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Abstract

This manuscript presents a multiscale stochastic failure modeling approach for fiber rein-

forced composites. A homogenization based reduced-order multiscale computational model is

employed to predict the progressive damage accumulation and failure in the composite. Uncer-

tainty in the composite response is modeled at the scale of the microstructure by considering

the constituent material (i.e., matrix and fiber) parameters governing the evolution of damage

as random variables. Through the use of the multiscale model, randomness at the constituent

scale is propagated to the scale of the composite laminate. The probability distributions of

the underlying material parameters are calibrated from unidirectional composite experiments

using a Bayesian statistical approach. The calibrated multiscale model is exercised to predict

the ultimate tensile strength of quasi-isotropic open-hole composite specimens at various load-

ing rates. The effect of random spatial distribution of constituent material properties on the

composite response is investigated.

Keywords: fiber reinforced composites, stochastic failure prediction, multiscale models, ran-

dom material properties, spatial variability

1 Introduction

Failure prediction of composite materials is an inherently multiscale problem from the mechanistic

and probabilistic standpoints. The physical mechanisms that govern failure in composites operate at

multiple spatial scales. For instance, diffuse damage in the form of microcracks and voids incubates

at the scale of the material microstructure, grows and coalesces at the scale of the mesostructure
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(i.e., characteristic volume), and ultimately leads to failure at the scale of the macrostructure (i.e.,

a coupon or component). An illustration of the size scales in fiber reinforced composites is given

in Fig. 1. Natural material variability and manufacturing process induced defects at each size scale

cause composites to exhibit significant variations in structural strength, failure response and other

mechanical properties. Defects within the composite constituents (i.e., matrix, fiber) at the scale

of the material microstructure; variability in the fiber volume ratio, void distribution, and residual

stresses at the scale of the characteristic volume; and fiber misalignment, thickness variability and

interlaminar defects at the scale of a ply all lead to the property and behavior uncertainty observed

at the scale of the macrostructure. Accurate and reliable prediction of the failure of composites is

therefore critically linked to the incorporation of uncertainty at the pertinent length scales.

A number of approaches have been proposed in the literature for the incorporation and propaga-

tion of uncertainty in composites across spatial scales. A comprehensive overview of the literature

in this area was presented by Sriramula and Chryssanthopoulos in Ref. [37]. The effect of random

constituent elastic properties on the effective composite elastic moduli has been investigated by

Kaminski [20] and Sakata, et al. [28] using the stochastic finite element method (SFEM). Shaw

and coworkers [32] estimated effective composite properties based on random constituent strength

and stiffness using Monte Carlo (MC) simulation and applied first and second order reliability

methods (FORM and SORM) to predict the failure of a laminated plate based on the Tsai-Hill

failure criterion. Reliability of laminated composites based on random composite properties and

layer thicknesses was investigated using SFEM and MC, β, and first order second moment reliabil-

ity methods [22], the Edgeworth expansion method [21], and FORM and MC with trained neural

networks [23]. The propagation of uncertainty from random constituents up through the effective

composite properties to compute the reliability of composite structures using perturbation based

stochastic finite elements has been investigated in Refs. [33, 5]. More recently, a Bayesian statistical

approach was proposed to perform calibration of constituent material properties at the scale of the

characteristic volume of a unidirectional ply based on ply-level experimental data [4].

The variability in the composite response can be linked to uncertainty at its microstructure

using multiscale computational methods such as the ∆-criterion [16], the non-concurrent multiscale

stochastic method [7], and homogenization-based methods such as stochastic finite elements [20],

perturbation-based homogenization [30], and the multiscale spectral stochastic method [38], among

others. Computational homogenization provides a rigorous basis for linking the fine and coarse scale

response of composites and other heterogeneous materials, and has been successfully employed to

compute effective elastic properties and failure in a deterministic setting (see e.g., [17, 9, 14, 19, 40]).

While the extensions of computational homogenization to compute the variability in homogenized

elastic properties from known variability at the scale of the microstructure to study stochastic

problems has been proposed [20, 30, 38], the application of this approach to study the uncertainty in

the inelastic and failure properties has proven more difficult. The difficulty is largely computational
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Figure 1: Multiple scales in a fiber reinforced composite material: (a) constituent, (b)
characteristic volume, (c) ply with random strength distribution, (d) component, (e) failure

probability of a component.

– additional dimensions introduced into the problem by the random treatment of microstructural

material and morphological parameters lead to computational intractability when the material

response includes damage and nonlinearity. As Fish and Wu [13] recently demonstrated, model

order reduction approaches for the multiscale solvers e.g., [8, 24, 41], as well as efficient uncertainty

quantification algorithms [15, 39, 6] are critical to the development of computationally tractable

stochastic multiscale modeling of composite materials.

In this manuscript, a new probabilistic multiscale methodology is developed to link the material

property variability at the scale of the microstructure to the laminate scale and predict the uncer-

tainty associated with the composite strength. The proposed methodology relies on a reduced order

computational homogenization model to bridge the macro- and the microscales. Bayesian statistical

analysis with Markov chain Monte Carlo (MCMC) sampling forms the foundation of the uncertainty

quantification framework. Gaussian process modeling is used to approximate the failure response

of the multiscale simulations in the rapid sampling MCMC process. The uncertainty at the scale of

the microstructure is modeled as random constituent material parameters governing the evolution

of damage and failure in the distinct microscopic phases. The proposed probabilistic multiscale

approach is applied to investigate the rate-dependent response of carbon fiber reinforced composite

laminates. The microscale failure properties and their variability are calibrated based on ply-level

experimental data. The calibrated model is validated against separate experimental measurements

of the ultimate tensile strength of quasi-isotropic open-hole composite specimens at various loading

rates. The effect of macroscopic spatial distribution of the constituent failure properties on the

composite response is investigated through a parametric analysis. This manuscript: (1) provides a

new method to propagate uncertainty from the characteristic volume of a heterogeneous material

to the macroscopic scale in the context of computational homogenization; (2) employs the Bayesian

statistical method to stochastic constituent parameter calibration in composites; and (3) character-

izes the influence of macroscopic spatial parameter variability on the failure response of composite
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Figure 2: Schematic illustration of the composite volume.

laminates.

The remainder of this manuscript is organized as follows: in Section 2 the multiscale model

for predicting the damage evolution in composites is presented. Uncertainty quantification and

the Bayesian parameter updating methodology are described in Section 3. Section 4 includes a

description of the suite of experiments on carbon fiber reinforced polymer composites and shows

the results of calibration and validation of the multiscale model. A parametric study on the effect

of macroscopic spatial variability of the constituent properties on the overall failure of a lami-

nated composite specimen at the macroscale is also included. The conclusions and future research

directions are discussed in Section 5.

