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1 Introduction
Heterogeneous materials exhibit complex response pat-

terns when subjected to dynamic loading due to the intrin-
sic wave interactions induced by reflections and refractions
at material constituent interfaces. Controlling these inter-
actions offer tremendous opportunities in many engineering
applications. By tailoring the constituent material properties
and microstructure, heterogeneous materials with favorable
properties within targeted frequency ranges, including cloak-
ing [1, 2], energy harvesting [3, 4], vibration control [5] and
impact survivability [6], could be achieved.

Band gap phenomenon, i.e., complete attenuation of
waves within certain frequency ranges, has been extensively
investigated over the past two decades for composite ma-
terials with periodic microstructures (i.e., phononic crystals
[7, 8] and acoustic metamaterials [9, 10]). When the length
of the traveling wave approaches the size of material mi-
crostructure in a composite medium, the waveform starts to
interact with the microstructure through reflections and re-
fractions at the interfaces of the constituent materials. One
consequence of this interaction is dispersion, which leads to
the distortion of wave shape and change of wave velocity.
Another consequence is wave attenuation when the wave fre-
quency is within stop bands. This manuscript is concerned
with dispersion and wave attenuation characteristics of com-
posites with elastic and viscoelastic phases.

Early efforts of modeling dispersion and dispersion in-
duced phenomena in heterogeneous elastic materials can be
traced back to the classical works of Mindlin [11] , Achen-
bach and Herrmann [12] among others. Analytical solutions
(e.g., matrix transfer method [13] and plane wave expan-
sions [14]) and direct numerical simulations using finite el-
ement method [15] have been routinely employed to inves-
tigate the characteristics of wave dispersion and band gaps.
As an alternative, homogenization methods have been de-
veloped over the past decades to understand and predict the
overall behavior of heterogeneous materials under dynamic
loads. Asymptotic homogenization pioneered by Bensous-
san et al. [16] and Sanchez-Palencia [17] was employed
by Boutin and Auriault [18] to investigate wave dispersion
in the context of Rayleigh scattering (i.e., long wavelength
regime) by exploiting the contributions from high order ex-
pansions. Noticing the secular solutions of high order ex-
pansions [19], Fish et al. [20, 21] proposed a nonlocal ho-
mogenization model that combined the momentum balance
equations at the first three orders into a single macroscopic
equation that captures wave dispersion in elastic compos-
ites. Andrianov et al. [22] employed the asymptotic homog-
enization approach to obtain the dispersion relation of elas-
tic composites within the first Brillouin zone. Recent efforts
by Hui and Oskay [23] focused on transient wave attenu-
ation within the first band gap using a nonlocal homoge-
nization model. By assuming harmonic wave propagation,
the time dependent momentum balance equation reduces to
Helmholtz equation and the steady state wave characteris-
tics can be investigated in terms of frequency. Auriault and
Boutin [24] studied the effective constitutive material prop-
erties as a function of frequency for composites with highly



contrasted constituents. The high-frequency homogenization
model in Craster et al. [25] used asymptotic expansions in
approximating not only the displacement field, but also the
eigenfrequency of the Helmholtz equation. This model cap-
tures the dispersion curves near the edges of the first Bril-
louin zone. In addition to the homogenization methods based
on asymptotic expansions, those that also employ Floquet-
Bloch theory (e.g., [26, 27, 28, 29]) have been successful in
capturing the dispersion relations of layered elastic compos-
ites.

Multiscale methods that predict transient wave propa-
gation in finite domains have also been developed in recent
years. Pham et al. [30] and Sridhar et al. [31] extended
the first order computational homogenization framework to
dynamic problems. The authors studied the transient re-
sponse of acoustic metamaterials in two dimensions by con-
currently solving a set of fully coupled macroscale and mi-
croscale balance equations. Filonova et al. [32] and Fafalis
and Fish [33] investigated wave dispersion in one dimen-
sional periodic structures using the concept of computational
continua, where the quadrature rules for the numerical inte-
gration is adjusted as a function of the size scale ratio. While
the above-mentioned methods show good accuracy in cap-
turing the transient wave dispersion and attenuation, solv-
ing fully coupled momentum balance equations leads to pro-
hibitive computational cost. Gradient elasticity modeling is
an alternative approach to capture wave dispersion and band
gap formation. Askes et al. [34] and Metrikine [35] studied
the dispersive wave propagation using the gradient elasticity
models. Dontsov et al. [36] captured the formation of the first
stop band by calibrating the length-scale parameters against
the analytical dispersion relation. The identification and de-
termination of the length-scale related model parameters in
multidimensional problems with inelastic materials remains
outstanding [37].

