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Abstract

This manuscript presents the formulation and implementation of a failure model for ran-
dom short microfiber reinforced composite materials based on the Extended Finite Element
Method (XFEM). Elastic and deformable microfiber inclusions modeled as objects with zero
measure are incorporated into the XFEM framework. A new debonding enrichment function
is proposed to idealize the progressive debonding between the fiber-matrix interfaces. The
proposed manuscript provides a modeling strategy particularly suitable for very high aspect
ratio inclusions. The fiber deformation is approximated as axial and directly incorporated
into the Lagrangian. The progressive failure within the matrix material is idealized using
an integral-type nonlocal damage model. The performance of the proposed XFEM model is
assessed by comparing model predictions to the direct finite element method for various fiber
configurations. The numerical verification studies point to high accuracy characteristics of
the proposed approach. The computational efficiency of the approach provides the capability
to evaluate the failure response of microstructures that include a large number of short fiber

inclusions.
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1 Introduction

Microfibers introduced into a cementious material can significantly alter and improve the
mechanical properties, such as the elastic modulus, load carrying capacity, flexural strength
and flexural toughness [1, 2]. In addition to the mechanical properties, the fiber reinforcements
also provide unique functional properties that include self sensing, self control of cracks and
electromagnetic field shielding, and others [3, 4, 5, 6, 7].

Microfiber reinforced composite material modeling to extract elastic and inelastic homog-
enized properties, are traditionally conducted based on micromechanical modeling or through
computational studies of representative volume elements (RVEs). The micromechanical mod-
eling approaches are usually based on the Eshelby’s solution of ellipsoidal inclusions embed-
ded in a matrix in conjunction with Mori-Tanaka scheme (e.g., [8, 9, 10]), Hashin-Strichman
bounds [11] and others. To mimic the effect of the fiber geometries when such approaches are
applied to model random fibers, the ellipsoidal inclusions are assumed to have high aspect ra-
tios. Direct RVE modeling of fiberous composites, where the fibers are resolved, have also been
proposed (e.g. [12, 13, 14]). The 3-D resolution of the randomly generated fiber geometries
is challenging when the fiber aspect ratios are large due to the requirement of fiber domain
discretization with small elements, and to ensure mesh compatibility between the embedded
fibers and the matrix when large number of fibers are present.

The fundamental purpose of employing the extended finite element method (XFEM) is to
eliminate the need to discretize the individual fibers and compatibility of the underlying dis-
cretization. The primary idea of the XFEM approach is to enrich the standard finite element
basis with nodal enrichment functions capable of representing inhomogeneities and discontinu-
ities within the problem domain without explicitly representing them through meshing [15, 16].
The partition of unity principle [17] is employed to retain the local character of the base finite
element formulation as well as in the recovery of the original form of the enrichment function,
which accurately represents the local behavior. The discontinuities modeled by XFEM may
be strong (i.e., displacement discontinuities [18]), suited to model cracks or weak (i.e., strain
discontinuities [19]) to model internal boundaries such as inclusions.

While the XFEM approach can be used to model the cracks and inclusions (e.g. [20, 21,
22, 23, 24]), it does not readily account for the progressive debonding along the inclusion
interfaces. Cohesive zone modeling, which requires the resolution of the interfaces, has been
the traditional approach to idealize progressive debonding. Cohesive zone modeling describes
the material separation between two surfaces by incorporating zero thickness elements between
solid elements that discretize the neighboring domains and relating tractions at the surface of
the interface to displacement jumps through softening a constitutive equation (i.e., a cohesive

law). Cohesive zone modeling applied to fiber reinforced composites are available for pure



mode and mixed mode cohesive laws in [25, 26, 27, 28, 29, 30, 31], among many others.

Cohesive zone modeling has recently been incorporated into the XFEM framework. Moés
and Belytschko [32] and Unger et al. [33] have proposed methods to model cohesive crack
growth in concrete. Zi and Belytschko [34] presented a formulation of crack tip elements for
cohesive cracks. Work on partly cracked XFEM elements with cohesive cracks was performed
by Asferg et al. [35]. Bouhala et al. [36] focused on the interfacial debonding of cracks for long
fiber reinforced composites. Other applications include the regularization of the discontinuity
at cohesive interfaces for modeling delamination in composites [37] and in the context of a
multiscale framework for composites combining XFEM with cohesive zone laws [38].