2 Multiscale Composite Damage Model

Consider a macroscopic domain of interest, Ω ⊂ Rd (d = 2 or 3 indicates the spatial dimensions),

made of a heterogeneous, periodically repeating characteristic volume, Θ ⊂ Rd. The characteristic

volume consists of two or more constituent material phases. This multiscale structure is schemat-

ically illustrated in Fig. 2. The failure response of the structure under quasi-static conditions is

governed by the following equations:

∇ · σ(x, t) + b(x) = 0 (1)

σ(x, t) =
[
1− ω(x, t)

]
L(x) : ε(x, t) = L(x) :

[
ε(x, t)− µ(x, t)

]
(2)

ε(x, t) = ∇su(x, t) (3)

where u is the displacement field, σ the Cauchy stress, b the body force, ω the scalar damage

variable such that ω ∈ [0, 1), L the tensor of elastic moduli, ε the total strain, and µ = ωε
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the inelastic strain. ∇ · (·), ∇(·), and ∇s(·) are the divergence, gradient, and symmetric gradient

operators, respectively. Equation 2 implies a damage-elastic constitutive behavior for the composite

constituents. In the functional form,

ω̇(x, t) = fω(σ, ε, s;ψ). (4)

where the superimposed dot indicates the derivative with respect to time, s is the set of internal

state variables, which dictate the history dependence of damage evolution, and ψ are the material

constitutive parameters, which govern the damage evolution law. The particular form of the damage

evolution equations for the growth of damage and additional state variables is shown in Section 2.2.

The damage evolution parameters, ψ, are subject to variability, which reflects the initial defect

distribution within the constituent materials.

The macroscale domain is subjected to the following boundary conditions:

u(x, t) = û(x, t); x ∈ Γu; t ∈ [0, tf ] (5)

σ · n = t̂(x, t); x ∈ Γt; t ∈ [0, tf ] (6)

where û and t̂ are the prescribed displacements and tractions on the boundaries Γu and Γt with

Γ = Γu ∪ Γt and Γu ∩ Γt = ∅, and n is the unit normal to Γ; tf is the time to failure. In this

setting, time is employed to account for the viscous (rate-dependent) behavior of the material

under quasi-static loading. Inertial effects are taken to be small and are not included.

The response fields fluctuate at the scale of the microstructure due to the heterogeneity of the

constituent materials in Θ. The scale of material heterogeneity is captured by introducing a scaled

coordinate system, y = x/ζ, in which 0 < ζ � 1 is the scaling parameter. The coordinates y are

employed to parameterize the characteristic volume, Θ. The response fields are written in terms of

both macroscale and microscale coordinates as:

ϕ(x, t) = ϕ̂(x,y(x), t) (7)

in which ϕ denotes an arbitrary response field. The displacement field is decomposed through a

two-scale asymptotic expansion with contributions from micro- and macroscopic scales as:

u(x,y, t) = ū(x, t) + ζu1(x,y, t) (8)

where ū is the macroscopic displacement field and u1 is the microscopic displacement field. Asymp-

totic expansion of the displacements allows the micro- and macroscale problems to be posed in a

separate, but coupled manner.

The overall strain field contains contributions from the macroscale strain state and the locally
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fluctuating microscale strains,

ε(x,y, t) = ε̄(x, t) +∇s
yu

1(x,y, t) (9)

where ∇s
y denotes the symmetric gradient operator with respect to the microscopic coordinates and

ε̄ is the macroscale strain obtained by spatial averaging of the strain field:

ε̄(x, t) =
1

|Θ|

∫
Θ

ε(x,y, t)dy (10)

in which |Θ| is the volume of the characteristic volume element. Equation 10 is a consequence of

the periodicity of the response fields (e.g. u1) over the boundaries of the microstructural domain,

Θ. Using the damage-elastic constitutive law, the stress in the microscale is given as

σ(x,y, t) = L(y) :
[
ε̄(x, t) +∇s

yu
1(x,y, t)− µ(x,y, t)

]
(11)

in which the tensor of elastic moduli is taken to vary as a function of the microscopic coordinate only,

µ are the inelastic strains in the microstructure due to damage, and the homogenized macroscale

stress is expressed as:

σ̄(x, t) =
1

|Θ|

∫
Θ

σ(x,y, t)dy. (12)

It is natural to consider the elastic moduli tensor of the constituent materials as random variables

due to the presence of manufacturing induced defects in a composite microstructure. The effect of

variability in elastic moduli of constituents on effective composite properties has been established

in a number of publications (e.g. Refs. [5, 12, 20, 29, 32]). The focus of the present effort is on

failure parameters only and moduli are set as deterministic.

Substituting the displacement decomposition and strain and stress expressions into the equilib-

rium equation (Eq. 1), along with the scaling relationship, the equilibrium equations at O(ζ−1) and

O(1) are obtained:

O(ζ−1) : ∇y ·
[
L(x,y) : [ε̄(x, t) +∇yu

1(x,y, t)− µ(x,y, t)]
]

= 0 (13)

O(1) : ∇x · σ(x,y, t) = 0 (14)

Equation 13 constitutes the microscale equilibrium equation applied over the domain of the charac-

teristic volume, Θ. Equation 14 is averaged over Θ to obtain the macroscopic equilibrium equation

defined over the problem domain, Ω.
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2.1 Eigendeformation based reduced order homogenization model

The above procedure leads to the standard computational homogenization (also known as FE2)

method. While accurate, direct implementation of this approach is computationally costly. Instead,

we employ the symmetric eigendeformation-based reduced order homogenized method (sEHM) orig-

inally proposed in Refs. [8, 11]. For brevity, a brief overview of the reduced order homogenization

is presented below. The microscale displacement field is defined by the heterogeneous morphology

of the microstructure, the macroscopic applied strains, and the inelastic strains at the microscale

as:

u1 = H(y) : ε̄(x, t) +

∫
Θ

h(y, ŷ) : µ(x, ŷ, t)dŷ (15)

where H is the elastic influence function and h is the phase damage induced influence function

obtained from the elastic behavior of the microstructure in the absence and presence of damage,

respectively.

Significant computational savings are achieved by precomputing pertinent information about

the response of the characteristic volume using a reduced number of degrees of freedom describing

the microstructure response. The characteristic volume domain, Θ, is partitioned into n non-

overlapping subdomains, θ(γ), referred to as parts, where γ = 1, 2, . . . indicates the part number.

The partitioning of the reduced model parts are performed such that parts do not intersect both

constituents. Phase shape functions, N (γ), are defined as piecewise constant functions which form

a partition of unity in the characteristic volume (i.e. N (γ) = 1 if y ∈ θ(γ) and 0 otherwise). The

inelastic strains and scalar damage values are taken to be constant over a given part and the inelastic

strains at any point in the partitioned microstructure are given by:

µ(x,y, t) =
∑
γ

N (γ)(y)µ(γ)(x, t). (16)

Similarly, the piecewise constant damage in the microstructure is approximated as:

ω(x,y, t) =
∑
γ

N (γ)(y)ω(γ)(x, t). (17)

The parts of the RVE are partitioned so as to group the similar regions of the microstructure corre-

sponding to the macroscopic failure modes. The damage induced inelastic strains, or eigenstrains,

µ(γ), are found by solving a non-linear system of equations defined by the macroscopic strain state,

elastic influence functions, phase damage influence functions, phase shape functions, and the inter-

nal damage variables, ω(γ), from each part. The macroscopic stress field, σ̄, is calculated as the

homogenized stress over the entire microstructure including the contributions from all parts. The

resulting coupled macroscale and microscale boundary value problems are summarized below.
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Macroscale boundary value problem: Given average body force b̄ and boundary conditions

û and t̂, find the macroscopic displacement field, ū, such that:

∇x · σ̄(x, t) + b̄(x) = 0; x ∈ Ω (18)

ε̄ = ∇s
yū (19)

ū = û(x, t); x ∈ Γu (20)

σ̄(x, t) · n = t̂(x, t); x ∈ Γt (21)

The homogenized macroscale stress is obtained by solving the reduced order microscale boundary

value problem.

