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Abstract

In this manuscript, an eigenstrain based reduced order homogenization method is devel-

oped for polycrystalline materials. A two-scale asymptotic analysis is used to decompose the

original equations of polycrystal plasticity into micro- and macroscale problems. Eigenstrain

based representation of the inelastic response field is employed to approximate the microscale

boundary value problem using an approximation basis of much smaller order. The reduced or-

der model takes into account the grain-to-grain interactions through influence functions that

are numerically computed over the polycrystalline microstructure. The proposed approach

is also endowed with a hierarchical model improvement capability that allows accurate rep-

resentation of stress and deformation state within subgrains. The proposed approach was

implemented and its performance was assessed against crystal plasticity finite element simula-

tions. Numerical studies point to the capability to efficiently compute the mechanical response

of the polycrystal RVEs with good accuracy and the ability to capture stress risers near grain

boundaries.
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1 Introduction

Microstructural morphology significantly affects the mechanical performance of structures

made of polycrystalline metals and alloys. While modeling the bulk properties of many met-

als and alloys have been well established, the connection of the mechanical behavior to the

material microstructure is being realized relatively recently. This connection is clearly ben-

eficial for physics-based characterization, and ultimately, control of bulk material properties
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through microstructure design. One significant challenge is the computational complexity

of the numerical modeling of polycrystalline microstructures, which exhibit tremendously rich

physical phenomena such as grain boundary slip [60], phase transformation [61], morphological

complexity (e.g., [54, 18]) and many others.

Evolved from Rice’s seminal work on formulations of metal viscoplasticity [56], the crystal

plasticity theory describes the deformation mechanisms of metals and alloys by incorporating

many microstructural mechanisms including thermal effects [41], mechanical twinning [60],

shear band formation [3], martensite formation [61], recrystallization [38], grain boundary

slip [8], crack initiation [9] and others. The primary mechanism for plastic deformation re-

mains as the dislocation glide along preferential slip planes, where resolved shear stress acts

as the driving force for glide. Finite element analysis of a single crystal was first studied by

Peirce, Asaro and Needleman [52, 53] and since then Crystal Plasticity Finite Element Method

(CPFEM) have been developed into a powerful tool that can model the response of polycrys-

talline microstructures under various loading conditions [63]. Using CPFEM, a wide range

of physical mechanisms including (but not limited to) grain boundary evolution [31], damage

nucleation [5] and creep [62] can be investigated. The CPFEM as a general computational

framework has the flexibility to leverage available constitutive formulations that idealize unre-

solved physical mechanisms, and relies on discretization of the polycrystalline microstructure

that allows directly accounting for the stress risers induced by mismatch in grain orientations

and other morphological effects.

Multiscale computational methods such as computational homogenization [27], variational

multiscale enrichment [49, 50, 70], heterogeneous multiscale method [11], multiscale finite

element method [21] and others provide the computational framework to upscale the mi-

crostructure scale response to the macroscopic scale. Unfortunately, the high computational

complexity of a CPFEM simulation performed over a representative volume element (RVE)

typically prohibits straightforward application of these methods to homogenize polycrystal

response. The alternative is reduced order modeling of the RVE simulations that provide an

approximation to the microscale problem with orders of magnitude computational efficiency

(Fig. 1). From the perspective of general heterogeneous media, reduced order methods in-

cluding the spectral method [1], fast Fourier transform method [47, 43], transformation field

analysis [10, 44, 45, 17], proper orthogonal decomposition [34, 66, 20], numerical potentials [67]

and the eigendeformation-based homogenization [51, 65, 55, 16], among others have recently

been proposed and developed.

Early attempts for reduced order modeling of polycrystalline material are based on the

assumption that each grain in the microstructure is subjected to equal and uniform strain

(i.e., Taylor bound) or stress (i.e., Sachs bound). While these methods provide homogenized

properties to a certain accuracy [39], they do not consider the interactions between individual

grains and either fail compatibility (Taylor bound) or equilibrium (Sachs bound). To overcome

these drawbacks, Van Houtte and coworkers [22, 23] developed the grain cluster method,

in which, the macroscopic deformation is imposed on a cluster of grains instead. In this
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Reduced order model

Figure 1: Reduced order model bridges the micro- and macroscale.

context, strain remains homogeneous within each grain but not within the cluster, which

relaxes the excessive constraint imposed by the Taylor hypothesis. This approach has been

generalized to allow the cluster to have a large number of grains with realistic shapes [64].

While a significant improvement, the grain cluster method still includes limited grain-to-grain

interactions. Viscoplastic Self-Consistent (VPSC) method, originally suggested by Kroner [33]

and later developed by Lebensohn and Tome [36] has been successfully employed to study

polycrystalline plasticity and microstructure evolution. Multiscale simulations that rely on

VPSC to describe the behavior at the grain scale have also been performed in the context

of implicit finite element analysis [59, 30]. This approach is based on employing the Eshelby

solution to approximately account for the microstructural heterogeneity. Eshelby-based core-

shell type approximations were used to idealize grain-to-grain interactions [13]. More recently,

Lebensohn applied a FFT-based algorithm in conjunction with Green’s function method to

evaluate the mechanical response of polycrystals [35]. This method solves the equilibrium

equation under the constraint of strain compatibility for materials with periodic microstructure

and is computationally efficient. However in the FFT-based models that use a uniform grid of

Fourier points, the grain boundaries are represented as step-wise discontinuous surfaces [37, 12].

Knezevic and co-workers employed the spectral FFT method, which resulted in two orders of

magnitude computational efficiency compared to the conventional crystal plasticity [29, 68,

69]. Further improvements to the computational efficiency has been achieved by use of high

performance computing [28].

This manuscript extends the eigendeformation-based reduced-order homogenization method

to polycrystal plasticity modeling. The proposed model is based on the eigendeformation-based

reduced order homogenization approach previously proposed by Oskay and coworkers [51, 65]

to study composite materials. A two-scale asymptotic analysis is used to decompose the

original equations of polycrystal plasticity into micro- and macroscale problems. Eigenstrain

based representation of the inelastic response field is employed to approximate the microscale

boundary value problem using an approximation basis of much smaller order. The proposed

approach was implemented and its performance was assessed against crystal plasticity finite

element simulations. Numerical studies point to the capability to efficiently compute the me-

chanical response of the polycrystal RVEs with good accuracy and the ability to capture stress
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risers near grain boundaries. The present manuscript presents the following novel contribu-

tions: (1) The grain-to-grain interactions are accurately captured through the use of numerical

influence functions that directly account for the material microstructure morphology. The use

of numerical influence functions (as opposed to those generated through the Eshelby tensor)

provides a more accurate distribution of the local stress and strain fields within the microstruc-

ture and captures the local variations of the response fields. (2) The modelling approach is

enhanced with hierarchical model improvement capability that allows capturing the subgrain

stress and deformation states. This information, e.g., elevated stress at grain boundaries may

be critical for assessment of fatigue damage initiation. The hierarchical model improvement

capability refers to the ability to refine or coarsen the partitioning of the microstructure (i.e.,

increase or decrease the model order in the ROM) to control the accuracy and efficiency char-

acteristics of the reduced order model. The primary reason for choosing the eigenstrain-based

model order reduction approach is that, in a straightforward fashion, it allows capturing the

grain-to-grain interactions as well as providing the ability to improve the model prediction

through its hierarchical structure as explained below.

The remainder of this manuscript is organized as follows: Section 2 introduces the settings

of the two-scale homogenization problem, where the fundamental properties of the response

fields and spatial scales are discussed. In Section 3, the governing equations of the system along

with a two-scale asymptotic analysis, which lead to a coupled micro- and macroscale problems

are presented. In Section 4, the reduced order model for crystal plasticity is formulated.

Section 5 details the computational implementation. The numerical verification studies to

demonstrate the capability of the present formulation are described in Section 6. Section 7

provides the summary and the future work.