Material damping provides an additional wave attenu-
ation mechanism for composite materials with viscoelastic
constituents. The effects of viscoelasticity on the band gaps
of phononic crystals include shifting of the band gap fre-
quencies, changing bandwidth, and enhancing transmission
attenuation [38, 39, 40]. Modeling research of band gaps
of viscoelastic composites typically focused on characteri-
zation of the band gap structure in the context of dispersion
analysis [41, 42, 43], or wave transmission attenuation us-
ing direct numerical simulations [38, 39, 40]. While many
homogenization approaches are proposed for elastic com-
posites, those for viscoelastic composites are relatively rare.
Auriault and Boutin [24] studied the effect of viscoelasticity
on the dynamic effective material properties. Hui and Os-
kay [44, 45] derived a nonlocal homogenization model in the
Laplace domain, which captures wave dispersion and atten-
uation behavior in viscoelastic composites.

In this manuscript, we propose a new nonlocal homog-
enization model that considers the asymptotic expansions of
up to eighth order for wave propagation in periodic layered
composites with elastic and viscoelastic phases. The result-
ing macroscopic momentum balance equation of the pro-
posed model is of the same structure as gradient elasticity

models (e.g. [35, 34, 36]), yet all the model parameters are
computed directly from the microscale equilibrium equations
and dependent on the microstructural material properties and
geometry. Although the concept of applying high order cor-
rectors to the first order asymptotic homogenization has been
previously proposed [46, 47, 18, 48] for problems with poor
separation of scales, the proposed model is unique in (1) its
attempt to link the asymptotic homogenization with the gra-
dient elasticity models and; (2) it investigates transient wave
propagation and dispersion in viscoelastic materials. The
performance of the proposed model is assessed by verify-
ing the dispersion relation and transient wave propagation in
elastic and viscoelastic composites against analytical solu-
tions and direct numerical simulations.

The remainder of this manuscript is organized as fol-
lows: Section 2 presents the description of the problem
and the multiscale setting. Section 3 describes the general
asymptotic analysis for dynamic problems. Section 4 pro-
vides the derivation of the nonlocal homogenization model
for periodic layered composites with elastic and viscoelastic
constituents. Section 5 verifies the proposed model in two
examples, i.e., elastic bilayer and viscoelastic four-layered
microstructure. The conclusions and future research direc-
tions are provided in Section 6.

2 Problem setting

Consider a one-dimensional heterogeneous body with
layered microstructure (e.g., 1D phononic crystals [49]). The
domain of the body, Ω = [0,L] is formed by repetition of m
locally periodic microstructures, Θ, with size l = L/m. The
unit cell of the microstructure domain consists of N material
phases, with the domain of phase j denoted by Θ j. x and y in-
dicate the position coordinates at macro- and micro- scales,
respectively, where the two coordinates are related to each
other by y = x/ζ, and 0 < ζ� 1 is the small scaling parame-
ter. In the context of dynamic analysis, the scaling parameter
is defined as the ratio between the microstructure unit cell
size and the length of deformation wave (i.e., ζ = l/λ, where
λ is the deformation wavelength).

