0.8 ms; (c) t = 1.2 ms; (d) t = 1.6 ms; (e) t = 2 ms.

point remains undisturbed throughout the analysis period indicating either the occurrence of

the bandgap or very strong material dissipation. The results of the one-dimensional simulation

are in agreement with the two-dimensional simulation along the horizontal centerline.

The direct FEA solution under the loading frequency of 3000 Hz shows significant wave

attenuation along the horizontal direction, whereas along the vertical direction localized within

the central two layers, wave appears to propagate without interference. This result is consistent

with the layered microstructure aligned along the vertical direction, allowing the p-waves to

propagate freely through the uniform constituents at the mid-section. The localized vertical

wave propagation is slightly damped in the multiscale model. This discrepancy is attributed

to the smearing effect due to the averaging performed over the microstructure (i.e., unit cell)

domain in the multiscale model, and that the plotted macroscale displacement field, U, is

the average component of the response field and the fluctuations within the microstructure

domain is not shown in the multiscale solution. The discrepancy between the direct FEA and

the proposed model is further demonstrated in Fig. 10, which shows the vertical component of

the displacement profile along the vertical direction in the middle of the domain at t=1.6 ms.

The effect of wave interactions with microstructure at high frequencies is reflected at the

macroscale primarily through the micro-inertia induced acceleration modulus, L. The accurate

computation of the acceleration modulus depends on the discretization of the microstructure.

In order to assess whether or not the microstructural mesh employed in the numerical examples

is sufficiently fine, the acceleration modulus for the layered microstructure was recomputed

with RVE discretizations with higher refinements. For instance, the difference between the

acceleration modulus computed by the RVE mesh used in the manuscript (including 1600

elements) and a further refined mesh (including 3600 elements) is less than 0.1% (in sup norm)

at arbitrary Laplace numbers. This demonstrates that the microstructural mesh employed in

the numerical simulations does not significantly contribute to the model error.

The dissipated energy is calculated when the loading frequencies equal to 500, 1000, 1500

and 3000 Hz respectively. The dissipated energy ratio defined as the ratio of dissipated en-

ergy to total energy input is plotted in Fig. 11 where the high order homogenization solutions
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Figure 9: One-dimensional wave propagation in viscoelastic-elastic composite beam.
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Figure 10: Vertical displacements in Fig. 7 along the vertical middle line at t = 1.6ms.

are compared with the direct finite element solution. The high order homogenization method

predicts the dissipated energy to be in good agreement with the finite element solutions. In

particular, when the loading frequency is 3000 Hz, the high order homogenization prediction is

also close to the direct finite element solution despite the discrepancy in the displacement con-

tours as show in Fig. 7. This is because in the calculation of dissipated energy, the microscopic

information (i.e., influence functions) is retrieved at each integration point at the macroscale

as shown in Eq. 59. On the other hand, it is found that the dissipated energy ratio at the

end of the simulation period tends to stabilize when the loading frequency increases as shown

in Fig. 11. When the loading frequency is 500 Hz, the total dissipated energy ratio is around

30%; when the loading frequency increases above 1000 Hz until 3000 Hz, the total dissipated

energy ratio is approximately 50%. This finding elucidates the contribution of bandgap on

attenuating the wave propagation. Specifically, when the loading frequency reaches 3000 Hz,

only 50% of the total energy input is dissipated by material dissipation, and the rest of the
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input energy would make the wave propagate without the effect of microstructure induced ma-

terial dispersion. In fact, as shown in Fig. 7, the wave propagation in the horizontal direction

is completely blocked.
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Figure 11: Dissipated energies calculated by the high order homogenization and direct FEA with loading
frequency (a) 500 Hz; (b) 1000 Hz; (c) 1500 Hz; (d) 3000 Hz.

6.2 Dynamic response of particulate composite

The capability and the performance of the proposed multiscale model are further demonstrated

by investigating the dynamic behavior of a particulate composite. The domain of the com-

posite structure and the loading conditions remain identical to the layered configuration. The

geometry of the particulate microstructure is shown in Fig. 3. The particle phase is taken

to be elastic, whereas the matrix is viscoelastic with material properties shown in Table 1.