The enrichment idea to eliminate the need to discretize individual fibers have been proposed
by Radtke and co-workers [39, 40]. They were first to employ the partition of unity method
with fibers as zero measure elastic inclusions for idealizing fiber reinforced composite behavior.
A Heaviside enrichment function was used to account for the strong discontinuity present due
to tangential debonding at the fiber-matrix interface. The weak discontinuity in the response
field due to the presence of the fiber was not included in the response field approximation.
A non-linear cohesive law was employed to describe tangential slip along the fiber-matrix
interface and the normal fiber-matrix interface separation was suppressed.

In this manuscript, we present the formulation and implementation of a progressive failure
model for random short microfiber reinforced composite materials. In a 2-D setting, fiber
inclusions are modeled as elastic objects of zero measure using the XFEM approach. The
presence of elastic inclusions and the progressive normal and tangential debonding of the fiber
from the matrix are modeled through inclusion and debonding enrichment functions. By this
approach, the need to resolve inclusions using solid or structural elements and the debonding
process using cohesive elements are eliminated. With extension to 3-D in mind, the progressive
cracking in the matrix is idealized using an integral-type nonlocal continuum damage mechanics
model. Numerical integration procedures are provided for accurate evaluation of the system
response for fibers at random positions within the problem domain. The performance of the
proposed XFEM model is assessed against the direct finite element method for various fiber
configurations. While the general methodology of representing the fibers as zero measure
follows the principles of ideas presented in Refs. [39, 40], the current manuscript introduces
the following novel contributions: (1) A new debonding enrichment function is proposed to
incorporate cohesive traction-separation behavior between the fiber inclusions and the matrix;
(2) The present formulation accounts for decohesion in both tangential and normal directions;
and (3) The weak discontinuity (strain discontinuity) across the fiber domain is incorporated
through XFEM enrichment.

The remainder of this manuscript is organized as follows. In Section 2, the enrichment

functions employed to model the presence of the inclusions and the debonding process are
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Figure 1: (a) Fiber representation in the domain with the white area representing the debond-
ing between the fiber and the matrix; (b) standard finite element mesh for a short fiber inclusion
composite; and (c) the decomposition of the problem domain into subdomains of far-field ele-
ments approximated by standard basis, partially and fully enriched elements.

introduced. Section 3 provides the governing equations and the model formulation. The com-
putational formulation is discussed in Section 4, including the formulation of fiber deformation,
formulation of cohesive tractions, numerical integration and the treatment of partially enriched
elements. Numerical verification studies to assess the performance of the proposed approach
are presented in Section 5. Conclusions and future research directions in this area are discussed

in Section 6.

2 XFEM for Short Fiber Reinforced Composites

We seek to model short fiber reinforced composites with very high aspect ratios (d/l << 1), as
illustrated in Fig. 1a. The high aspect ratio of fibers renders the resolution of the fiber geometry
infeasible within the finite element method (Fig. 1b), particularly when a large number of fibers
is present. In this manuscript, the extended finite method (XFEM) is employed to eliminate the
need to conform the discretization to the individual fibers (Fig. 1¢). The XFEM is employed
not only to describe the presence of the fiber inclusions, but also to idealize the fiber-matrix
debonding process.

XFEM utilizes enrichment functions to model the presence of inclusions and discontinuities
in an otherwise uniform domain. The foundation for how to incorporate of the enrichment
function into the finite element framework is the partition of unity method (PUM), formalized
by Babuska and Melenk [17]. In PUM, the nodal level enrichment is a product of the enrich-
ment function and the standard shape functions that satisfy the partition of unity property
for the enrichment, in addition to the standard basis. The enrichment functions are known

a-priori to represent the response well within the whole domain or a subdomain of the problem,




around strong or weak discontinuities.
We consider the following discretization of the displacement field for a domain reinforced

by short fiber inclusions:

ux) = 3 Nate + Y N, ()6 + S Nz () T4, (1)
a=1 b=1 c=1

in which, u denotes the displacement fields; N,, the standard finite element shape function
associated with node a; 01, ¢, and ac the nodal coefficients of the standard, fiber enrichment
and debonding enrichments, respectively; n, the total number of mesh nodes in the finite
element discretization; ne, the number of enriched nodes; Z index set of enriched nodes;
I, € 7 the index of an enriched node, a; ¥ the fiber enrichment function; and Y denotes the
debonding enrichment function.