Microscale boundary value problem: Given macroscale strain state, ε̄, and damage state in

each part of the microstructure, ω(γ), defined by the evolution equations for part-average damage

in each part (provided below); find eigenstrains in each part, µ(γ), such that,

n∑
∆=1

{[
1− ω(∆)

][
Â(α∆) : ε̄+

n∑
γ=1

B̂(α∆γ) : µ(γ)

]}
= 0 ∀α = 1, 2, . . . , n (22)

in which n is the number of parts in Θ, and Â(α∆) and B̂(α∆γ) are coefficient tensors computed

from the elastic influence function, phase damage influence function, and elastic properties of the

constituents.

The homogenized macroscopic stress is computed as a function of the part-average damage and

eigenstrain coefficients as:

σ̄ =
n∑

∆=1

[
1− ω(∆)

][
L̄(∆) : ε̄+

n∑
α=1

P̄(α∆) : µ(α)

]
(23)

where L̄(∆) and P̄(α∆) are coefficient tensors. The exact expressions of the coefficient tensors and

their derivations are provided in Ref. [8] and omitted here for brevity. Since the microstructural

topology and elastic constants of the constituents are taken to be deterministic, the coefficient ten-

sors are deterministic quantities as well. The homogenized macroscopic stress in Eq. 23 constitutes

the stress update in the solution to the macroscale boundary value problem.

2.2 Damage Evolution

The evolution of the reduced order characteristic volume problem requires the constitutive rela-

tionship between the part average microstructure field variables. In this regard, a rate-dependent

damage evolution model is employed. The accumulation of damage in constituent part θ(γ) is driven
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by the internal state variables of phase damage equivalent strain, υ(γ), and the monotonically in-

creasing phase damage hardening variable, r(γ). The damage potential function f is expressed

as:

f(υ(γ), r(γ)) = φ(υ(γ))− φ(r(γ)) (24)

in which φ is the damage evolution function given by the power law relationship

φ(γ)(v) = a(γ)〈v − υ(γ)
0 〉b

(γ)

(25)

where a(γ) and b(γ) are material parameters, υ
(γ)
0 is the threshold strain state below which no damage

accumulates in the material, v is υ(γ) or r(γ), and 〈·〉 indicates Macaulay brackets: 〈·〉 = (·)+‖·‖
2

. Phase

damage equivalent strain is determined from the average strain in a part, ε(γ), by the relationship

υ(γ)(ε(γ)) =

√
1

2
(F(γ)ε̂(γ))TL(γ)(F(γ)ε̂(γ)) (26)

where ε̂(γ) is the principal components vector of the part average strain tensor, ε(γ), L(γ) is the

tensor of elastic moduli in the principal directions of ε(γ) for the constituent material that occupies

part γ, F(γ) is the tension/compression anisotropy weighting matrix, and the superscript T denotes

the matrix transpose. The weighting matrix allows damage accumulation to depend on whether

the strains are in tension or compression, where

F(γ) =

h
(γ)
1 0 0

0 h
(γ)
2 0

0 0 h
(γ)
3

 (27)

h
(γ)
ξ =

1

2
+

1

π
atan

[
c

(γ)
1

(
ε̂

(γ)
ξ − c

(γ)
2

)]
(28)

in which c
(γ)
1 and c

(γ)
2 are material parameters. The evolution of the phase damage hardening

variable and microscopic damage are expressed as:

ṙ(γ) = λ̇ (29)

ω̇(γ) = λ̇
∂φ

∂υ(γ)
. (30)

For the rate dependent damage law, the consistency parameter λ̇ is given as:

λ̇ =
1

q(γ)

〈
f
(
υ(γ), r(γ)

)〉p(γ)
(31)

where p(γ) and q(γ) are material parameters that govern rate-dependency [35].
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The above rate-dependent damage evolution model contains seven parameters describing the fail-

ure evolution in a part. Every part that lays within the subdomain of the same constituent is associ-

ated with an identical parameter set. For instance, givenψ(m) = {a(m), b(m), υ
(m)
0 , p(m), q(m), c

(m)
1 , c

(m)
2 }

is the set of random parameters defining failure in the matrix and the set of random fiber failure

parameters, ψ(f), is defined similarly, then:ψ(γ) = ψ(m) if θ(γ) ∈ θ(m)

ψ(γ) = ψ(f) if θ(γ) ∈ θ(f)
(32)

where θ(m) and θ(f) denote the subdomains of the characteristic volume occupied by the matrix and

fiber, respectively. The set of random failure parameters of the proposed model is therefore:

ψ = {ψ(m),ψ(f)} (33)

3 Calibration of Composite Multiscale Model under Un-

certainty

This section describes the Bayesian statistical approach employed in the calibration of the multi-

scale model in the presence of uncertainty. Bayesian methods are introduced to calibrate random

parameter distributions from sparse and uncertain data. Markov chain Monte Carlo simulation

(MCMC) is used to evaluate the probability distributions of parameters given their predicted sim-

ulation outputs. Since MCMC requires a large number of forward simulations, Gaussian process

(GP) surrogate models are employed to approximate the response surfaces of the multiscale model

for computational efficiency.

3.1 Bayesian Calibration

In this study, the Bayesian statistical approach is employed to calibrate the probabilistic distribu-

tions of the constituent failure parameters and quantify their uncertainty. A critical observation is

that the calibration process itself is multiscale. Calibration data is often measured and meaningful

at the laminate level, whereas the parameters to be calibrated are characterized at the scale of the

characteristic volume.

Consider an arbitrary quantity of interest, φlam, (e.g., stress to failure) that is measurable at

the scale of the laminate. Assume the macroscale quantity can be described as a function, G, of

the microscale material parameters, ψ:

φlam = G(ψ) ψ ∈ S ⊂ Rnp (34)
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where np is the number of constituent parameters, and S the range of parameter values defined by

physical constraints. In this paper, G(ψ) is the response surface defined by the multiscale model.

Under the deterministic approach, φlam is a scalar value and the goal of the calibration process is to

find a single vector of constituent parameters which produce the desired output. This is analogous

to solving the inverse problem, ψ = G−1(φlam). For multiscale analyses with non-linear material

models, G is not easily invertible.

In a probabilistic setting, the desire is not only to find the parameters resulting in a single value

of φlam, but the distribution of parameters, fψ, which lead to the desired random distribution in the

quantity of interest, fφlam . The probabilistic constituent material parameter calibration strategy

employed herein is rooted in Bayes’ Theorem. Consider two distinct random events A and B.