2 Problem statement

Let Ω ⊂ Rnsd denote an open bounded domain occupied by a polycrystalline material as

schematically illustrated in Fig. 2(a). nsd is the number of space dimensions. The domain

is formed by the repetition of a locally periodic, statistically representative volume element

(RVE). The material heterogeneity is due to the possible presence of different material phases,

constituents, as well as different orientations of grains with otherwise identical molecular com-

position. The governing equilibrium, stress-strain and kinematic equations that describe the

deformation of the polycrystalline domain when subjected to mechanical loading is expressed

as (x ∈ Ω):

σζij,j(x, t) + bζi (x, t) = 0 (1)

σζij(x, t) = Lζijkl(x)(εζkl(x, t)− µ
ζ
kl(x, t)) (2)

εζij(x, t) = uζ(i,j)(x, t) ≡
1

2
(uζi,j + uζj,i) (3)
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Figure 2: A two-scale problem: macro- and microscale structures.

in which, σζ denotes the Cauchy stress, bζ the body force per unit volume, Lζ the tensor of

elastic moduli, uζ the displacement and εζ the total strain that can be additively decomposed

into the elastic and viscoplastic (µζ) contributions. A comma in the subscript indicates partial

spatial derivative and the superscript ζ indicates the oscillatory behavior of the response field

due to the microstructural heterogeneity. x denotes the position vector and t denotes time.

The time dependence of the formulation indicates that the viscous behavior of the material is

included. While the inertia term is omitted in Eq. (1) for simplicity, the ensuing formulation

is also valid for the dynamic response of the polycrystal at the ”long” wavelength regime (i.e.,

when the wavelengths are much longer than the size of the RVE).

It is typical for polycrystalline materials to experience large deformation at the microstruc-

ture scale where individual grains significantly deform and rotate, causing texture evolution

as a function of applied loads. Large deformation crystal plasticity formulations that capture

such texture evolution behavior are readily available (e.g., [53, 39]). The current multiscale

formulation is limited to cases in which elastic and inelastic deformations remain small as

implicitly implied by Eqs. (2)-(3). By this assumption, the texture remains static during the

deformation process and texture evolution is not considered.

Considering the inelastic deformation within a grain is a consequence of dislocation glide

induced crystallographic slip along preferred slip orientations, the inelastic strain rate at a

material point within a single grain is expressed as:

µ̇ζij =

N∑
s=1

γ̇s,ζZs,ζij (4)

where, γ̇s,ζ is the plastic shearing rate on the sth slip system, N the total number of slip

systems, Zs,ζ is the Schmid tensor uniquely describing the orientation of the sth slip system

as the dyadic product of the slip direction, ns,ζ , and the normal to the slip plane ms,ζ , (i.e.,

Zs,ζij = ns,ζi ms,ζ
j ). The resolved shear stress on a slip system, τ s,ζ , is computed from the stress
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tensor using the Schmid tensor as well:

τ s,ζ = σζijZ
s,ζ
ij (5)

The shear strain rate is generally formulated by a flow rule as a function of the resolved shear

stress and the slip system strength, gs,ζ [57]:

γ̇s,ζ = γ̇s,ζ(τ s,ζ , gs,ζ) (6)

and the evolution of the slip system strength is described by a hardening rule as a function of

the shear strain rate and the strength of all the slip systems:

ġs,ζ = ġs,ζ(g1,ζ , g2,ζ , ..., gN,ζ , γ̇1,ζ , γ̇2,ζ , ..., , γ̇N,ζ) (7)

which indicates that hardening along a slip system is affected not only by the state on the slip

system itself (self-hardening) but all others as well (latent hardening). A number of strength

and slip evolution models that specify Eqs. (6) and (7) has been proposed in the literature (see

[57] for a comprehensive review). While the reduced order modeling methodology developed

in this manuscript does not depend on the particular forms of the evolution equations of the

slip or slip system strength, it is beneficial to demonstrate the formulation in the context of a

particular form. Using other hardening laws is straightforward and follows the general steps

to be described below. Incorporation of some other mechanisms such as twinning [32], which

may involve significant texture evolution, violates the small deformation assumption made in

the present formulation. Twinning is therefore not considered. In this manuscript, we choose

a frequently used flow rule suggested by Rice and Peirce [56, 52, 53] for face-centered cubic

(FCC) crystals:

γ̇s,ζ = γ̇0

(∣∣τ s,ζ∣∣
gs,ζ

)1/m

sgn(τ s,ζ) (8)

where, γ̇0 is the reference shear strain rate, m the rate sensitivity parameter. The strength of

each slip system is taken to evolve following the hardening rule proposed by Anand [2]:

ġs,ζ = h0

(
gs,ζsa − gs,ζ

gs,ζsa − gs,ζ0

)
N∑
s=1

|γ̇s,ζ | (9)

where h0 is the initial hardening rate, gs,ζsa the saturation shear stress, and gs,ζ0 the initial

strength of the sth slip system. The saturation shear stress of the sth slip system is given by:

gs,ζsa = gssa,0

(
N∑
s=1

|γ̇s,ζ |/γ̇s0

)m′
(10)

in which, gssa,0, γ̇s0 and m′ are material parameters. All the parameters describing the hard-
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ening are orientation independent (i.e., same for all slip systems).

The boundary conditions for the boundary value problem are:

uζi (x, t) = ūi(x, t) x ∈ Γu (11)

σζij(x, t)nj = t̄i(x, t) x ∈ Γt (12)

in which, ūi(x) and t̄i(x) are the prescribed displacement and traction on the boundaries Γu

and Γt, where Γu ∪ Γt = ∂Ω and Γu ∩ Γt = ∅. n is the unit normal to Γt.

The system of equations given by Eqs. (1)-(12) are analyzed using the asymptotic homog-

enization method with multiple scales. The idea of the homogenization approach is illustrated

in Fig. 2(b), in which the governing equations are decomposed into a homogenized problem

defined over the problem domain, Ω, and parameterized by a macroscale coordinate vector,

x, and microscale problem defined over the representative volume, Θ, and parameterized by

the microscale coordinate vector, y. The scaling relation is y = x/ζ with 0 < ζ � 1 denoting

the size scale parameter given as the ratio between the characteristic length of the RVE and

the macrostructure. The microstructure is assumed to be infinitesimal compared to the size

of the macroscopic domain. y therefore is the spatial coordinates of the “blown up” version

of the microstructure. The asymptotic analysis is consequently performed at the limit where

the scaling parameter vanishes (i.e., scale separable limit) [4, 58]. An arbitrary single-scale

response field, f ζ(x), is then expressed using the two spatial coordinates as:

f ζ(x) = f(x,y(x))) (13)

The macroscopic spatial derivative of the response field is given by the chain rule as:

f ζ,xi(x) = f,xi(x,y) +
1

ζ
f,yi(x,y) (14)

using the scaling relationship. All response fields are assumed to remain locally periodic

throughout the deformation:

f(x,y)) = f(x,y + kŷ)) ∀x ∈ Ω (15)

where, ŷ is the period of the RVE and k is a nsd×nsd diagonal matrix with integer components.

The domain of the RVE denoted as Θ ⊂ Rnsd is composed of ngrain grains associated with

an orientation, lattice type, slip systems and evolution laws governing the slip along the slip

systems. Let Θ
(i)
gr denote the ith grain within the polycrystal RVE, then ∪ngraini=1 Θ

(i)
gr = Θ.

In this study, full traction continuity is assumed along each grain boundary. We note that

accurate modeling of the response mechanisms within grain boundaries may require analysis

of them as a separate phase (with thickness on the order of nanometers) or as interface (i.e.,

cohesive behavior). Such effects are beyond the scope of the current manuscript.
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3 Mathematical homogenization with multiple scales

In this section, the multiscale representations of the response functions are used along with

the two-scale asymptotic analysis of the original governing equations defined by Eqs. (1)-(12)

to formulate the micro- and macroscale problems. An eigenstrain based representation of the

inelastic response field is employed to express the microscale problem in an integral form, which

forms the basis of the reduced order model described in Section 4. Considering a two-scale

asymptotic expansion, the displacement field is expressed as:

uζi (x, t) = u0
i (x, t) +

m∑
a=1

ζauai (x,y, t) + O(ζm+1) (16)

in which, the leading order displacement, u0, is taken to be independent of the microscale

coordinates. Substituting Eq. (16) into Eq. (3) yields:

εζij(x, t) =
m∑
a=0

ζaεaij(x,y, t) + O(ζm+1) (17)

where, the first and second order strain components at each order are defined as:

εaij(x,y, t) = ua(i,xj)(x,y, t) + ua+1
(i,yj)

(x,y, t); a = 0, 1, ... (18)

While the first order term of the displacement field in the asymptotic series is independent

of the microscale coordinates, the variation of the strain field over the RVE is of order O(1),

as indicated by Eq. (17). A comma followed by the micro or macroscale coordinate implies

partial derivative with respect to the pertinent coordinate.