In Eq. 1, the first right hand side term corresponds to the standard finite element approx-
imation of the response field. The enrichment, 1, that accounts for the presence of the fiber
within the domain, represents the strain discontinuity in the approximation space. The third
term on the right hand side is the enrichment to approximate the displacement jump due to
the progressive loss of the cohesive bond between the fiber and the matrix, and is a function

of the debonding enrichment function, Y.

2.1 Fiber enrichment function

The enrichment function for the high aspect ratio short fiber inclusions was previously de-
veloped by the authors [41] and the function is described below for completeness. The fiber
enrichment function is expressed in terms of level set functions for the domain and the tips
of the fiber. For simplicity of the presentation, we consider a single inclusion to present the
enrichment function. In the case when multiple fibers are present, each fiber is represented by
a separate enrichment function. The generalization to the case of multiple fibers is straight-
forward provided that multiple enrichments are not present within the same finite element.
We note that presence of multiple enrichment functions in a single finite element does not
refer to the overlapping of the fiber domains, the latter being nonphysical. In this study, the
presence of multiple enrichment functions in a single finite element due to separate fibers is
not investigated.

To model the level set functions, we consider the open bounded domain of the composite
body, 2 € R2. The reinforcing fiber is entirely embedded in §2. The fiber is taken to have a
high aspect ratio and to be straight. The domain of the fiber is therefore approximated as a

line segment, parameterized by s, such that:

; xel (2)
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Figure 2: Functions of the fiber enrichment and debonding enrichment.

where, x; and x9 and x., are the positions of the fiber tips and the position of the center of
the fiber (i.e., x. = (x1 + x2)/2), respectively. The fiber tip level set functions are expressed
as:

do (%) = (x — Xa) - ta; a=1,2 (3)

where, t,, denotes the tangent at the fiber tip, a (i.e., t; = (x1 — x2) /l and t2 = (x2 — x1) /I =
—t1); and | = ||x2 — x3|| is the length of the fiber. ¢, provides the zero level set along the
plane normal to the fiber passing through the fiber tip. ¢, is positive on the outer part of the
domain cut by the zero level set, and negative elsewhere within the composite body (Fig. 2).
The level set associated with the domain of the fiber, ¢. (x), divides the domain of the
body along the plane of the fiber with positive values on each side and has zero value along

the fiber.
b (%) = x — P (x)] (4)

in which, P (x) is the projection of x onto the fiber:
P(X) :X1+[(X—X1)-tg]t2:X2+[(X—X2)-t1]t1 (5)

Using the level set function from Eqgs. 3 and 4, the enrichment function for the fiber is expressed

as [41]:

2 2
Y(x) = [H H(_¢a)] $e(x) + Y H(¢a)da(x) (6)
a=1 a=1
where, H denotes the Heaviside function; and d,(x) = ||x — X, | denotes the distance to the

fiber tip.



Figure 3: Short fiber inclusion enrichment function.

A three dimensional view of the enrichment function is shown in Fig. 3. Similar V-shaped
enrichment functions have been employed in inclusion problems (e.g., [42]), with the excep-
tion of the treatment of the tip conditions. The inclusion of ¥ (x) in the discretization of the
displacement field incorporates a strain discontinuity mode along the fiber position. The dis-
placements around the fiber can therefore be accurately captured without explicitly discretizing
the fiber domain. The enrichment function defined in Eq. 6 ensures that the approximation
basis captures the strain discontinuity but stays smooth otherwise around the sides and tips
of the fiber. The enrichment function is nonzero everywhere in the composite domain except
on the fiber.

The enrichment function leads to the enrichment of all nodes within the domain. This is
clearly undesirable since away from the fiber, the enrichment does not enlarge the trial space
spanned by the standard finite element shape functions but increases the size of the linear
system and potentially lowers rank. We consider the enrichment only around a small domain
around the fiber as is customary, and employ standard finite element shape functions in the

remainder of the problem domain, as illustrated in Fig. 1c.