The probability of simultaneously observing A and B, denoted as P (AB), is expressed using the

conditional probabilities as:

P (AB) = P (A|B)P (B) = P (B|A)P (A) (35)

where, 0 ≤ P (A) ≤ 1 denotes the probability of observing event A, and P (A|B) the conditional

probability of observing A given B has been observed. Rearranging the equality yields Bayes’

Theorem:

P (A|B) =
P (B|A)P (A)

P (B)
; P (B) > 0 (36)

Considering the collectively exhaustive and mutually exclusive events Ai (i ∈ I := {1, 2 . . . ,m})
where

∑
i P (Ai) = 1 and P (Aj) ≥ 0 ∀ j ∈ I, and using the theorem of total probability, Bayes’

Theorem is expressed as:

P (Ai|B) =
P (B|Ai)P (Ai)∑
j P (B|Aj)P (Aj)

(37)

Equation 37 is interpreted as a probability update procedure. Let B be an event, such as an

observation from an experiment, that has some dependence on Ai, such that P (B|Ai) is well defined,

then P (Ai) and P (Ai|B) are interpreted as the probability distributions of Ai prior to and posterior

to the occurrence of event B, respectively. In the context of the material parameter updating, Ai are

considered to be continuous rather than discrete events. Renaming the variables and considering

continuous events, the parameter update function is expressed as:

f(ψ|yobs) =
f(yobs|ψ)f(ψ)∫
ψ
f(yobs|x)f(x)dx

(38)

in which yobs denotes observed experimental data, f(ψ|yobs) is the posterior probability of the

parameters ψ given the observed experimental data, f(yobs|ψ) the probability of observing yobs

given parameters ψ, and f(ψ) the prior probability of ψ. The conditional probability, f(yobs|ψ),

is the “likelihood” of parameters ψ producing yobs, and is denoted as L(ψ). For simplicity, prior
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and posterior probabilities of ψ are denoted as f ′(ψ) and f ′′(ψ), respectively. The denominator

of the right hand side in Eq. (38) is a normalizing constant such that the area under the curve

of f ′′(ψ) is equal to 1. As will be seen below, the actual value of f ′′(ψ) is not important in the

Bayesian updating procedure, only the ratio between the probability of different parameter points,

and therefore the expensive integration required to evaluate the denominator does not need to be

performed. The parameter update is then expressed in the alternative form:

f ′′(ψ) ∝ L(ψ)f ′(ψ) = f̄(ψ) (39)

where f̄(ψ) is the unnormalized kernel of the posterior probability distribution for ψ.

When the observations come from a suite of similar or identical experiments, the observation,

yobs, is a distribution characterized by the probability density function, fobs. The observation

distribution can be expressed using either a parameterized distribution (i.e normal, log-normal,

Weibull, etc.) or in a non-parametric form, such as the Kernel Spectral (KS) function [27, 25].

Consider a set of experimental observations, yobs = {y1
obs, y

2
obs, . . . , y

p
obs}, the probability density

using the KS approximation is expressed as:

fobs(y) ' 1

ph

p∑
i=1

K

(
y − yiobs

h

)
(40)

where p is the total number of observations, h the kernel bandwidth, and K the symmetric kernel.

In the form of the standard normal density function,

K(x) =
1√
2π

exp

(
−1

2
x2

)
. (41)

From Ref. [34], the optimal bandwidth for a standard normal kernel is estimated as:

h =

(
4σ5

obs

3p

) 1
5

(42)

where σobs is the standard deviation of the experimental observations.

When the experimental observation is a scalar (e.g., strength), using KS density estimation and

recalling that the model prediction of the observed quantity, φlam, is expressed in terms of the

constituent parameters as: φlam = G(ψ), the likelihood function is defined as:

L(ψ) =
1

ph

1√
2π

p∑
i=1

exp

(
−1

2

[
G(ψ)− yiobs

h

]2
)
. (43)
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3.2 Accelerated Sampling using Markov Chain Monte Carlo Simulation

Markov chain Monte Carlo simulation is used to produce a chain of failure parameter values from

Monte Carlo simulation whose probability density estimates the posterior distribution of those

parameters. In general, a Markov chain is a memoryless random process where a given state

depends on the previous state only. In the context of parameter updating, the states in the Markov

chain are the parameter values, and each new state is determined by comparing the likelihood

estimate of the previous state and a trial state. Given a parameter state in the chain ψk, a trial

parameter state ψ∗ is sampled by taking a random walk from ψk. Considering the prior probability

times likelihood of the two parameter sets, f̄(ψk) = L(ψk)f
′(ψk) and f̄(ψ∗) = L(ψ∗)f ′(ψ∗). The

trial state, ψ∗, is accepted with probability of a = min(1, f̄(ψ∗)/f̄(ψk) ). If ψ∗ is rejected, ψk is

repeated in the chain and a new ψ∗ is sampled and tested.

The completion criteria for MCMC is the convergence of the chain. Chain convergence is

achieved when additional samples do not effect the generated distributions. The posterior density

distributions of each of the parameters can then be evaluated by fitting the chain to a parametric

distribution, or employing KS density for a non-parametric PDF. Additionally, the covariance of

the parameters in the chain is calculated as:

σcov(ψ
i,ψj) =

1

Nmcmc − 1

Nmcmc∑
k=1

(ψi
k − ψ̄i)(ψj

k − ψ̄
j) (44)

where Nmcmc is the number of MCMC steps and ψ̄i is the sample mean of ψi, which is the chain

of parameters generated for the ith component of ψ. The covariance is important in sampling

correlated random parameters from the generated distributions.

3.3 Surrogate models using Gaussian processes

MCMC requires hundreds of thousands of samples evaluated in serial to generate converged param-

eter chains. The time required to perform this procedure using the nonlinear multiscale simulations

is prohibitively large. To achieve computational efficiency, a surrogate model is trained to ap-

proximate the response surface which is otherwise generated by full multiscale simulations. In this

manuscript, Gaussian process (GP) modeling is employed because of its ability to capture nonlinear

surfaces and quantify the uncertainty in the approximation of the response surface [18, 26, 31].

The GP model is a variant of a radial basis function built on Gaussian kernels. The GP model is

trained by a series of simulations performed using the multiscale model. Consider a set of nt input

training parameter sets, ψt = {ψt1 , . . . ,ψtnt} such that ψti ∈ S. In this work, Latin hypercube

sampling is employed to obtain parameter sets spread within S. The multiscale model is exercised

to compute the corresponding set of output values, yt, from parameters ψt. For a given input

prediction point, ψp, the output of the GP, yp, is computed as a Gaussian distribution conditioned
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upon the prediction point, training points, training point outputs, and the hyperparameters of the

GP, Ψ:

p(yp|ψp,ψt,yt; Ψ) ∼ N(m,S) (45)

where m and S are the prediction mean and variance and N denotes a Gaussian distribution.

The covariance, kij, between two points, ψi and ψj, in the input space is defined as

kij = k(ψi,ψj) = θ1 exp

{
− 1

2

np∑
d=1

(ψid − ψjd)2

λ2
d

}
(46)

in which θ1 is a scaling factor and λd the length scale parameter in the dth input dimension.

Covariance matrices can then be constructed between two sets of input points. A covariance matrix

is defined for any two sets of parameters, ψa = {ψa1 , . . . ,ψana} and ψb = {ψb1 , . . . ,ψbnb} such that

KABij = k(ψai ,ψbi). (47)

As such, the covariance matrices between the training points, ψt, and prediction points ψp are

constructed and the prediction mean and variance are defined as

m = KPT (KTT + σ2
nI)−1yt (48)

S = KPP −KPT (KTT + σ2
nI)−1KTP (49)

where σ2
n is the noise variance of the training points and I indicates the identity matrix whose

size matches KTT . For training point predictions from computer models, σ2
n is taken as 0, as the

computer prediction is taken to be a noiseless process (i.e. the computer output is taken to be

always the same for the same input).