Substituting the asymptotic expansion of the strain field (Eq. (17)) into the constitutive

relationship yields the stress field in the following asymptotic form:

σζij(x, t) =
m∑
a=0

ζaσaij(x,y, t) + O(ζm+1) (19)

in which,

σaij(x,y, t) = Lijkl(y)
[
εakl(x,y, t)− µakl(x,y, t)

]
; a = 0, 1, ... (20)

The tensor of elastic moduli, Lζijkl, is taken to vary locally only (i.e., Lζijkl(x) = Lijkl(y)). This

consideration is consistent with the earlier assertion that the body is made of the repetition of

an RVE (see Fig. 2(a)). The inelastic strain components are the components of the asymptotic

series of the form:

µζij(x, t) =
m∑
a=1

ζaµaij(x,y, t) + O(ζm+1) (21)

To obtain the expressions for the components of the inelastic strain in the asymptotic series,
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we proceed by substituting Eq. (19) into resolved shear stress in Eq. (5) and get:

τ s,ζ(x, t) =
m∑
a=0

ζaτ s,a(x,y, t) + O(ζm+1) (22)

in which,

τ s,a(x,y, t) = σaij(x,y, t)Z
s
ij(y) (23)

Similar to the tensor of elastic moduli, the Schmid tensor varies with respect to the local

coordinates only, due to the periodicity of the underlying microstructure. The Taylor series

expansion of the slip rate in Eq. (8) about (τ s,0, gs,0) gives:

γ̇s,ζ =
∞∑
p=0

∞∑
q=0

(τ s,ζ − τ s,0)p(gs,ζ − gs,0)q

p!q!

( ∂p+qγ̇s,ζ

∂τ s,ζ
p
∂gs,ζ

q

)∣∣∣
(τs,0,gs,0)

(24)

=

m∑
a=0

ζaγ̇s,a + O(ζm+1) (25)

where, p and q are integers. The first two terms of the slip strength expression are:

γ̇s,0 = γ̇0

(∣∣τ s,0∣∣
gs,0

)1/m

sgn(τ s,0) (26)

γ̇s,1 =
γ̇0

m

(∣∣τ s,0∣∣
gs,0

)1/m(
τ s,1

τ s,0
− gs,1

gs,0

)
sgn(τ s,0) (27)

which, combined with Eq. (25), yields the evolution equation of the components of the inelastic

strain tensor:

µ̇aij =
N∑
s=1

γ̇s,a(x,y, t)Zsij(y); a = 0, 1, ... (28)

Similarly, expanding Eq. (9) using Taylor series about (gs,0, τ s,0) gives:

ġs,ζ =

m∑
a=0

ζaġs,a + O(ζm+1) (29)

where, the first two terms are given as:

ġs,0 = h0

(
gs,0sa − gs,0

gs,0sa − gs,00

)
N∑
s=1

|γ̇s,0| (30)

ġs,1 =
h0C

τ s,0(gs,0sa − gs,00 )2

(
E
τ s,1

τ s,0
− F g

s,1

gs,0

)
(31)
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in which,

gs,0sa = gssa,0

(
N∑
s=1

|γ̇s,0|/γ̇s0

)m′
(32)

and,

C :=
γ̇0

m

(∣∣τ s,0∣∣
gs,0

)1/m

sgn(τ s,0) (33)

D :=
m′

γ̇s0
gssa,0

(
N∑
s=1

|γ̇s,ζ |/γ̇s0

)m′−1

(34)

E := (1−D)(gs,00 − g
s,0) + (gs,0sa − gs,0)(gs,0sa − g

s,0
0 ) (35)

F := D(gs,00 − g
s,0) + (gs,0sa − gs,0)(gs,0sa − g

s,0
0 ) (36)

Substituting the asymptotic expansion of the stress field (Eq. (19)) into the equilibrium

equation (Eq. (1)), making use of the chain rule (Eq. (14)), and identifying terms with equal

order of ζ yields the equilibrium equations at each order of ζ:

O(ζ−1) : σ0
ij,yj (x,y, t) = 0 (37)

O(1) : σ0
ij,xj (x,y, t) + σ1

ij,yj (x,y, t) + bi(x,y, t) = 0 (38)

O(ζa) : σaij,xj (x,y, t) + σa+1
ij,yj

(x,y, t) = 0; a = 1, 2, ... (39)

The first order homogenization theory employs the O(ζ−1) equilibrium equation to formulate

the microstructural equilibrium, whereas the homogenized macroscale problem follows from the

O(1) equilibrium. It is possible to derive higher order formulations by employing the higher

order equilibrium equations (Eq. (39)), which may be important in capturing length scale

effects, as well as dispersion phenomena under dynamic loads. While higher order methods hold

promise, they typically require higher order continuity and may require special treatment of

high order boundary conditions [24, 25, 26]. In this manuscript, the focus is on the formulation

of the reduced order crystal plasticity equations in the context of first order homogenization.

Integrating the O(1) equilibrium equation over the RVE domain Θ and exploiting period-

icity of stresses over the RVE yields the homogenized equilibrium equation as:

σ̄ij,j(x, t) + b̄i(x, t) = 0; x ∈ Ω (40)

in which b̄i is the RVE average body force; and the overbar indicates the averaging operation

over the domain of the RVE. For an arbitrary response function, f :

f̄(x, t) ≡ 〈f ζ(x, t)〉Θ =
1

|Θ|

∫
Θ
f(x,y, t) dy (41)

where, |Θ| denotes the volume of the RVE domain Θ.
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We further consider boundary conditions that are smooth (i.e., that do not vary at the

scale of the microstructure) over the domain of the microstructure. The resulting governing

equations for the macroscale problem are summarized in Box 1. The constitutive behavior is

expressed as the volume average of the stress field resolved at the RVE scale (i.e., σ̄ = 〈σ〉Θ)

and without an explicit constitutive form. The stresses are therefore evaluated at the scale

of the RVE, through the microstructure computations as described below. The macroscopic

strain provided by the RVE volume averaging is the symmetric gradient of the macroscale

displacement (i.e., ε̄ = ∇su0) due to the periodicity of the displacement field, u1.

Given: average body force, b̄, boundary conditions, ū, t̄ at time t ∈ [0, t0]

Find: Macroscopic deformation u0 : Ω̄× [0, t0]→ Rnsd

• Equilibrium (x ∈ Ω; t ∈ [0, t0])

σ̄ij,j(x, t) + b̄i(x, t) = 0 x ∈ Ω

• Constitutive relation (x ∈ Ω; t ∈ [0, t0]):

σ̄ij(x, t) = 〈σ0
ij(x,y, t)〉Θ

• Kinematics (x ∈ Ω; t ∈ [0, t0])

ε̄ij(x, t) = u0
(i,xj)

(x, t)

• Boundary conditions:

u0
i (x, t) = ūi(x, t) x ∈ Γu, t ∈ [0, t0] σ̄ij(x, t)nj = t̄i(x, t) x ∈ Γt, t ∈ [0, t0]

Box 1: Macroscale problem.

Substituting the first order constitutive equation (Eq. (20)) into the O(ζ−1) equilibrium

equation, and using Eq. (18) yields:

{Lijkl(y)[ε̄kl(x̂, t) + u1
(k,yl)

(x̂,y, t)− µ0
kl(x̂,y, t)]},yj = 0 (42)

While Eq. (42) is specialized to an arbitrary but fixed macroscopic position, x̂, is valid for all

positions within the macroscopic domain, Ω.

Eq. (42) considered on the domain of an RVE (i.e., y ∈ Θ) along with the evolution

equations and the periodic boundary condition defined over the RVE boundaries (i.e., y ∈
∂Θ) constitutive a well-defined microscale problem as summarized in Box 2. The microscale

problem is evaluated for the microscale displacement field, u1, considering ∇ · [L(y) : ε̄(x, t)]

as a body force.
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Given: material elastic moduli Lijkl and macroscopic strain, ε̄kl

Find: Microscopic deformation u1 : Θ̄× [0, t0]→ Rnsd defined at a fixed but arbitrary

macroscopic position, x, which satisfy:

• Equilibrium:

{Lijkl(y)[ε̄kl(x,y, t) + u1
(k,yl)

(x,y, t)− µ0
kl(x,y, t)]},yj = 0, y ∈ Θ

• Kinematics:

µ̇0
ij(x,y, t) =

N∑
s=1

γ̇s,0(x,y, t)Zsij(y)

• Flow rule:

γ̇s,0(x,y, t) = γ̇0

(∣∣τ s,0(x,y, t)
∣∣

gs,0(x,y, t)

)1/m

sgn
(
τ s,0(x,y, t)

)
• Hardening rule:

ġs,0(x,y, t) = h0

(
gs,0sa − gs,0(x,y, t)

gs,0sa − gs0

)
N∑
s=1

∣∣γ̇s,0(x,y, t)
∣∣

• Schmid’s law:

τ s,0(x,y, t) = σ0
ij(x,y, t)Z

s
ij(y)

• Θ-periodic boundaries on y ∈ ΓΘ

Box 2: Microscale problem based on mathematical homogenization.