2.2 Debonding enrichment function

Similar to the fiber enrichment function, the debonding enrichment function T, is defined using
the fiber domain and tip level set functions. In contrast to the fiber enrichment, the debonding
enrichment function introduces a discontinuity in the displacement field.

The shape of the debonding enrichment function is governed by the discontinuity function,
¢p, which mimics the shape of the fiber-matrix debonding. ¢, is taken to be a fourth order

polynomial:

4
dp(x) =Y ars(x)* (7)
k=0



The following constraints are considered in the determination of the constants of the poly-
nomial expression: (1) The ends of the fiber are taken to remain fully attached to the ma-
trix (i.e., ¢p (s = £1) = 0); (2) Maximum debonding occurs at the center of the fiber (i.e.,
dop/ds (s =0) = 0); and (3) The function is normalized such that the maximum value is
unity at the center of the fiber (i.e., ¢, (s =0) = 1). Considering the constraints above, the

discontinuity function is expressed as a function of a single shape parameter, 6 as:

tan @
2

Pp(¥) =1+ s(x) (1 - 5(x)7) = s(x)* (2 = s(x)?) (8)

where, 0 is the slope of the discontinuity at the tips of the fiber, controlling the shape of the

0 — tan-! <d¢’p :> (9)

ds
Figure 4a illustrates the effect of 6 on the shape of the discontinuity function ¢,. When

discontinuity function:

0 is less than a threshold value (i.e., 6i,) the discontinuity curve displays inflection points,
which occur along the length of the fiber at positions that depend on the value of #. Above
the threshold value, the discontinuity curve is convex. The threshold value for the chosen
function form (Eq. 8) is 6y, = 58°. In the numerical verification studies provided in this
manuscript, the shape parameter is set to § = 81°. The shape parameter is chosen based
on the shape of the debonding observed in direct finite element simulations of a short fiber
inclusion subjected to remote tensile stress. In the presence of multiple nearby fibers, significant
deviations from symmetry condition may occur. In case of a single fiber, the deviation from
symmetry is typically slight. Furthermore, symmetry in the XFEM enrichment function does
not necessarily imply that debonding must occur in a symmetric fashion and the proposed
approached can capture asymmetric debonding as shown in examples below. This is because
multiple enriched degrees of freedom are used in approximating the debonding of a single fiber
(Eq. 1, third term on right hand side).

The debonding enrichment function for the fiber is then expressed in terms of the discon-

tinuity function, ¢, (x) and ¢. (x) as:

2
T(x) = ¢p H(r(¢c)) (H H(—%)) (10)
a=1

where r = £¢, is the signed distance function as schematically illustrated in Fig. 2. A three

dimensional visualization of the debonding enrichment function is shown in Fig. 4b.
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Figure 4: (a) ¢, as a function of s, for 6 above, at and below the 6y, value ; and (b) Short fiber
inclusion debonding enrichment function.

3 Governing Equations and Model Formulation

Consider a matrix reinforced by n straight fibers. The length and the thickness of a fiber, «
is denoted as [, and t,, respectively (a =1,2,...,n). The mechanical equilibrium within the
domain is expressed as:

V-o(x,t)=0; x€Q (11)

where, o is the stress tensor; V(-) the divergence operator; and x and ¢ are the space and time
coordinates, respectively. Only quasi-static response is considered. The traction continuity

across the fiber-matrix interface is given as:
[T]=]o -n]=0 xe€l'y=092,N00, Ya (12)

in which, T is the traction; n the outward unit vector to a boundary; and [-] the jump operator.
The domains of fiber a and the matrix are denoted as €2, and €2,,, respectively. All fibers are
taken to be fully embedded in the matrix with no intersection with exterior boundaries or with
each other (i.e., @ = Q,, UJs_; Qo). The interface of the fiber o with the matrix is denoted as
I'n. Tensor notation is employed in the formulation of the governing equations. The proposed
formulation and implementation is limited to 2-D. While the general ideas remain relevant for
the 3-D case, the 3-D implementation poses non-trivial challenges, and beyond the scope of

this manuscript.



The exterior boundary conditions are expressed as:

u(x,t) =u(x,t); xely (13)
o-n=t(xt); xeadly (14)

in which, @1 and t are the prescribed boundary displacements and tractions defined on bound-
aries I';, and I'y, respectively, such that ', N Ty = () and 9Q = I, UT;. Since all fibers are
embedded in the matrix, the displacement and traction boundaries of the problem domain, £2,
coincide with those of €,,.