4 Calibration and Validation

Random failure parameters for the fiber and matrix constituents of IM7/977-3 composites were

probabilistically calibrated using experimental data from 0◦ and 90◦ unidirectional specimens at

varying load rates. The proposed multiscale model with random failure parameters is employed to

predict the failure strength for a quasi-isotropic IM7/977-3 laminated composite with an open hole

under tension at a fast and slow loading rate to demonstrate the rate-dependence and uncertainty

quantification of the model. These results are compared to experiments. The effect of spatial

variability on failure parameters in predictions of the quasi-isotropic laminate failure strength is

also investigated.
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4.1 Experiments

A suite of experiments was conducted to calibrate the material parameters and validate the proposed

computational model for rate dependent damage accumulation in carbon fiber reinforced epoxy

composite laminates. IM7/977-3 composite specimens with three separate layups of unidirectional

laminae were tested: (a) 0◦ specimens consisting of eight unidirectional plies with fibers oriented

parallel to the coupon length; (b) 90◦ specimens consisting of sixteen unidirectional plies with the

fibers oriented perpendicular to the coupon length; and (c) open-hole quasi-isotropic specimens with

a layup of [+45, 0,−45, 90]2s and hole diameter of 6mm. Specimen configurations are summarized in

Table 1. The mean fiber volume fraction of the specimens was determined to be 65% based on acid

digestion testing. Monotonic tension experiments were conducted on the 0◦ specimens according

Table 1: IM7/977-3 Nominal Specimen Dimensions.

Fiber Number Length Width Thickness # specimens
Orientation Of Plies (mm) (mm) (mm) tested

0◦ 8 250 13 1 12
90◦ 16 100 13 2 25

[+45, 0,−45, 90]2s 16 250 38 2 6

to ASTM Standard D3039 [1] at a quasi-static displacement rate of 1.0 mm/min. Strain in the

0◦ specimens was measured using a centrally located extensometer. Applied load was measured

directly from the testing machine and stress was calculated over the gross cross section of the

specimen. Three point bend tests were performed on the 90◦ specimens with a span length of

44.7 mm at midpoint displacement rates of 0.1 mm/min, 1.0 mm/min, and 100 mm/min according

to ASTM Standard D790 [3]. The midpoint displacement and applied load were measured directly

from the testing machine. Stress and strain at the bottom of the beam at midspan were calculated

from elastic beam theory. The quasi-isotropic specimens were tested according to ASTM Standard

D5766 [2] at displacement rates of 1.0 mm/min and 100 mm/min. Strain was measured using

a 1-inch long extensometer centered on the hole. Applied load was measured from the testing

machine and stress was computed over the gross cross-sectional area of the specimen. All tests were

performed on an MTS universal testing machine.

4.2 Model Calibration

The geometry and sEHM parts used in the reduced order modeling of material failure are illustrated

in Fig. 3. 1206 tetrahedral elements were used in the microscale finite element mesh from which

the influence functions and the coefficient tensors of the reduced order model were computed. A

four part ROM partition was employed, with part 1 consisting of the carbon fiber and parts 2-4
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consisting of the epoxy resin. The partitioning was defined such that the three major failure modes

of the composite are represented, namely fiber failure, transverse matrix cracking, and delamination.

The elastic parameters for the constituent materials are shown in Table 2, where f denotes the fiber

and m the matrix [10]. The IM7 fiber was treated as a transversely isotropic material. The 977-3

resin was modeled as isotropic. Damage was taken to accumulate only when the constituent phase

is in tension.

Figure 3: Partitioned RVE.

Table 2: Elastic parameters of fiber and matrix.

E(m) [GPa] E
(f)
1 [GPa] E

(f)
2 [GPa] G

(f)
12 [GPa] v(m) v

(f)
12 v

(f)
23

3.55 263.0 13.0 27.5 0.35 0.32 0.20

A total of 14 material parameters (7 for the matrix and 7 for the fiber) define the rate dependent

failure behavior of the composite constituents, as outlined in Table 3. For both constituents, the

damage thresholds (υ
(m)
0 and υ

(f)
0 ) were taken to vanish, implying that damage accumulation occurs

from the onset of loading. The tension-compression anisotropy parameters (c
(m)
1 , c

(m)
2 , c

(f)
1 , and

c
(f)
2 ) were set such that damage accumulates only under tensile loading (compression loading is not

considered in this study). Because carbon fibers do not exhibit significant rate dependence, p(f) and

q(f) were set to 100 and 1, respectively, which mimics the rate independent limit. The remaining six

parameters were calibrated using the proposed Bayesian approach. The results of the 0◦ monotonic

tension tests were employed to calibrate the failure behavior of the fiber (i.e. a(f) and b(f)) since

fiber failure dominates the failure response in these experiments. The three point bending test

results were used to calibrate the matrix failure parameters (i.e. a(m), b(m), p(m), and q(m)). The

quasi-isotropic specimens were used to validate the response predictions.

The stress-strain curves from the twelve 0◦ monotonic tension tests are shown in Fig. 4. The

experimental longitudinal mean failure stress, X1, and failure strain, ε1, were 2785 MPa and 1.64%,

with standard deviations of 297.2 MPa and 0.185%, respectively. The range of failure stress was
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Table 3: Material properties describing damage evolution.

Property Description Equation

a(γ) Governs magnitude of failure Eq. (25)
b(γ) Governs ductility of failure Eq. (25)

p(γ), q(γ) Control rate-dependence Eq. (31)

c
(γ)
1 , c

(γ)
2 Control compression/tension anisotropy Eq. (28)

υ
(γ)
0 Threshold value of υ(γ) below which no damage occurs Eq. (25)

[2435,3300]MPa, with failure strain in the range of [1.26%,1.87%]. All of the 0◦ tension tests failed

under sudden and catastrophic fiber failure, as seen in Fig. 5.
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Figure 4: Stress-strain curves for 0◦ tension experiments.

The quantity of interest, φlam, employed in the calibration procedure was the stress to failure.

The 12 failure stress values obtained from the 0◦ experiments were used to formulate the likelihood

function (Eq. 43) in the MCMC calibration of the fiber damage evolution properties. Fifty multiscale

finite element simulations were evaluated using sEHM and the rate-dependent damage evolution

law to train the GP surrogate model of the 0◦ tension test. The parameters for these simulations

were selected using Latin hypercube sampling. One million MCMC steps were performed using the

GP model and the resulting chain was used to quantify the distributions of a(f) and b(f). From

sampled MCMC chains, probability density functions (PDFs) were computed using kernel spectral

density estimation. The covariance matrix C of the parameters was calculated using Eq. (44).