4 Eigenstrain-based reduced order model

The microscale boundary value problem defined over the RVE summarized in Box 2 along

with the macroscale boundary value problem defined over the domain of the problem, Ω, is

the first order computational homogenization (also called FE2, see [15, 14]) applied to poly-

crystalline plasticity. The micro- and macroscale problems are nonlinear and strongly coupled.

When the finite element method (FEM) is employed to numerically evaluate the problem, a

separate RVE is associated with each quadrature point of the macroscale discretization. The

macroscale constitutive response at a quadrature point is computed as the volume averag-

ing of the microscale stress field obtained through the numerical evaluation of the microscale

boundary value problem on the RVE of the quadrature point. In view of the fact that many

polycrystalline RVEs require a very large degree of freedom (e.g., O(105)−O(106)) to resolve

the complicated microstructural topology, direct evaluation of the multiscale system defined

in Boxes 1 and 2 is computationally prohibitive. In this study, we employ the eigenstrain idea

to develop a reduced order approximation to the microscale boundary value problem, which
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starts by decomposing the microscale displacement as ([47, 51]):

u1
i (x,y, t) = Hikl(y)ε̄kl(x, t) +

∫
Θ
hikl(y, ŷ)µ0

kl(x, ŷ, t)dŷ (43)

where H(y) and h(y, ŷ) are the elastic and eigenstrain influence functions with symmetry

on the second and third indices [25] (i.e., Hikl = Hilk, hikl = hilk). The first component of

Eq. 43 is due to the classical separation of variables considered in linear elastic computational

homogenization [4]. The second component is obtained based on the Green’s function ap-

proach, in which the inelastic strain field is viewed as the spatially variable “force” acting on

the microstructure [7]. The detailed evaluation of the influence functions are further discussed

in Section 5.1. Substituting Eq. (43) into Eq. (42) the microscale equilibrium can be written

in the form incorporating the influence functions as:{
Lijkl(y)

[
Aklmn(y)ε̄mn(x, t) +

∫
Θ
aklmn(y, ŷ)µ0

mn(x, ŷ, t)dŷ)

]}
,yj

= 0 (44)

where

Aklmn(y) = Gklmn(y) + Iklmn (45)

aklmn(y, ŷ) = gklmn(y, ŷ)− Iklmnδ(y − ŷ) (46)

with Gklmn(y) = H(k,yl)mn(y) and gklmn(y, ŷ) = h(k,yl)mn(y, ŷ) being the elastic and eigen-

strain polarization functions, respectively. It is straightforward to see that both G(y) and

g(y, ŷ) possess the minor symmetry (i.e., Gijkl = Gijlk, Gijkl = Gjikl, gijkl = gijlk, gijkl = Gjikl

) due to the symmetry on the second and third indices of the influence functions. δ is the Dirac

delta function, and I the fourth order identity tensor. Substituting Eq. (43) into Eq. (18) gives:

ε0
ij(x,y, t) = Aijkl(y)ε̄kl(x, t) +

∫
Θ
gijkl(y, ŷ)µ0

kl(x, ŷ, t) dŷ (47)

RVE averaging of Eq. (47) shows that the influence functions must satisfy the following con-

straints:

〈Gijkl〉Θ = 0;
1

|Θ|

∫
Θ
gijkl(y, ŷ) dŷ = 0 (48)

It is trivial to see that Eq. (48) is satisfied for periodic influence functions.

The computational complexity of solving the RVE problem is reduced by introducing the

following discretization of the first order inelastic strain (i.e., eigenstrain) and stress fields:

µ0
ij(x,y, t) =

n∑
α=1

N (α)(y)µ
(α)
ij (x, t) (49)
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σ0
ij(x,y, t) =

n∑
α=1

N (α)(y)σ
(α)
ij (x, t) (50)

where n ≥ ngrain is an integer that indicates the order of the reduced order model, ngrain

the number of grains within the RVE, N (α) the shape functions, µµµ(α) and σσσ(α) the nonlocal

eigenstrain and stress coefficients, respectively. The nonlocal coefficients are expressed in terms

of nonlocal weighting functions:

µ
(α)
ij (x, t) =

∫
Θ
ψ(α)(y)µ0

ij(x,y, t) dy (51)

σ
(α)
ij (x, t) =

∫
Θ
ψ(α)(y)σ0

ij(x,y, t) dy (52)

The shape functions, N (α), differ from the standard finite element shape functions in the level

of resolution (i.e., a relatively small number is used in describing the inelastic strain and stress

fields) as well as continuity (chosen to be C−1(Θ) continuous, consistent with the strain and

stress continuity in finite elements). The shape functions are taken to satisfy the partition of

unity property (

N∑
α=1

N (α)(y) = 1). The nonlocal weight functions, ψ(α), satisfy positivity and

normality, as well as orthonormality with the shape functions:

ψ(α)(y) ≥ 0;

∫
Θ
ψ(α)(y) dy = 1;

∫
Θ
ψ(α)(y)N (β)(y) dy = δ(αβ) (53)

where, δ(αβ) denotes the Kronecker delta (i.e., δ(αβ) = 1 if α = β; δ(αβ) = 0 if α 6= β ).

The orthonormality condition ensures the consistency of the reduced order discretization (i.e.,

Eqs. (49) and (50)) with the nonlocal averaging (i.e., Eqs. (51) and (52)) and can be verified

by premultiplying Eqs. (49) and (50) with ψ(α) and integrating over the RVE domain.

Substituting Eq. (49) into Eq. (47), premultiplying the resulting equation with ψ(α) inte-

grating over the RVE domain and taking a time derivative yields:

ε̇
(β)
ij (x, t)−

n∑
α=1

P
(αβ)
ijkl µ̇

(α)
kl (x, t) = A

(β)
ijkl

˙̄εkl(x, t) (54)

in which, P(αβ) and A(β) are coefficient tensors expressed as a function of the influence func-

tions as:

P
(αβ)
ijkl =

∫
Θ

∫
Θ
ψ(β)(y)N (α)(ŷ)gijkl(y, ŷ) dŷ dy (55)

A
(β)
ijkl =

∫
Θ
ψ(β)(y)Aijkl(y) dy (56)

and,

ε
(α)
ij (x, t) :=

∫
Θ
ψ(α)(y)ε0ij(x,y, t) dy (57)

is the nonlocal strain coefficient.
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Considering the O(1) constitutive equation (i.e., Eq. (20) with a = 0), premultiplying by

ψ(α), integrating over the RVE domain and taking the time derivative results in:

ε̇
(β)
ij (x, t) = µ̇

(β)
ij (x, t) +

n∑
α=1

M
(αβ)
ijkl σ̇

(α)
kl (x, t) (58)

where, M(αβ) is expressed as:

M
(αβ)
ijkl =

∫
Θ
ψ(β)(y)Mijkl(y)N (α)(y) dy (59)

in which, M is the elastic compliance tensor. Combining Eqs. (54) and (58):

n∑
α=1

M
(αβ)
ijkl σ̇

(α)
kl (x, t)−

n∑
α=1

[
P

(αβ)
ijkl − δ

(αβ)Iijkl
]
µ̇

(α)
kl (x, t) = A

(β)
ijkl

˙̄εkl(x, t) (60)

Equation (60) along with evolution equations for the eigenstrain coefficients µ(α) (formulated

below) could be evaluated to obtain the microstructure deformation state for a prescribed

macroscale strain increment. The macroscale stress is then computed by averaging Eq. (50)

over the domain of the RVE.

Clearly, the number and form of the shape functions employed in the reduced order dis-

cretization of the eigenstrain and stress fields affect the accuracy and efficiency of the resulting

model order. It is possible to prescribe piecewise constant or nonuniform variations for the

shape functions [47, 51, 44]. In this work, piecewise constant shape functions are employed,

which allows achieving evolution functions for the eigenstrain coefficients without further as-

sumptions.