Consider an arbitrary response field, f ζ(x, t), which os-
cillates in space due to fluctuations induced by material het-
erogeneity. A two scale spatial decomposition is applied to
express the response field in terms of both macroscale and
microscale coordinates, f ζ(x, t) = f (x,y(x), t), where, super-
script ζ indicates the dependence of the response field on the
microstructural heterogeneity. The spatial derivative of f ζ is
obtained by applying the chain rule, f ζ

,x(x, t) = f,x(x,y, t)+
1
ζ

f,y(x,y, t), where, subscript comma followed by x and y
denote the spatial derivative with respect to the macroscale
and microscale coordinates, respectively. The response fields
are assumed to be spatially periodic, f (x,y, t) = f (x,y+ l̂, t),
where, l̂ denotes the period of the microstructure in the mi-
croscale coordinate (i.e., l̂ = l/ζ). The response field of the
heterogeneous body subjected to dynamic load is governed



by the momentum balance equation:

σ
ζ
,x(x, t) = ρ

ζ(x)uζ

,tt(x, t) (1)

in which, σζ and uζ are the stress and displacement fields,
respectively; and ρζ denotes density.

The constitutive response is described by a generalized
linear viscoelastic model:

σ
ζ(x, t) =

∫ t

0
gζ(x, t− τ)ε

ζ

,τ(x,τ)dτ (2)

where, gζ is the modulus function and εζ(x, t) = uζ
,x(x, t) is

the strain. The dissipative process within viscoelastic con-
stituents may lead to localized heating, which in turn changes
the constitutive behavior [50]. This thermal effect is not con-
sidered in the current work. Elastic behavior can be recov-
ered by setting gζ(x, t) = Eζ, where Eζ denotes the elastic
modulus. We assume the material properties of each con-
stituent are of the same order of magnitude.

The dynamic load is applied in the form of prescribed
displacement at the boundaries:

uζ(0, t) = 0; uζ(L, t) = ũ(t) (3)

where, ũ(t) is the prescribed boundary data. The initial con-
ditions are:

uζ(x,0) = u0(x); uζ

,t(x,0) = v0(x) (4)

where, u0(x) and v0(x) are the prescribed data.

The particular forms of the generalized viscoelastic con-
stitutive model and the momentum balance equation (Eq. 1)
permit a simpler description of the governing boundary value
problem in the Laplace domain. We introduce the key char-
acteristics of the Laplace transform, recast the governing sys-
tem of equations, and derive the nonlocal homogenization
model in the Laplace domain. By this approach, the convo-
lution integral form of the viscoelastic constitutive relation is
transformed to multiplication of strain and modulus function,
which is dependent on the Laplace variable.

The Laplace transform of an arbitrary, real valued, time
varying function, f , is defined as:

F (s)≡L ( f (t)) =
∫

∞

0
e−st f (t)dt (5)

where, the Laplace variable, s, and the transformed function
in Laplace domain, F , are complex valued (i.e., s ∈ C and
F : C→ C). The derivative rule for the Laplace transform

is given as:

L ( f, tt . . . t︸ ︷︷ ︸
n times

(t)) = snF (s)− sn−1 f (0)− . . .− f, tt . . . t︸ ︷︷ ︸
n−1 times

(0)

(6)
For simplicity of the derivation in Laplace domain, stati-
cally undeformed initial condition is assumed throughout
this manuscript, i.e., any field variables (displacement and
its derivatives) are initially zeros, u0(x) = 0 and v0(x) = 0,
thus:

L ( f, tt . . . t︸ ︷︷ ︸
n times

(t)) = snF (s) (7)

The convolution integral rule is given as:

L

(∫ t

0
f1(t−ξ) f2(ξ)dξ

)
= L ( f1)L ( f2) (8)

The momentum balance equation, Eq. 1, in the Laplace
domain is:

σ
ζ
,x(x,s) = ρ

ζ(x)s2uζ(x,s) (9)

Applying the convolution integral rule (Eq. 8) and
derivative rule (Eq. 7) to the generalized linear viscoelas-
tic model (Eq. 2), the viscoelastic constitutive relation in the
Laplace domain is written as:

σ
ζ(x,s) = Eζ(x,s)εζ(x,s) (10)

where, the modulus function, Eζ(x,s), in the Laplace domain
is related to the modulus function in the time domain, gζ, as
Eζ(x,s) = sL

(
gζ(x, t)

)
.