Since the calibration of the model was performed based on the GP model and the GP model is

an approximation to the response surface generated by the actual multiscale model, it is necessary

to “verify” the calibration procedure directly with the multiscale model predictions. Verification
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Figure 5: Images of failure from 0◦ monotonic tension experiments.

refers to the comparison of the experimental data with full multiscale model simulations performed

by drawing samples from the calibrated parameter distributions; i.e., that the calibration process

achieved its intended result. The verification of the fiber parameter calibration was conducted by

drawing ten thousand samples. The PDF of the verification result is plotted in Fig. 6 against the KS

density distribution of experimental results. The longitudinal failure stress and strain properties of

the experiments and the calibrated model are summarized in Table 4. The calibrated distributions

show good agreement in terms of the statistical mean and coefficient of variation for both stress

and strain to failure. We note that the strain to failure data was not used in the generation of

the likelihood function in the calibration process, but the resulting verification analysis shows good

accuracy to this value.

Table 4: Experimental and calibrated failure properties of unidirectional 0◦ specimens.

Experiments Calibration
Property Mean CoV Mean CoV

Longitudinal failure stress X1 [MPa] 2785 0.107 2752 0.124
Longitudinal failure strain ε1 [%] 1.64 0.113 1.74 0.125

The mean failure stress from the experiments and simulations are 2785 MPa and 2752 MPa, re-

spectively, a difference of 1.2%. The standard deviation of the simulations, 340 MPa, is slightly

higher than from the experiments, 297 MPa. The simulated results show a more exaggerated peak

in probability near the cluster of experimental results around 2500 MPa. However, the tails of the

PDFs of the failure stress for experiments and calibrated model (i.e. Fig. 6(b)) are in good agree-

ment, indicating that the simulations capture the extreme values reasonably well. The mean failure

strain from experiments is 1.64% while the simulations predict a mean of 1.74%. This discrepancy

is due to fact that the damage evolution model was calibrated to match the failure stress only, as

expressed above.

The failure parameters of the matrix were calibrated using the same procedure. The stress-

strain curves of the unidirectional 90◦ specimens subjected to three point bending at three separate
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Figure 6: Experimentally observed and simulated PDFs from 0◦ tension specimens: (a) failure
strain, (b) failure stress. Tick marks indicate individual experimental values.

of the failure stress for experiments and calibrated model (i.e. Fig. 6(b)) are in good agreement,

indicating that the simulations capture the extreme values reasonably well. The mean failure strain

from experiments is 1.64% while the simulations predict a mean of 1.74%. This discrepancy is due

to fact that the damage evolution model was calibrated to match the failure stress only, as expressed

above.

The failure parameters of the matrix were calibrated using the same procedure. The stress-strain

curves of the unidirectional 90◦ layups subjected to three point bending at three separate loading

rates are shown in Fig. 7. The loading rate has a noticeable effect on the failure strain and strength

as further illustrated in Fig. 8. The mean transverse failure stress, X2, of the specimens increases

from 102.3 MPa at 0.1mm/min to 118.3 MPa at 100mm/min loading rates. Similarly, the mean

transverse failure strain, ε2, increases from 1.27% at 0.1mm/min to 1.38% at 100mm/min. The

failure stress from all tests is in the range of [82 MPa,135 MPa] and the range of failure strains

is [1.14%,1.61%]. The mode of failure for all of the three point bending experiments was a single

matrix crack through the specimen at the midspan, under the loading point. The failure mode was
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Figure 6: Experimentally observed and simulated PDFs from 0◦ tension specimens: (a) failure
strain, (b) failure stress. Tick marks indicate individual experimental values.

loading rates are shown in Fig. 7. The loading rate has a noticeable effect on the failure stress

and strain to failure as further illustrated in Fig. 8. The mean transverse failure stress, X2, of the

specimens increases from 102.3 MPa at 0.1 mm/min to 118.3 MPa at 100 mm/min loading rates.

Similarly, the mean transverse failure strain, ε2, increases from 1.27% at 0.1 mm/min to 1.38% at

100 mm/min. The failure stress from all tests is in the range of [82 MPa,135 MPa] and the range of

failure strains is [1.14%,1.61%]. The mode of failure for all of the three point bending experiments

was a single smooth matrix crack through the specimen at the midspan, under the loading point.

The failure mode was consistent over all of the replicates at each of the loading rates.

The Bayesian calibration procedure was repeated to evaluate the distributions for the matrix

failure parameters: a(m), b(m), p(m), and q(m). One hundred multiscale simulations were conducted

using sampled training points to generate predictions with failure stresses within the range of 50

to 200 MPa and train the GP model. The failure behavior of the composite transverse to the fiber

direction was idealized by modeling the critical region of the three point bending specimen at the

bottom of the coupon at midspan. One million MCMC steps were performed using the GP model
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Figure 7: Stress-strain curves for three point bend experiments with 90◦ specimens for
0.1 mm/min, 1 mm/min, and 100 mm/min displacement rates.

to generate the distributions of the failure parameters. In order to verify the calibration, random

samples were drawn from the KS density distributions and ten thousand simulations were performed

using the multiscale model.

Figure 9 compares PDFs of failure stress and failure strain of the three point bend specimens

at three loading rates from the multiscale model and the experimental data. The transverse fail-

ure stress and strain properties of the experiments and the calibrated model at each displacement

rate are summarized in Table 5. The mean failure stresses in the simulations are 104.5, 108.7 and

117.9 MPa for the 0.1 mm/min, 1 mm/min, and 100 mm/min displacement rates, respectively, com-

pared with the experimental means of 102.3, 108.7, and 118.0 MPa. The average stress predictions

are in good agreement with the average stress with percent errors of 2.2%, 0.0%, and 0.1% for the

0.1 mm/min, 1 mm/min, and 100 mm/min displacement rates, respectively. While ten experiments

were used for the faster rate three point bend tests (1 mm/min and 100 mm/min), only five were

available for the 0.1 mm/min rate, which partially explains the slightly higher discrepancy at the

slowest rate. The mean failure strain for the slow, medium, and fast rate experiments respectively

are 1.27, 1.32, and 1.38% compared to the mean from simulations of 1.22, 1.27, and 1.38%. The

mean failure strain does not correspond to the peak of the PDFs shown in Fig. 7, which is the mode

of the PDF and different than the mean for non-Gaussian distributions. The slight discrepancy in

the failure strains is attributed to the fact that the likelihood function in the calibration process is

computed based on the failure stress and not failure strain.

The standard deviations of failure stress from the experiments are 7.65, 6.97, and 12.44 MPa for

the 0.1 mm/min, 1 mm/min, and 100 mm/min displacement rates, respectively. In the calibrated
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Figure 8: Effect of loading rate on failure stress in three point bending specimens.

simulations, the standard deviations are 7.08, 6.62, and 8.37 MPa, respectively. The percent errors

between predicted and experimental standard deviations are 7.4%, 5.0%, and 32.7%, respectively.

The variance in the 0.1 mm/min and 1 mm/min displacement rates are in good agreement between

the experiments and simulations. The experimental variance for the fastest displacement rate

was much higher than for the slower two rates. This displacement rate was near the limits of

the capabilities of the MTS testing machine. At the high rate of loading, the greater variance

compared to the variance from the other experiments could be attributed to a greater degree of

measurement error in the fastest displacement rate, as well as the presence of additional physical

phenomena that are significant only at the highest loading rate. The standard deviation from the

simulations performed at the fastest displacement rate was much closer to the simulations of the

other two rates than was witnessed in the corresponding experiments.