Considering the partitioning of the RVE domain into n ≥ ngrain nonoverlapping subdo-

mains denoted by Θ(α) (i.e., Θ = ∪nα=1Θ(α) and Θ(α) ∩Θ(β) = ∅ for α 6= β). The partitioning

is performed such that each subdomain is allowed to occupy the whole or a part of a single

grain within the RVE only (i.e., Θ(α) ⊆ Θ
(i)
gr , 1 ≤ i ≤ ngrain, ∀α ∈ {1, 2, ..., n}). The shape

and weighting functions are then chosen as:

N (α)(y) =

1 y ∈ Θ(α)

0 y /∈ Θ(α)
; ψ(α)(y) =

1

|Θ(α)|
N (α)(y) (61)

It is trivial to see that Eq. (61) satisfy the partition of unity, positivity, normality and or-

thonormality properties defined above.

Premultiplying the O(1) evolution laws for the inelastic strain, and the resolved shear stress

(Eqs. (28) and (23), respectively with a = 0), and averaging over the domain of the RVE yields:

µ̇
(α)
ij (x, t) =

N∑
s=1

∫
Θ
ψ(α)(y)γ̇s,0(x,y, t)Zsij(y) dy (62)
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τ s(α)(x, t) = σ
(α)
ij (x, t)Z

s(α)
ij (63)

where γ̇s(α) and τ s(α) are the part average of the slip rate and resolved shear stress of the sth

slip system, respectively (i.e., γ̇s(α) = 〈γ̇s,0〉Θα and τ s(α) = 〈τ s,0〉Θα). τ s(α) denotes the Schmid

tensor associated with the grain that contains Θ(α).

The O(1) evolution of the viscoplastic slip and slip strength (Eqs. (26) and (30)) are

described by the ordinary differential equations as a function of the resolved shear stress. In

the general form:

γ̇s,0 = γ̇
(
γs,0, τ s,0

)
(64)

ġs,0 = ġ
(
gs,0, τ s,0

)
(65)

Noting that the resolved shear stress in the reduced order model is piecewise uniform by the

above arguments (i.e., τ s,0 = τ s(α) when y ∈ Θ(α)), considering that the slip and hardening

evolve from a uniform reference state, the slip and hardening will evolve as piecewise uniform,

which is described using the part averaged counterparts as :

γ̇s(α)(x, t) = γ̇0

(∣∣τ s(α)(x, t)
∣∣

gs(α)(x, t)

)1/m

sgn
(
τ s(α)(x, t)

)
(66)

ġs(α)(x, t) = h0

(
g
s(α)
sa − gs(α)(x, t)

g
s(α)
sa − gs(α)

0

) N∑
s=1

|γ̇s(α)(x, t)| (67)

Box 3 summarizes the reduced order microscale problem, which replaces the numerical

evaluation of the system described in Box 2. The overall order (i.e., the size of the linear

systems evaluated in the context of the nonlinear solver) is 6n for a 3-D microstructure,

where the unknowns are the nonlocal stress coefficients at each part, Θα, while the hardening

coefficients evaluated explicitly, as described in Section 5.

4.1 Influence functions

The coefficient tensors A(α) and P(αβ) used in the reduced order model are functions of the

elastic (i.e., H(y)) and eigenstrain (i.e., h(y, ŷ)) influence functions, respectively. Furthermore,

A(α) and P(αβ) inherit minor symmetry from G(y) and g(y, ŷ).

Considering the microscale equilibrium defined in Eq. (44) in the absence of any inelastic

strains:

{Lijmn(y)[H(m,yn)kl(y) + Imnkl]},yj = 0; y ∈ Θ (68)

is the governing equation for evaluating the elastic influence function. Equation (68) is the

classical influence function problem of linear elastic mathematical homogenization theory [4]
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Given: part-wise parameters M
(β)
ijkl, P

(αβ)
ijkl , A

(β)
ijkl, ns(α), ms(α), g

s(α)
sa , γ̇

s(α)
0 , h

(α)
0 ,

g
s(α)
s0 , γ̇

(α)
s0 , the macroscale strain ε̄kl with its increment ∆ε̄kl

Find: macroscale stress σ̄kl

• Constitutive equation:
n∑

α=1

M
(αβ)
ijkl σ̇

(α)
kl (x, t)−

n∑
α=1

[
P

(αβ)
ijkl − δ

(αβ)Iijkl
]
µ̇

(α)
kl (x, t) = A

(β)
ijkl

˙̄εkl(x, t)

σ̄ij =

n∑
β=1

|Θ(β)|
|Θ|

σ
(β)
ij

• Kinematics:

µ̇
(α)
ij (x, t) =

N∑
s=1

γ̇s(α)(x, t)Z
s(α)
ij

• Flow rule:

γ̇s(α)(x, t) = γ̇0

(∣∣τ s(α)(x, t)
∣∣

gs(α)(x, t)

)1/m

sgn
(
τ s(α)(x, t)

)
• Hardening rule:

ġs(α)(x, t) = h0

(
g
s(α)
sa − gs(α)(x, t)

g
s(α)
sa − gs(α)

0

) N∑
s=1

|γ̇s(α)(x, t)|

• Schmid’s law:

τ s(α)(x, t) = σ(α)(x, t) : Zs(α) Zs(α) = ns(α) ⊗ms(α)

Box 3: Reduced order microscale problem.

and is well-posed up to rigid body motion when periodicity condition is enforced along the

RVE boundaries.

Substituting the eigenstrain discretization (Eq. (49)) and (Eq. (68)) into Eq. (44) and

observing that the nonlocal eigenstrain coefficients is a function of the macroscale spatial

coordinates only:{
Lijmn(y)

[
h

(α)
(m,yn)kl(y, ŷ)− ImnklN (α)(y)

]}
,yj

= 0; y ∈ Θ (69)

is the governing equation for evaluating the part-wise eigenstrain influence function, h(α).

Equation (69) is also well-posed up to rigid body motion when periodicity is imposed along

the RVE boundary. It is possible to evaluate P(αβ) directly using the part-wise eigenstrain

influence functions as:

P
(αβ)
ijkl =

∫
Θ
ψ(β)(y)h

(α)
(i,yj)kl

(y, ŷ) dy (70)
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Figure 3: Implementation strategy for the reduced order multiscale model.

The evaluation of the eigenstrain influence function itself, which is costly from computational

and memory standpoints, is therefore not necessary to evaluate coefficient tensors.

5 Computational implementation

The proposed reduced order polycrystal plasticity model has been implemented and the

implementation details are provided in this section. The overview of the implementation

strategy is shown in Fig. 3. The evaluation of the multiscale problem is performed in two

stages. The preprocessing stage consists of the generation of the RVE and the evaluation

of the coefficient tensors. The simulation of the macroscale problem (Box 1) is performed

using the commercial finite element analysis package, Abaqus. The evaluation of the reduced

order microstructure (Box 3) that constitutes the stress update of the macroscale analysis is

incorporated as a user supplied subroutine (i.e., UMAT). In the context of the assumed strain

approach, the reduced order model evaluates the reduced order microstructure problem and

computes the macroscale stress and tangent stiffness matrix from a given equilibrium state

and strain increment at a macroscale quadrature point as described below. In this section,

we particularly focus on the evolution of the part-wise eigenstrain influence functions and the

update procedure for the reduced order model.
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5.1 Evaluation of the influence functions

The elastic and part-wise eigenstrain influence functions are numerically evaluated using

the finite element method by solving Eqs. (68) and (69), respectively. The evaluation of elastic

influence functions are standard (see, e.g., [27]) and skipped here for brevity.