The matrix is taken to progressively damage under applied mechanical loading, which is

idealized using the continuum damage mechanics approach:
o= (1—-wx,t)L:e(x,t) (15)

in which, e denotes the strain tensor; and w € [0, 1) a scalar damage variable. w =0 and w = 1
respectively denote the fully undamaged state and the complete loss of load carrying capacity
at the material point. The focus is on the quasi-brittle behavior and therefore small strain
theory is employed. The strain is taken to be the symmetric gradient of the displacement
field (e = V*u). L denotes the tensor of elastic moduli of the matrix material, taken to be
symmetric and positive definite. All fibers are assumed to remain elastic under the applied
loading.

We develop the weak form equations for the governing equations at the limit, where the
fiber aspect ratios are vanishingly small (i.e., to/lo, — 0). Under this condition, the fiber
domain is represented as sets of zero measure (i.e., line segments) and XFEM is employed to
evaluate the governing equations. Using the standard procedure, the weak form of Eqs. 11-14

is expressed as follows:

/ azéedQ—i—Z/ a:dedQ—l—Z/ T-(s[[u]]dr—/f-(sudrzo (16)
m a=1 Qa a=1 ch Ft

where, du denotes the test function; and de the gradient of the test function. The traction
continuity (i.e., Eq. 12) is weakly enforced, but the displacement field can develop discontinuity
allowing the incorporation of progressive debonding between the fiber and the matrix.
Consider the local parameterization of the fiber domain, €2,, using the fiber normal and
tangent vectors, n, and t,, respectively. Since fibers are straight, the normal and tangent
vectors are constant for each fiber. Under the condition that aspect ratios of the fibers are

very high, we assume that tractions along the two opposing faces in the thickness direction

10



are uniform:

T (s) - nT| —T (s):mn~| =0; TH(s)-t+
rd ry

—T (s)-t~

rd

=0 (17)
Fa

Under these conditions, no shear stress or bending moment develops within the domain of the

fiber. The stress that develops in the fiber is therefore only axial, and expressed as:
o =07(s)ta @y (18)

The second term in Eq. 16 then becomes:

/ o :ded) ~ ta/ o7 0e} dQ (19)

in which, (56? = e : t, ®t,. The axial stress in fiber «, is taken to be proportional to the
axial strain (i.e., of = Efe}), where Ey is the elastic modulus of the fiber. Upon complete
debonding between the fiber and the matrix, bending of the fiber may also develop. This
deformation mode is not accounted for in the current manuscript.

The progressive debonding process between the fiber and the matrix is modeled through
the third term in Eq. 16. We employ a simplification of the debonding process from the
fiber to facilitate expression of progressive debonding using the enrichment function given in
Eq. 10. For a short fiber embedded in a matrix under the traction conditions considered in
Eq. 17, the debonding along the two faces of the fiber would occur simultaneously. In reality,
the debonding is likely to initiate at a weak spot on one side of the fiber. Upon complete
debonding at the weak side, the tractions along the opposing (unbonded) side relax. We
further assume the tips of the fiber remain attached to the matrix. The internal boundary

term then reduces to:

T-cS[[u]]dF:/ T - §[u] dT (20)
T rd

In the limit, where fiber aspect ratios tend to infinity, the weak form of the governing equations

is expressed as:
/a:dedQ+ZtaEf/ e;}(se;dg+2/ T-é[[u]]df—/ t-oudl=0 (21)
Q2 a=1 Qa a=1"Ta Ly

Since the domains of the fibers tend to a zero measure set, the domain of the matrix is taken
to occupy the entire domain and the limits of the integral of the first term in Eq. 16 is set to
Q.

11



3.1 Nonlocal damage model

The progressive damage and cracking within the matrix is modeled using continuum damage
mechanics. It is also possible to model crack propagation using XFEM, particularly in the
presence of pre-cracks. Other approaches that adaptively enrich the problem domain with
cracks based on prescribed failure criteria have also been proposed (e.g. [20, 43, 44, 45]). One
motivation in employing the continuum damage mechanics approach is that it can be extended
to 3-D in a straightforward manner.