The PDFs obtained through multiscale simulations with calibrated parameter distributions show

some discrepancy with those obtained by the experiments. The primary reason for the discrepancies

is the modeling error associated with the idealization of rate effects. The calibration of matrix

material properties were performed to match behavior at three different load rates together. When

parameters are allowed to vary from rate to rate (i.e., calibration performed using experiments

performed at a single rate), the experimental and simulated PDFs match to the same degree as

Fig. 6. This result implies a better model is necessary to capture the rate effect compared to the

power law used here. Nevertheless, a good match is observed between the primary distribution

metrics (i.e. mean and variance).
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Figure 9: KS density estimations of PDFs of strain to failure and ultimate stress for experimental
results and simulated samples from calibrated parameter distributions for 90◦ monotonic three

point bend tests.

Table 5: Experimental and calibrated failure properties of unidirectional 90◦ specimens.

Experiments Calibration
Property Rate Mean CoV Mean CoV

X2
f [MPa] 0.1mm/min 102.3 0.075 104.5 0.068

1 mm/min 108.7 0.064 108.7 0.061
100 mm/min 118.3 0.105 117.9 0.071

ε2f [%] 0.1mm/min 1.27 0.084 1.22 0.064
1 mm/min 1.32 0.073 1.27 0.060

100 mm/min 1.38 0.112 1.38 0.075

4.3 Model Validation

The calibrated probabilistic multiscale model was employed to predict the failure response of open-

hole quasi-isotropic [+45,0,-45,90]2s specimens subjected to uniaxial tension at two different strain

rates and validated against the observed experimental data. Twenty random correlated parameter

sets were drawn from the calibrated parameter distributions. These parameters were used in mul-

tiscale simulations with the finite element discretization shown in Fig. 10. A structured mesh was

used in each ply of the quasi-isotropic layup such that the elements were oriented along the fiber

direction to minimize mesh bias, an approach described in Ref. [36]. The surface meshes between
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two neighboring plies were therefore not necessarily identical. The inter-ply continuity was imposed

by employing node-to-surface constraints. We note that delamination, which is sometimes mod-

eled using cohesive elements along ply interfaces, is modeled at the microscale within the sEHM

framework. Inclusion of cohesive elements is therefore not needed.

multiscale simulations with the finite element discretization shown in Fig. 10. A structured mesh

is used in each ply of the quasi-isotropic layup such that the elements are oriented along the fiber

direction to minimize mesh bias, an approach described in Ref. [36]. The surface meshes between

two neighboring plies are therefore not necessarily identical. The inter-ply continuity is imposed

by employing node-to-surface constraints. We note that delamination, which is sometimes mod-

eled using cohesive elements along ply interfaces, is modeled at the microscale within the sEHM

framework. Inclusion of cohesive elements is therefore not needed.

(a) ±45◦ (b) 0/90◦ (c) Laminated Composite

Figure 10: Fiber aligned mesh for (a) ±45◦ plies, (b) 0/90◦ plies, and (c) [+45,0,-45,90]2s
laminated composite.

The simulated stress strain curves at the loading rates of 1 mm/min and 100 mm/min are shown

against the experiments in Fig. 11. The average failure stresses from the experiments were 471.2

and 486.8 MPa at the 1 mm/min and 100 mm/min loading rates, respectively. A consistent failure

mechanism was observed in each of the open hole specimens, predominated by transverse matrix

crack at the hole in the 90◦ and ±45◦ plies and fiber failure in the 0◦ plies, as seen in Fig. 12. The

corresponding average failure stresses predicted by the simulations was 476.5 MPa and 485.1 MPa.

The predictions of the mean strength are in excellent agreement with the experimental observations.

The standard deviation of failure stress from the experiments was 20.4 MPa and 31.2 MPa for the

slow and fast loading rates, respectively, compared to 30.5 MPa and 34.1 MPa, respectively, from

the calibrated predictions. It is noted that only three experiments are available for each loading
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Figure 10: Fiber aligned mesh for (a) ±45◦ plies, (b) 0/90◦ plies, and (c) [+45,0,-45,90]2s
laminated composite.

The simulated stress strain curves at the loading rates of 1 mm/min and 100 mm/min are shown

against the experiments in Fig. 11. The average failure stresses from the experiments were 471.2

and 486.8 MPa at the 1 mm/min and 100 mm/min loading rates, respectively. A consistent

failure mechanism was observed in each of the open hole specimens, predominated by transverse

matrix cracking at the hole in the 90◦ and ±45◦ plies and fiber failure in the 0◦ plies, as seen in

Fig. 12. The corresponding average failure stresses predicted by the simulations was 476.5 MPa and

485.1 MPa. The predictions of the mean strength are in excellent agreement with the experimental

observations. The standard deviation of failure stress from the experiments was 20.4 MPa and

31.2 MPa for the slow and fast loading rates, respectively, compared to 30.5 MPa and 34.1 MPa,

respectively, from the calibrated predictions. It is noted that only three experiments were available

for each loading rate and more comprehensive experimental datasets are needed to fully validate

the proposed approach with regards to the standard deviation of the predictions.

The simulations shown in Fig. 11 considered the failure parameters of the composite constituents
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rate and more comprehensive experimental datasets are needed to further validate the proposed

approach with regards to the standard devation of the predictions.
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Figure 11: Stress-strain curves for experiments and simulations of quasi-isotropic open hole
specimens in monotonic tension at (a) 1 mm/min and (b) 100 mm/min.

The simulations shown in Fig. 11 consider the failure parameters of the composite constituents

randomly chosen from the calibrated distributions, but spatially uniform across the specimen. An

additional investigation was performed to understand the effects of treating the material parameters

as spatially varying over the specimen. We consider the length scale parameter, lr, defining the

spatial randomness of the microscale material parameters in the structure. A structure with smaller

lr indicates more rapidly fluctuating parameter values across the realization than one with a large

lr. In this investigation, the random parameters were assigned to the structure in groups parallel to

the fiber orientation of width equal to lr, as shown in Fig. 13. This sampling method was selected

as fiber properties were taken to be constant along the length of the fiber and the in situ matrix

properties are strongly dependent on the confining effects of fiber spacing, which was also taken to

be constant along the length of the fibers.

The samples were drawn from the distributions determined from the MCMC calibration proce-

dure. For each length scale parameter considered, 20 random spatially varying parameter fields were

generated and the multiscale model was exercised to predict the ultimate failure for each realization.

The resulting mean and standard deviation of the ultimate failure strength in the quasi-isotropic
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Figure 11: Stress-strain curves for experiments and simulations of quasi-isotropic open hole
specimens in monotonic tension at (a) 1 mm/min and (b) 100 mm/min.

as randomly sampled from the calibrated distributions, but spatially uniform across the specimen.

An additional investigation was performed to understand the effects of treating the material param-

eters as spatially varying over the specimen. We introduce the length scale parameter, lr, such that

a structure with smaller lr indicates more rapidly fluctuating parameter values across the specimen

realization than one with a larger lr. In this investigation, the random parameters were sampled

for the structure in groups parallel to the fiber orientation of width equal to lr, as shown in Fig. 13.