Substituting the choice of the reduced order model shape functions into the eigenstrain

influence function problem (69) and bringing the resulting equation into the weak form using

the standard Bubnov-Galerkin procedure:∫
Θ
w(i,yj)(y)Lijmn(y)h

(α)
(m,yn)kl(y, ŷ) dy =

∫
Θ(α)

w(i,yj)(y)Lijkl(y) dy; α = 1, 2, ..., n (71)

where w(y) ∈ Wper ⊂
[
H1

per(Θ)
]nsd is the weight function with sufficient smoothness over

the domain of the RVE, H1
per(Θ) denotes the Sobolev space of Θ-periodic functions with

square integrable values and derivatives defined within the problem domain, Θ. The space

of the weight functions and the test functions are taken to be finite dimensional subspaces

discretized using the standard finite element shape functions. Following the finite element

discretization and assembly procedure, the resulting series of linear systems for the evaluation

of the part-wise inelastic influence function becomes:

Kd
(α)
K = F

(α)
K ; α = 1, 2, ... , n; K = 1, 2, ... , 6 (72)

where, K denotes the stiffness matrix, F
(α)
K and d

(α)
K denote the force vector and the nodal

coefficient vector for the Kth component of the αth influence function, respectively. Voigt

notation is employed to condense the indices (i.e., ij → K with 11 → 1, 22 → 2, 33 → 3,

23→ 4, 13→ 5, 12→ 6) and K condenses the free indices in Eq. (69). It is important to note

that the stiffness matrix, K, is identical for all eigenstrain influence functions and therefore

require a single factorization. d
(α)
K denotes the nodal coefficient of the part-wise influence

function of αth part and F
(α)
K denotes the corresponding force vector. Figure 4 schematically

indicates the part-wise influence function problem, where the RVE subdomain associated with

part α is subjected to a spatially uniform body force as expressed on the right-hand side of

Eq. (71).

Representative polycrystal microstructures are generated using the DREAM.3D software [18],

which is capable of creating synthetic RVEs based on microstructure topology metrics such as

grain size, orientation and misorientation distributions or reconstruct microstructure directly

from sectioned images of real microstructures. The geometry generated with DREAM.3D is

discretized using the Parallelized Polycrystal Mesher developed by Cerrone et al. [6]. Figure 5

demonstrates the geometry and discretization of a representative microstructure.

The real or reconstructed polycrystal microstructures are often at best close to but not

strictly periodic. In strictly periodic microstructure, the periodicity of the influence functions

can be enforced by matching the surface nodes along the opposing sides of the RVE, assigning

master-slave pairs and constraining the deformation of slave nodes to the deformation of the

19



X

Y

Z

Figure 4: Solving influence functions part-by-part (using entire grain as one part as an example).

 

  

(a) (b) (c) 
Figure 5: A virtual micro-structure generated from DREAM.3D and Meshed with PPM: (a)
synthetic poly-crystal micro-structure; (b) internal grain boundaries based on which meshing of
individual grain is conducted; (c) volume mesh.

corresponding master nodes, which is not applicable in polycrystal RVEs. Nguyen et al. [48]

proposed interpolating the displacement of two opposite RVE faces by linear combinations

of polynomial shape functions for nonmatching RVE mesh. We rely on a similar idea com-

bined with the classic master-slave coupling method to enforce a quasi-periodicity to provide

point-wise displacement matching between opposing RVE surfaces with nonmatching meshes.

Consider the discretization of the RVE using four-noded tetrahedra. The general treatment

of the quasi-periodic mesh applies to hexahedra in a straight forward manner as well. The

opposing external surfaces of the RVE are designated as master and slave surfaces. In case

of uneven mesh density, slave surface is chosen to be that with the finer mesh density. The
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system of equations (Eq. (72)) is rearranged in the following form:
Kii Kim Kis Kif

Kmi Kmm Kms Kmf

Ksi Ksm Kss Ksf

Kfi Kfm Kfs Kff




di

dm

ds

df

 =


F1

F2

F3

F4

 (73)

where di, dm, ds and df respectively denote the displacement vector that correspond to the

interior, master, slave and fixed nodes respectively. The part and component indicators from

the displacement vectors (Eq. (72)) are omitted in Eq. (73) for simplicity. Due to the symmetry

of the stiffness matrix, different components of the stiffness matrix satisfy:

Kpq = KT
qp ; p ∈ {i,m, s, f}, q ∈ {i,m, s, f} (74)

The corner nodes of the RVE are fixed to prevent rigid body motion, which implies:

df = 0 (75)

Every node on the slave surface is associated with a dummy master node, which is a projection

of the slave node onto the master surface as illustrated in Fig. 6(a). The dummy master node

lies on the face, edge or a vertex of a dummy master element as illustrated in Fig. 6(b). The

displacement of the slave node is expressed as:

db =
4∑
p=1

N e
p (ŷb)d

e
p (76)

where db denotes the displacement vector of the slave node, b, ŷb denotes the coordinates of

the dummy master node, de and Ne denote the local displacement vector and finite element

shape functions of the nodes in the dummy master element, e, respectively. Applying Eq. (76)

to all nodes on slave surfaces of the RVE boundaries, yields the relationship between the slave

and master displacement vectors as:

ds = Cdm (77)

in which C is a rectangular matrix that contains the corresponding coefficients from Eq. (76).

Lagrange multipliers are used to enforce the boundary constraints. Consider the La-

grangian:

Π(d) =
1

2
dTKd− dTF + λT1 (ds −Cdm) + λT2 d

f (78)

in which, λT1 and λT2 are two Lagrange multipliers ensuring the enforcement of the periodic

boundary conditions on the RVE boundaries (Eq. (77)) and fixed boundary conditions on

the corner nodes (Eq. (75)). Taking derivative of Π with respect to di, dm, and ds, and
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Figure 6: Master-Slave relationship for non-periodic mesh RVE.

incorporating Eqs. (75) and (74) gives:

Kiid
i +Kimd

m +Kisd
s − F1 = 0 (79)

Kmid
i +Kmmd

m +Kmsd
s − F2 −CTλ1 = 0 (80)

Ksid
i +Ksmd

m +Kssd
s − F3 + λ1 = 0 (81)

Premultiplying Eq. (81) with CT , adding with Eq. (80) and considering the periodic boundary

condition in Eq. (77), yields:(
Kmi +CTKsi

)
di +

(
Kmm +CTKsm +KmsC +CTKssC

)
dm − F2 −CTF3 = 0 (82)

Substituting Eq. (77) into Eq. (79) and combining with Eq. (82) gives:[
Kii Kim +KisC

Kmi +CTKsi Kmm +CTKsm +KmsC +CTKssC

]{
di

dm

}
=

{
F1

F2 +CTF3

}
(83)

The condensed stiffness matrix in Eq. (83) is used to solve for the interior and master nodal

coordinates. The slave nodal coordinates, ds, is then computed using Eq. (77). It is straight-

forward to see that the symmetry of the stiffness matrix has been preserved. Equation (83) is

evaluated for each part for a total of n times.

5.2 Evaluation of the reduced order microscale problem

The reduced order system of equations in Box 3 is solved numerically at each macroscale

quadrature point to incrementally update the macroscale stress from an equilibrium state for

a given increment of macroscopic strain.

The reduced order system is viewed as two sets of coupled nonlinear equations (i.e., the

constitutive equations and hardening rules) with σ(β) and gs(β) (β = 1, 2, ..., n, s = 1, 2, ..., N)
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as unknowns, which can be written in the vectorized form as:

Σ =
(
σ

(1)
1 , σ

(1)
2 , ... , σ

(1)
6 , σ

(2)
1 , ... , σ

(2)
6 , ... , σ

(n)
1 , ... , σ

(n)
6

)T
(84)

G =
(
g1(1), g2(1), ... , gN(1), g1(2), ... , gN(2), ... , g1(n), ... , gN(n)

)T
(85)

A full tight coupled Newton-Raphson (N-R) method [42] or a two-level staggering scheme [39]

could be used to solve the reduced order microscale problem. In this manuscript, a staggering

scheme is adopted, in which the part-wise stresses and the part-wise strengths are evaluated in

a coupled but iterative manner. While the convergence of the system is first order (as opposed

to a tight coupled N-R scheme that has second order convergence), the generalization of the

implementation of the approach to other evolution laws is somewhat more straightforward

using the present formulation. The incremental procedure for evaluating the reduced order

microscale problem is shown in Box 4.

Given: Stress and strength of each part at the lth increment, lΣ and lG; macroscale

strain and strain increment, l+1ε̄ and l+1∆ε̄; time and time increment, lt and l+1∆t.

Find: Stress and strength of each part at the l + 1th increment, l+1Σ and l+1G.