The basis of the continuum damage mechanics model is the idea of progressively degrading
material until fracture, where the material no longer can carry load. The damage parameter w,
characterizes the evolution of the secant moduli tensor of the material during the degradation
process. The continuum damage mechanics model employed in this manuscript is regularized
to eliminate the well known issues of spurious strain localization and mesh dependency. A
number of approaches exist to eliminate the mesh dependency problem including nonlocal
modeling of gradient and integral type, viscous regularization, crack band method, variational
multiscale method and others (e.g. [46, 47, 48, 49, 50, 51, 52]). In this study, the nonlocal
regularization of integral type is employed.

At an arbitrary material point X, the state of damage follows a smooth function, g:
w(x,t) = g(k(x,1)) (22)

in which, g(k) is taken to follow an arctangent law as a function of a history dependent

parameter, k as:
arctan(a k(X,t) — b) + arctan(b)

g + arctan(b)

g(k) = (23)
where, a and b are parameters that characterize the evolution of damage and control ductility
and strength. k indicates the maximum past value of the nonlocal damage equivalent strain,
ok

k(1) = ma ((0(3,7) i) (24)

in which, viy; is the threshold value of 0, below which damage does not progress; and (-) =
((-)+1-1)/2 the Macaulay brackets. The nonlocal damage equivalent strain is expressed as a

function of the local damage equivalent strain, v, using the following equation:
/ A(x, x)v(x,t)dx
Q

/Q A, %) dx

The local equivalent strain is taken as a function of the principle strains as proposed by Prisco

(%) = (25)

12



and Mazars [53]:

where e are the principle strains. The Macaulay brackets incorporate the tension-compression
anisotropy. Under compressive strain, the damage is not allowed to grow. In this manuscript,
the verification studies focus only on the tension failure. The nonlocal weighting of the damage

equivalent strain, A is expressed using the Wendland Radial Basis Function [54]:

- 4 -
(1 _ HXIZXH) (4HXIZXH + 1) HX _ &H S lc

0 |x — X[ > ¢

Ax, %) =

in which, [, denotes the characteristic length defining the span of the radial basis.

In the context of fibrous composites, the domains of the fiber, whether modeled as zero
measure or not, potentially constitute a boundary in the application of the nonlocal weighting.
In the present study, the nonlocal averaging is applied without considering the fiber domains
as boundaries. In all verification studies considered below, similar strategy is employed in the

reference simulations as well.

3.2 Cohesive law

The progressive debonding between the fiber and the matrix is modeled by prescribing cohesive
zone laws. In the numerical verification and studies included in this manuscript an exponen-
tial and a bilinear cohesive law are considered. The cohesive law at the interface describes the
relationship between the surface traction and material separation between the surfaces, rep-
resenting the physical deterioration occurring at the interface. The proposed computational
approach differs considerably from traditional cohesive zone modeling, which entails incorpo-
ration of cohesive elements between standard finite elements. Since the positions of the fibers
do not necessarily comply with the underlying domain discretization, the proposed approach
does not include cohesive elements.

The debonding enrichment function is taken to have a parabolic shape along the fiber as
described in Eq. 8. The actual debonding may deviate from the parabolic shape since multiple
degrees of freedom are employed to discretize the fiber-matrix debonding (i.e., Eq. 1).

The exponential cohesive law employed in this manuscript is derived from an interface
potential as proposed by Xu and Needleman [55]. The interface tractions are expressed as:

9% ([u])

T= 500 (28)
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Figure 5: The exponential traction-separation laws by Xu and Needleman [56].

in which, the interface potential, ® is a function of displacement jumps normal and tangential
to the fiber directions [56]:

o([ul) =, + pexp(- ) {1y Lo | 220 g vl o (- [[Ut]]Z)}

dn dn ]y —1 y—1 dn &
(29)

in which, Ju,] and Ju] are the components of the displacement jump vector along the nor-
mal and tangential directions, respectively; d,, and d; the normal and tangential cohesive
characteristic separation lengths, respectively; y = [u,] /dpn; [un] the magnitude of normal
displacement jump when complete shear failure has taken place; ¢ = ®,/®,; ®,, the normal
surface potential energy; and @, is the tangential surface potential energy. ®,, and ®; repre-
sent the areas under the normal and tangential traction-separation curves, respectively. The
normalized exponential normal and tangential traction-separation behavior is illustrated in
Fig. 5.