Figure 12 illustrates the vertical component of the macroscopic displacement field (i.e., U2)

computed using the multiscale model at five time instances within the observation period (i.e.,

at 1.2, 2.4, 3.6, 4.8 and 6.0 ms) for three different loading frequencies (i.e., 250 Hz, 500 Hz

and 1000 Hz). The wave propagation response is markedly different compared to the layered

configuration due to the significantly different microstructural configurations. The loading fre-

quency of 250 Hz corresponds to the wave propagation response with little material dispersion.

When the loading frequency increases to 500 Hz, strong wave dispersion occurs and the wave

propagations particularly along the horizontal and vertical centerlines demonstrate significant

wave attenuation. The wave propagation falls into the bandgap when the loading frequency

reaches to 1000 Hz. In contrast to the layered microstructure, near complete wave attenuation

occurs at a lower frequency in the particulate composite. The sensitivity of the attenuation

characteristics to the microstructure points to the capability to control the dispersion and wave
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attenuation characteristics through microstructure design. This issue will be investigated in

future studies as further elaborated below.

𝑈2/𝑈𝑅 

−0.5        0.0           0.5 
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−0.5        0.0           0.5 
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−0.5         0.0            0.5 

𝑈2/𝑈𝑅 

−0.5        0.0           0.5 
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−0.5        0.0           0.5 

(𝑎) (𝑏) (𝑐) (𝑑) (𝑒) 

Figure 12: High order homogenization solutions when loading frequency = 250 Hz (top row), 500 Hz
(middle row) and 1000 Hz (bottom row) at (a) t = 1.2 ms; (b) t = 2.4 ms; (c) t = 3.6 ms; (d) t = 4.8 ms;
(e) t = 6.0 ms.

6.3 Computational efficiency

The proposed multiscale model is significantly more computationally efficient compared to the

direct finite element analysis. For example of the layered composite structure, 6720 elements

were used for the discretization of the macroscopic domain and 800 elements were used for

the microscopic domain with the multiscale model. In comparison, 168,000 elements were

used in the direct finite element solution in order to calculate the wave dispersion at high

frequency loadings. For the multiscale model, both the microscopic and macroscopic problems

need to be evaluated for each complex argument, s, however the tremendous reduction in the

number of elements increases the computational efficiency significantly. On the other hand,

500 iterations (i.e. a set of 500 complex arguments, s) are enough to render accurate dispersive

wave responses in the homogenization model while 200, 000 time steps are required to obtain

accurate dispersive wave responses in the direct finite element solution. The parallelization

in the homogenization model for the micro- and macroscopic problems also improves the

computational efficiency in cluster environment.
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7 Conclusions

This manuscript presented a high order homogenization model for simulating wave propa-

gation in viscoelastic composite structures. The proposed model is defined in the Laplace

domain based on the mathematical homogenization with multiple spatial scales. The high

order asymptotic terms have been introduced to capture micro-heterogeneity induced wave

dispersions. The complex wave fields were solved using the finite element method with com-

plex coefficients formulated in the Laplace domain. The performance of the proposed model

was assessed by investigating wave propagation characteristics in layered and particulate com-

posites, and verified against direct numerical simulations and analytical solutions.

The proposed model is capable of accurately predicting the wave propagations and disper-

sions in the layered and particulate viscoelastic composites under different loading frequencies.

In addition, the multiscale model was shown to successfully predict the occurrence of and the

wave propagation within the stopband. To the best of the authors’ knowledge, the proposed

computational model is the first computational homogenization based approach that has the

ability to capture behavior within the stopbands in viscoelastic composites. The computa-

tional investigations conducted using different microstructures (i.e., layered vs. particulate)

points to the sensitivity of the wave attenuation characteristics to the microstructure. This

observation opens the door to the capability to control the dispersion and wave attenuation

characteristics through microstructure design.

From the computational perspective, a number of challenges remain that will be addressed

in the future research. First, starting from the conclusion that wave dispersion and associated

wave attenuation characteristics can be controlled through the microstructure morphology, an

optimization study will be performed. While many applications are possible as a function

of the structure size and the frequency content, the development of microstructure design

optimization framework for vibration control and impact/blast survivability in heterogeneous

materials are of interest. The second challenge is the extension of the proposed model to

metamaterials, which are known to exhibit stopbands through exotic properties including

negative effective Poisson’s ratio, negative stiffness, negative mass or a combination. The third

challenge is the extension of the proposed model to account for failure processes and progressive

damage accumulation. The introduction of failure processes poses significant difficulties, since

the present Laplace domain homogenization procedure may not be feasible for constitutive

laws that include damage and other inelastic processes.
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