• (A) Set iteration number k = 0

• (B) Initial guess for stress and strength:

0
l+1Σ = lΣ ; 0

l+1G = lG

• (C) Iterate k until convergence:

1) Update the stress using N-R iteration

k+1
l+1Σ = k

l+1Σ−
(∂Φ

∂Σ

)−1
∣∣∣∣
( k
l+1Σ, k

l+1G)

Φ

∣∣∣∣
( k
l+1Σ, k

l+1G)

2) Update the strength explicitly:

k+1
l+1G = k

l+1G+ Ġ
∣∣∣
(k+1
l+1Σ, k

l+1G)
l+1∆t

2) k = k + 1

Box 4: Algorithm for solving the reduced order microscale problem

To define the residual, we discretize the constitutive equation using a backward Euler

scheme. Adopting the Voigt notation:

Φ =
(
φ

(1)
1 , φ

(1)
2 , ... , φ

(1)
6 , φ

(2)
1 , ... , φ

(2)
6 , ... , φ

(n)
1 , ... , φ

(n)
6

)T
= 0 (86)
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where,

φ
(β)
I =

n∑
α=1
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)
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IJ

l+1σ
(β)
J − lσ

(β)
J
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−A(β)

IJ
l+1ε̄J − lε̄J

l+1t− lt
= 0 (87)

in which, left subscripts l and l + 1 indicate the values of the fields at current and next

increments, respectively, that correspond to times lt and l+1t. The time increment is: l+1∆t =

l+1t− lt. The Jacobian matrix for the N-R method is expressed as:
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(88)

where each component is expressed as:

∂φ
(β)
I

∂σ
(η)
K

=
(
δ(ηβ)IIJ − P (ηβ)

IJ

) N∑
s=1

Ωs(η)Z
s(η)
J Z

s(η)
K + δ(ηβ) M

(β)
IK

l+1∆t
(89)

and

Ωs(η) =
γ̇0

m

1

gs(η)

( |τ s(η)|
gs(η)

) 1−m
m

(90)

The incremental evaluation of the macroscale equilibrium is performed using the N-R

method, in which the tangent moduli is:

∂l+1σ̄I

∂l+1ε̄J
=

N∑
α=1

C(α)∂l+1σ
(α)
I

∂l+1ε̄J
(91)

where C(α) is the volume fraction of part α. Eq. (91) indicates the need to calculate
∂l+1σ

(α)
I

∂l+1ε̄J

to get the tangent moduli. This term is obtained by taking the derivative of Eq. (87) with

respect to l+1ε̄K and considering the chain rule:

n∑
α=1

(
δ(αβ)IIJ − P (αβ)
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−
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IJ
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= 0

(92)
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Simplifying the above equation yields:

n∑
α=1

[(
δ(αβ)IIJ − P (αβ)

IJ

)
ϕ

(α)
JL + δ(αβ)M

(α)
IL

]∂l+1σ
(α)
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=

A
(β)
IK

l+1∆t
(93)

where,

ϕ
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JL =

N∑
s=1

γ̇0

m

1

l+1g
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(∣∣
l+1τ

s(α)
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s(α)

) 1
m
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Z
s(α)
J Z

s(α)
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Equation (93) consists of a linear system of equations, from which
∂l+1σ

(α)
L

∂l+1ε̄K
is calculated.

6 Numerical verification

The verification of the proposed reduced order homogenization based crystal plasticity

model is performed using three sets of examples. The examples establish the accuracy charac-

teristics of the proposed model as compared to the Crystal Plasticity Finite Element (CPFE)

method, in which the microstructure is fully resolved. The first two sets of examples assess the

accuracy and efficiency in the context of macroscopic metrics (e.g., homogenized stress-strain

behavior) with the first set of example emphasizing on various loading conditions and the

second set on different microstructure configurations. The third set of examples demonstrates

the importance of employing subgrain partitioning when the local stress fields are of interest.

A two-scale analysis of a circular arch subjected to compression is included in Section 6.4 to

further demonstrated the computatonal capabilities of the proposed reduced order model.

Three polycrystalline microstructural configurations as shown in Fig. 7 are investigated

during the verification process using the grain size distribution function shown in Fig. 8 and

equiaxed grain shape. The rolling direction (RD) is along the X axis, while the transverse

(TD) and the normal direction (ND) coincides with Y and Z, respectively. The polycrystalline

microstructures are taken to consist of 52, 73 and 134 randomly oriented FCC grains of pure

aluminum.

The finite element discretizations of the reference CPFE models are composed of trilinear

four-noded tetrahedron elements. The three microstructures investigated contained 50,476,

69,291 and 94,409 elements that correspond to approximately 56,000, 76,000 and 103,000

degrees of freedom, respectively. The partitioning of the proposed reduced order models were

performed such that each part coincides with a single grain (i.e., n=52, n =73 and n =134

for the three cases considered) leading to a nonlinear system with 312, 438 and 804 degrees

of freedom, respectively. The macroscale discretization of the multiscale model consists of a

single tri-linear eight-noded hexahedron element in the three sets of verification examples.

The properties of the material at the reference orientation (taken to be the same as the

basis shown in Fig. 4) is summarized in Tables 1 and 2. All 12 {111}〈111〉 slip systems are

taken to be active in the reference and multiscale simulations.
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Figure 7: Three RVEs of different sizes: (a) small RVE with 52 grains; (b) medium RVE with
73 grains; (c) large RVE with 134 grains.
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Figure 8: Grain size distribution function used in RVE microstructure generation.

Table 1: Elastic parameters.

C11 (GPa) C12 (GPa) C44 (GPa)

108.2 61.3 28.5

Table 2: Viscoplasticity parameters.

m γ̇0(s−1) h0 (MPa) gs0 (MPa) gssa,0 (MPa) m′ γ̇s0(s−1)

0.05 1.0 20.4 3.7 30.8 0.0 5.0× 1010
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Figure 9: Schematic illustration of different boundary and loading conditions investigated: (a)
unixial tension; (b)simple shear; (c)biaxial tension.

6.1 Effects of loading conditions

Uniaxial, simple shear and biaxial loading conditions are considered to investigate the

performance of the ROM as shown in Fig. 9 (the illustration is in 2D for simplicity since no

loadings are applied along the out-of-plane direction for all cases). Both monotonic and cyclic

loading cases are studied under the biaxial tension conditions. For the uniaxial tension and

simple shear, a 5% strain is applied with a constant strain rate of 0.05/s. For the monotonic

biaxial tension case, a 5% strain is applied at a constant strain rate of 0.05/s along the X

direction while a 3% strain is applied at a constant strain rate of 0.03/s along the Y direction.

For the cyclic biaxial tension case, a 6% maximum strain is applied along the X direction with

a constant strain rate of 0.04/s. Upon reaching the maximum strain, the loading is held until

the end of the simulation. Along the Y direction, the microstructure is cyclically loaded with

an R-ratio of one and applied strain range of 4% at constant strain rate 0.04/s. The duration

of the cyclic biaxial tension simulation is 2.5 seconds.

Figure 10 shows the comparisons between overall stress-strain behaviors simulated using the

proposed reduced order model and the reference model of the 73-grain RVE under above loading

conditions with texture given in the {111} pole figure in Fig. 11. There is a reasonable overall

match between the CPFE and the reduced order model behavior for all the loading conditions

considered. The proposed model performed slightly stiffer than the reference simulation, which

is expected because the proposed model employs a much reduced basis with uniform shape

functions within each part. The model therefore does not capture strain/stress gradients within

the part. Employing nonuniform shape functions [44, 45] or increasing the number of parts [51]

may improve the accuracy.

6.2 Effects of microstructure configuration

For each microstructure in Fig. 7, 32 random grain orientation sets were generated in

order to study the error characteristics of the proposed model as a function of the random

microstructure geometry. Each microstructure is subjected to uniaxial tension along the X-

direction up to 5% macroscopic strain with a strain rate of 0.05/s. All the 96 simulations show
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Figure 10: Overall constitutive behavior of the 73-grain RVE subjected to: (a) monotonic
uniaxial tension; (b) monotonic simple shear; (c) monotonic biaxial tension; (d) cyclic biaxial
tension.
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Figure 11: {111} pole figure of the initial texture of the 73-grain RVE.
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Figure 12: Overall stress approximation error distribution functions.

similar errors, and in order to give an overall description of the error of all the simulations, we

define the overall stress approximation error as:

error =

∫ ε

0

|σROM − σCPFE|
|σCPFE|

dε (95)

For the simulation shown in Fig. 10 (a), this error is calculated as 7.1%. The error distribu-

tion functions of the 96 simulations are shown in Fig. 12, which demonstrates that the error

magnitude is quite stable across random realizations of orientation distributions, as well as

microstructure morphologies.

Another RVE with elongated grains along X direction shown in Fig. 13) is used to evaluate

ROM’s performance when the grain shapes are not equiaxed and a preferred orientation exists.