The boundary conditions in the Laplace domain are
transformed from Eq. 3, and written as:

uζ(0,s) = 0; uζ(L,s) = û(s) (11)

3 Asymptotic analysis with multiple scales

We perform a dimensional asymptotic analysis, as is fre-
quently used in situations where only moderate contrast is
present in material properties (e.g., [18, 20]). Based on the
two-scale description, the displacement is approximated by
the following asymptotic expansion in the Laplace domain:

uζ(x,s)≡u(x,y,s) = u0(x,s)+
8

∑
i=1

ζ
iui(x,y,s)+O(ζ9) (12)



where, u0 denotes the macroscopic displacement field and
is dependent on the macroscale coordinate only; and ui are
high order displacement fields which are functions of both
macroscale and microscale coordinates. The macroscopic
nature of u0 is not an assumption, but a well-known con-
sequence of the asymptotic analysis [20]. The strain field at
any order is obtained as:

O(ζi) : εi(x,y,s) = ui,x +ui+1,y; i = 0,1, ... (13)

Employing Eq. 13 along with the constitutive relation
(Eq. 10), the stress field at each order is obtained as:

O(ζi) : σi(x,y,s) = E(y,s)(ui,x +ui+1,y); (14)

Substituting the expanded displacement field (Eq. 12)
and the constitutive equations at various orders (Eq. 14)
into the momentum balance equation (Eq. 1), and collect-
ing terms with equal orders yield the equilibrium equations
at each order of ζ:

O(ζ−1) : σ0,y(x,y,s) = 0 (15a)

O(ζi) : σi,x(x,y,s)+σi+1,y(x,y,s) = ρ(y)s2ui(x,y,s)
(15b)

The classical homogenization models consider the two
lowest order equilibrium equations (Eq. 15a and Eq. 15b
with i = 0), resulting in a macroscopic description that does
not capture wave dispersion or attenuation [51, 52]. This
model is valid only when the deformation wavelength is
large enough that the local dispersion due to material het-
erogeneities is negligible. Considering additional two equa-
tions at O(ζ1) and O(ζ2), it is possible to capture dispersive
effects and wave propagation in shorter deformation wave-
length scenarios [20, 22, 44].

The equilibrium equations (Eq. 15a, b) are evaluated se-
quentially by the decomposition of the corresponding dis-
placement fields into macroscale components, which are in-
dependent of the microscale coordinate, and influence func-
tions that incorporate the effect of microstructures. The fol-
lowing asymptotic procedure is well known and briefly ex-
plained herein since it sets the stage for the proposed nonlo-
cal model. We start by considering the following decompo-
sition:

u1(x,y,s) =U1(x,s)+H1(y)U0,x(x,s) (16)

where, H1(y) denotes the first order microscopic influence
function, and U1(x,s) is the first order macroscale displace-
ment, and U0(x,s)= u0(x,s). Combining Eqs. 14, 15a and 16
results in the linear equilibrium equation for the microscopic

influence function at O(ζ−1):

{E(y,s)(1+H1,y)},y = 0 (17)

The equilibrium equation for the N-layered unit cell is
evaluated uniquely by imposing the following constraints
[44]:

Periodicity : u1(y = 0) = u1(y = l̂);

σ0(y = 0) = σ0(y = l̂)
(18a)

Continuity : Ju1(y =
n

∑
j=1

l̂ j)K = 0;

Jσ0(y =
n

∑
j=1

l̂ j)K = 0;

n = 1,2, ...,N−1

(18b)

Normalization : 〈u1(x,y, t)〉=U1(x, t)→〈H1(y)〉= 0
(18c)

where, l̂ j = l j/ζ denote the length of jth layer in microscale
coordinate. l j is the physical length of the jth layer. J·K de-
notes the jump operator and y = ∑

n
j=1 l̂ j is the location of the

constituent interfaces; and 〈·〉 is defined as a spatial averag-
ing operator over the unit cell:

〈 f 〉= 1
l̂

∫ l̂

0
f (x,y,s)dy (19)

The O(1) momentum balance equation is obtained by
applying the averaging operator (i.e., Eq. 19) to the corre-
sponding equilibrium equation (Eq. 15b with i = 0) and con-
sidering the local periodicity of σ1(x,y,s):