Differentiating Eq. 29 with respect to the components of the displacement jump normal

and tangential to the fiber direction, the components of the traction vector are obtained:

S (1) (5 () 10 -on () o121} o
s (S e () (1)

In some of the numerical verification studies below, we also consider a simpler bilinear

14



cohesive law. In this model, the uncoupled tangential and normal tractions are expressed as:

[un]

d Omax dp > [[un]] >0
— Omax crit cri
T ([un]) m (dn - [[un]]) dt > [u,] > dn (32)
0 [[un]] > d%rit
M'7—rnax dy > [[ut]] >0
dy
T,([w]) = dcfif‘i“d G o I e 1 (33)
t — Uy
0 [[Ut]] > dgrit

where; d,, and d; are described identical to the exponential law; opax and Tax denote the
ultimate normal and tangential tractions, respectively; dffit and dfrit are the maximum normal
and tangential displacement jumps, respectively.

The two cohesive zone laws considered above are intrinsic, i.e., contains a linear ”hardening”
portion. For certain problems, the intrinsic laws were found to lead to spurious softening [57]
and numerical instability [58], compared to the extrinsic cohesive laws. Despite numerical
difficulties, the intrinsic laws have been much more popular due to the simplicity of their im-
plementation into standard finite element codes using cohesive zone elements. In the current
approach, since the cohesive behavior is introduced through enrichment functions, the imple-
mentation of extrinsic laws do not significantly differ from intrinsic laws. The intrinsic laws are
considered here, due to the availability of commercial software that serves as reference models

in numerical verifications discussed below.

4 Computational Formulation and Implementation

The governing equations (Eqgs. 11-21) are discretized and evaluated based on the extended finite
element method following the standard Ritz-Galerkin procedure. In what follows, the matrix
notation is employed in the formulations for convenience. The weak form of the governing

equation (Eq. 21) is re-written in the matrix form as:

/ el o dQ — / sutdl +) taEf/ €}6e dQ + Z/ Sful’Tdr =0 (34)
Q Iy a=1 Qa a=1"Ta

where, the superscript T' indicates transpose.
The discretization of the displacement field follows Eq. 1, and using the Bubnov-Galerkin

approach, the discretization of the test function is similar to that of the trial function. In

15



contrast to the standard finite element approach, the mesh does not necessarily conform to
the fiber domains, i.e., the position of the fibers are independent of the mesh. The first term

in Eq. 34 becomes:
/ belo dQ = Z/ sel'a d (35)
Q e=1 Qe

in which, n. is the total number of elements discretizing the domain; and ). the domain of
the element, e. Substituting the test and trial function discretizations into Eq. 35, the element

level integral is expressed as:

/ 5T d0 = (V)T / (B°) o (U°) d) (36)
Qe Qe

where, U¢ and V¢ are the nodal coefficient vectors of the trial and test functions in element,
e, respectively:
U° — {ﬁe; & ae}; Ve — {5&6’; 5ee; 5&6} (37)

in which, a semicolon implies that the construction forms a column vector. The three com-
ponents in the nodal coefficient vectors correspond to the standard, fiber enrichment and the

jump enrichment degrees of freedom respectively:
~ e ~e. ae. . ne ~e _ Jae. ne. . ae Ye _ ) Je. Je. . Qe
a :{ul,uZ,...,unﬁ} ¢ —{cl, c2,...,cngn} d —{ Trdg; .. ngn} (38)

where, ¢, ¢¢ and d€ are the vectors of unknown coefficients for standard and extended degrees
of freedom at element, e and node a; and n¢, and ng, the number of standard and enriched
nodes within element, e, respectively. The components of V¢ are similarly defined.

Be:{ ¢, B, ... Bi, Bf, BS, ..., BY . B, g,...,ngn} (39)

e
Nen’

in which, the gradient terms are expressed as:

Nz 0 (Ne¥)a 0O (Vg 1) 0
Bi=| o Ng, |:Bi= 0 (New)y |:Bi= 0 (NgY)y | (40)
Ney Now (Ne¥)y (Ng¥)a (N 1)y (NgT)a

where, a subscript followed by a