The same grain size distribution function is used as in Fig. 8 while the aspect ratio of RD/ND

and RD/TD is set to 5.0 and 4.0, respectively, to enforce the elongated grain structure. This

RVE consists of 62 grains and the initial texture is chosen such that it follows the pattern of

the rolling texture of aluminum as reported in [40]. The {111}〉 pole figure of the initial texture

is shown in Fig. 14. Figure 15 shows the overall constitutive behavior of this RVE subject to

uniaxial tension along X and Z direction. ROM performs reasonably well along both loading

directions, and, more importantly captures the anisotropic yielding and hardening effects in

different loading directions caused by the microstructure anisotropy.

6.3 Effect of subgrain partitioning

The reduced order modeling approach, which includes one-part-per-grain partitioning, was

demonstrated above to reasonably approximate the overall deformation behavior of the poly-

crystal. Often times, in addition to the overall constitutive response of the polycrystal, the
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Figure 13: RVE with elongated grains along X direction
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Figure 14: {111}) pole figure of the initial texture of the elongated RVE.
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Figure 16: Sub-partitioning of the RVE: (a) RVE with grain ID; (b) sub-partitioning of grain
No. 5; (c) parts in grain No.5 with part ID.

subgrain stress and strain concentrations are of significant concern. The accurate character-

ization of stresses along grain boundaries and triple junctions are critical to capturing the

damage and crack initiation under fatigue and creep-fatigue loading. It is therefore of interest

to demonstrate the capability of the proposed model in capturing the stresses within the grain.

An idealized microstructure with regular, 3×3 cubic grains are considered. The geometry

and the discretization of the microstructure is shown in Fig. 16(a). Each grain is assigned a

random orientation. The microstructure is subjected to uniaxial tension along the X-direction

up to 5% macroscopic strain with a strain rate of 0.05/s. The material and properties are

taken to be identical to that presented in Section 6.2 and summarized in Tables 1 and 2. The

CPFE discretization consists of 10,647 trilinear hexahedra that corresponds to approximately

76,800 degrees of freedom in the resulting discrete system of equations. Two reduced order

models, named ROM1 and ROM2, are considered to approximate the response of the idealized

microstructure. ROM1 is generated by assigning a part to each grain in the microstructure

(n = 9), which leads to a system size of 54. In ROM2, the central grain was further partitioned

into nine additional parts (i.e., n = 17 with 102 degrees of freedom) as shown in Fig. 16(b)-(c).

Among the nine additional parts, part (1) approximates the behavior within the interior of

the grain, parts (3), (5), (6) and (8) represent the behavior along the grain boundary and

parts (2), (4), (7) and (9) account for the behavior at the triple junctions. The macroscale

discretization of the multiscale models consists of a single tri-linear eight-noded hexahedron

element.

The homogenized stress-strain curves obtained by the two models and the direct CPFE

simulations are shown in Fig. 17. The overall constitutive behaviors computed by the two

models are virtually identical, which points to the relative invariance of grain decomposition
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Figure 17: Overall constitutive behavior of the RVE subject to uniaixal tension.
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Figure 18: Overall constitutive behavior of the RVE subject to uniaixal tension after parameter scaling.
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Figure 19: Stress counter of the RVE subject to uniaxial tension along the X direction

on the overall behavior. Both models slightly overestimate the stress-strain behavior as com-

pared to the CPFE simulation, but capture the overall deformation behavior with reasonable

accuracy. These results also demonstrate that, in this case, the overall stress-strain behavior

is not significantly affected by the order of the reduced order model. Additional analysis of

the effect of the model order on accuracy is provided in Ref. [51].

A series of simulations using the same microstructure but with different random set of

grain orientations show a consistent trend that reduced order models overestimate the overall

stress. In order to differentiate the local stress accuracy from the overall stress accuracy, the

initial hardening parameter, γ̇0, of the reduced order models is scaled such that the discrepancy

between the CPFE and the multiscale models are minimized. The initial hardening parameter

was shown to affect the yielding stress and hardening slope as suggested in Ref. [19]. We

note that this process also resembles calibration based on experimental data, in which, the

reduced order model parameters are set to minimize the discrepancy between the experimental

observations and the model predictions. Figure 18 shows the overall stress-strain curves after

γ̇0 in the reduced order models is set to 30.0s−1. The overall stress-strain behaviors of the

reduced order models and the reference model are virtually identical following the scaling

process.

The stress contours within the microstructure as computed by the CPFE model at an

applied overall strain magnitude of 5% is shown in Fig. 19. Stresses along the grain bound-

aries and the triple junctions clearly deviate significantly from the grain interiors, often with

significant concentrations at boundaries with high grain orientation mismatch.

Figure 20 compares the evolution of average stress along the X-direction within four sub-

grains (parts (1), (4), (7) and (9) as shown in Fig. 16) of the central grain in the idealized

microstructure. ROM1, does not distinguish between the subgrains of the central grain since

the stress is taken to be spatially uniform within the grain. The stress-strain plots for ROM1 is
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Figure 20: σ11 of different parts in grain No. 5.

therefore identical in Figs. 20 (a)-(d). The part average stresses of ROM2 are directly tracked

in the evaluation of the model, and therefore readily available. The stresses obtained from

CPFE were averaged over the relevant subdomains. Within part (1) of the central grain that

corresponds to the grain interior, the stress evolution is very similar to the average stress and

the response of both of the proposed models match very well with the CPFE model. The stress

within parts (4), (7) and (9) deviate from the average stresses, which are captured reasonably

well with ROM2 particularly in parts (7) and (9). While some deviations exist between the

CPFE model and the subgrain partitioned ROM2 model, the relative accuracy of the model

points to the capability of the proposed approach in capturing stress concentrations within the

material microstructure.

6.4 An arch subjected to compression

In this section, a full two-scale analysis is performed to further demonstrate the compu-

tational capabilities of the proposed reduced order model. The response of an arch made of

aluminum subjected to compressive loading as illustrated in Fig. 22(a) is considered. The

geometric model is one half of the arch with inner radius of 30 mm, outer radius of 50 mm

and thickness of 5 mm. The top of the arch is cut flat, on which the displacement along

the Y direction is applied while the bottom end is fixed. The geometric model is discretized
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Figure 21: Convergence study on the number of grains in the RVE (a) CPFEM; (b) ROM.

with 56 tri-linear eight-noded hexahedron elements. No comparative analysis based on either

direct resolution or computational homogenization could be performed due to prohibitive cost

of these approaches.

In order to limit the out-of-plane deformations due to inhomogeneity of the microstructure,

a numerical RVE size convergence study is performed. The microstructure characteristics of

the arch are taken to be identical to those considered in Section 6.1. Figure 21 shows the

stress-strain curves of three different microstructures with 134, 242 and 347 grains, respec-

tively, generated by the proposed approach and CPFE. The stress-strain curves are of single

microstructures subjected to uniaxial tension. Figure 21 clearly demonstrates that the two

larger microstructures provide near identical responses, which indicates that the 242-grain mi-

crostructure is sufficiently representative. The 242-grain microstructure is therefore used in

the analysis of the arch.

Figure 22(b) shows the stress contour within the arch at the applied displacement magni-

tude of 1.425 mm. Under the applied displacement, the structure undergoes significant inelastic

deformation as further evidenced by the force-displacement relationship shown in Fig. 23. We

note that the inhomogeneity of the stress field is due to the onset of inelastic deformations

rather than the microstructure inhomogeneity. No significant out-of-plane deformations are

observed in the analysis.

7 Conclusion

We presented a mathematical homogenization scheme for polycrystalline materials which is

based on a two-scale asymptotic expansion and the transformation field analysis. The model

formulation, computational implementation and numerical verifications were conducted to

form a computation framework that can provide overall and local predictions with acceptable

accuracy.

Several challenges still remain for the current computational framework. First, a universal
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Figure 22: Curve beam: (a) mesh and boundary condtions; (b) von Mises stress contour.
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Figure 23: Force-displacement curve of the curved beam example.
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grain sub-partitioning technique that can handle a realistic RVE with arbitrary 3D microstruc-

ture has not yet been developed. Second, there is no related experimental data used to calibrate

the ROM, only a preliminary parameter scaling is investigated instead, which may limit the

accuracy of the ROM results. A more complete computational framework including the ROM

parameter calibration against experiments is expected to better assess and validate the perfor-

mance. Third, the current implementation is based on small strain assumption which limits

its usage. Expanding to large deformations will gain the capability of mechanical response

prediction, as well as texture evolution prediction at finite strain, which will also provide more

rigorous validation standard for the accuracy of the reduced order model.
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