This sampling method was selected as fiber properties were taken to be constant along the length

of the fiber and the in situ matrix properties to be strongly dependent on the confining effects of

fiber spacing, which was also taken to be constant along the length of the fibers.

The samples were drawn from the distributions determined from the MCMC calibration proce-

dure. For each length scale parameter considered, 20 random spatially varying parameter fields were

generated and the multiscale model was exercised to predict the ultimate failure for each realization.

The resulting mean and standard deviation of the ultimate failure strength in the quasi-isotropic

open hole coupon under tension at the slow loading rate is presented in Fig. 14. The sampling width

does not have a significant impact on the mean failure strength of the coupon. However, there is

a pronounced effect on the standard deviation of predicted failures. For realizations with a high

sampling length, i.e. the parameters fluctuate at a lower frequency over the realization, the standard
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Figure 12: Images of failure from [+45, 0,−45, 90]2s quasi-isotropic open hole tension tests at 1.0
mm/min (top figure) and 100 mm/min (bottom figure).

deviation is larger than the realizations with more rapidly fluctuating parameters. A logarithmic

fit line for the standard deviation as a function of sampling length is included in Fig. 14(b).

5 Conclusion

This manuscript presented a multiscale modeling approach to predict the failure behavior of com-

posite materials under uncertainty. The Bayesian framework is the foundation of the proposed

multiscale uncertainty quantification approach. The proposed approach was demonstrated to suc-

cessfully predict the mean experimental failure observed in fiber reinforced laminated polymer

composites subjected to static loading at various load rates, as well as capture the variability in

this behavior. A key capability of this approach is that uncertainty can be propagated not only

from the constituent scale to the laminate level, but also from the laminate level to the constituent

scale. This is done in the context of the reduced order computational homogenization model.

While the proposed approach is capable of quantifying uncertainty in composites and upscaling

variability, several challenges remain to be resolved. First is addressing the presence of several

sources of uncertainty at the scale of the microstructure. Composite microstructures have many

topological uncertainties (e.g., randomness of fiber orientation, volume fraction, void distribution)

which are only implicitly accounted for in the current formulation. Incorporation of topological

variabilities and distinguishing them from the parameter variability remains outstanding. In this

study, the coefficients of variation in both calibration and validation experiments were between 6

and 12%. While the proposed calibration procedure does not depend on the magnitude of varia-
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Figure 13: Sampled parameter groups for lr = (a) 1mm, (b) 5mm, (c) 20mm

tion, magnitudes may be exacerbated by the presence of additional sources of uncertainty in other

scenarios. Larger variances would also require a higher number of realizations to sample the larger

parameter space in numerical predictions, and may cause an increase in the error of predicted fail-

ure properties. A second challenge is capturing the tails of the distributions. The reliability-based

composite design process relies on accurately capturing very low levels of failure probability of a

composite component. The multiscale uncertainty quantification approach must therefore accu-

rately represent the tails of the distributions. A comprehensive experimental-computational study

is needed to validate the performance of the proposed approach in capturing the distributions at

such low levels of failure probability.
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[20] M. Kamiński and M. Kleiber. Perturbation based stochastic finite element method for homog-

enization of two-phase elastic composites. Comput. Struct., 78:811–826, 2000.

28



[21] D.J. Lekou and T.P. Philippidis. Mechanical property variability in FRP laminates and its

effect on failure prediction. Compos. Part B-Eng., 39:1247–1256, 2008.

[22] S. C. Lin. Reliability predictions of laminated composite plates with random system parame-

ters. Probabilist. Eng. Mech., 15:327–338, 2000.

[23] P.A.M. Lopes, H.M. Gomes, and A.M. Awruch. Reliability analysis of laminated composite

structures using finite elements and neural networks. Compos. Struct., 92:1603–1613, 2010.

[24] C. Oskay and J. Fish. Eigendeformation-based reduced order homogenization for failure anal-

ysis of heterogeneous materials. Comput. Method. Appl. Mech. Engrg., 196:1216–1243, 2007.

[25] E. Parzen. On estimation of a probability density function and mode. Ann. Math. Stat.,

33:1065–1076, 1962.

[26] C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. Springer, New

York, 2006.

[27] M. Rosenblatt. Remarks on some nonparametric estimates of a density function. The Annals

of Mathematical Statistics, 27:832–837, 1956.

[28] S. Sakata, F. Ashida, and K. Enya. Stochastic analysis of microscopic stress in fiber reinforced

composites considering uncertainty in a microscopic elastic property. J. Solid Mech. Mater.

Eng., 4:568–577, 2010.

[29] S. Sakata, F. Ashida, T. Kojima, and M. Zako. Three-dimensional stochastic analysis us-

ing a perturbation-based homogenization method for elastic properties of composite material

considering microscopic uncertainty. Int. J. Solids Struct., 45(3):894–907, 2008.

[30] S. Sakata, F. Ashida, and M. Zako. Kriging-based approximate stochastic homogenization

analysis for composite materials. Comput. Method. Appl. M., 197:1953–1964, 2008.

[31] S. Sankararaman, Y. Ling, and S. Mahadevan. Uncertainty quantification and model validation

of fatigue crack growth prediction. Eng. Fract. Mech., 78:1487–1504, 2011.

[32] A. Shaw, S. Sriramula, P. D. Gosling, and M. K. Chryssanthopoulos. A critical reliability

evaluation of fibre reinforced composite materials based on probabilistic micro and macro-

mechanical analysis. Compos. Part B-Eng., 41:446–453, 2010.

[33] M. C. Shiao and C. C. Chamis. Probabilistic evaluation of fuselage-type composite structures.

Probabilist. Eng. Mech., 14:179–187, 1999.

[34] B. W. Silverman. Density estimation for statistics and data analysis, volume 26. CRC press,

1986.

29



[35] J.C. Simo and J.W. Ju. Strain- and stress-based continuum damage models - I. Formulation.

Int. J. Solids. Struct., 23:821–840, 1987.

[36] K. Song, Y. Li, and C. A. Rose. Continuum damage mechanics models for the analysis of

progressive failure in open-hole tension laminates. Proceedings of the 52nd AIAA Structures,

Structural Dynamics, and Materials Conference, 1861:1–18, 2011.

[37] S. Sriramula and M. K. Chryssanthopoulos. Quantification of uncertainty modelling in stochas-

tic analysis of FRP composites. Compos. Part A-Appl. S., 40:1673–1684, 2009.

[38] M. Tootkaboni and L. Graham-Brady. A multi-scale spectral stochastic method for homoge-

nization of multi-phase periodic composites with random material properties. Int. J. Numer.

Meth. Eng., 83:59–90, 2010.

[39] D. Xiu and G. E. Karniadakis. The wiener–askey polynomial chaos for stochastic differential

equations. SIAM J. Sci. Comput., 24:619–644, 2002.

[40] H. Yan, C. Oskay, A. Krishnan, and L. R. Xu. Compression after impact response of woven

fiber reinforced composites. Compos. Sci. Technol., 70:2128–2136, 2010.

[41] J. Yvonnet, E. Monteiro, and Q.-C. He. Computational homogenization method and reduced

database model for hyperelastic heterogeneous structures. Int. J. Mult. Comp. Eng., 11:201–

225, 2013.

30