ρ0s2U0−E0(s)U0,xx = 0 (20)

where, ρ0 and E0(s) are the homogenized density and O(1)
homogenized modulus, respectively:

ρ0≡〈ρ〉=
1
l̂

N

∑
j=1

l̂ jρ j (21)

E0(s) = 〈E(y,s)(1+H1,y)〉 (22)

The procedure to evaluate influence functions and derive
momentum balance equations presented above can be gener-
alized for arbitrary orders. The recursive influence function
generation process is defined in Fig. 1. This process decom-
poses the microscale dependent displacement ui(x,y,s) into
macroscale displacements and associated influence func-
tions, and substitutes the decomposed displacements into
equilibrium equation at O(ζi−2). Considering the macroscale



Field decomposition: = +  = 1 − , × , = 2, 3, …,

Influence function 

Substitute − 2 , − 1 , and Eq. (14) into equilibrium equation at ( − 2 )

Momentum balance equation 
at ( ) , = 0,1, …, − 2

Equilibrium equation for 
influence function at ( ) , 

q = − 1, 0, …, − 3

Equilibrium equation for 
influence function at ( − 2 )

Periodicity: , − 1 ;
Continuity: , − 1 ;
Normalization: 

Momentum balance equation at ( − 1 )

Average equilibrium equation at − 1 ;
Periodicity: 

Σ

Fig. 1: Recursive influence function generation procedure.

momentum balance equations and equilibrium equations for
the influence functions derived from lower orders, an equilib-
rium equation for influence function at O(ζi−2) is obtained.
By evaluating this equation with periodicity, continuity and
normalization conditions, the influence function Hi is cal-
culated. The macroscale momentum balance equation at
O(ζi−1) is then determined by applying the averaging op-
erator and considering the periodicity condition of σi. Ex-
amples of deriving the influence functions and momentum
balance equations can be found in [19, 20, 44].

4 Nonlocal homogenization model
4.1 Model derivation

In this section, a novel nonlocal homogenization model
is proposed for elastic and viscoelastic periodic layered me-
dia. A major contribution of this model is that we explore
homogenization up to O(ζ6) and derive the momentum bal-
ance equations considering high order contributions. Fur-
thermore, the proposed model is derived such that the mo-
mentum balance equation shares the same structure as the
gradient elasticity models [35, 34, 53, 36]:

u,tt − c2
0u,xx + c2

0l2
1u,xxxx− l2

2u,xxtt +
l2
3

c2
0

u,tttt = 0 (23)

where c2
0 = E0/ρ0. This equation has been shown to accu-

rately capture the location and width of the first stop band,
when the length scale parameters (l2

1 , l2
2 , l2

3 ) are calibrated
against the analytical solution [36]. In contrast to the gra-
dient elasticity models, the parameters of the nonlocal ho-
mogenization model are derived directly from the constituent
material properties and microstructure.

As a result of the asymptotic analysis, the macroscale

momentum balance equations are obtained up to O(ζ6):

O(1) : ρ0s2U0−E0(s)U0,xx = 0 (24a)

O(ζ1) : ρ0s2U1−E0(s)U1,xx = 0 (24b)

O(ζ2) : ρ0s2U2−E0(s)U2,xx = Êd(s)U0,xxxx (24c)

O(ζ3) : ρ0s2U3−E0(s)U3,xx = Êd(s)U1,xxxx (24d)

O(ζ4) :
ρ0s2U4−E0(s)U4,xx =

Êd(s)U2,xxxx + Êh(s)U0,xxxxxx
(24e)

O(ζ5) :
ρ0s2U5−E0(s)U5,xx =

Êd(s)U3,xxxx + Êh(s)U1,xxxxxx
(24f)

O(ζ6) :
ρ0s2U6−E0(s)U6,xx = Êd(s)U4,xxxx+

Êh(s)U2,xxxxxx + Êk(s)U0,xxxxxxxx
(24g)

where, Ui (i = 0,1, ...,6) is the macroscale displacement at
O(ζi); and, Êd(s), Êh(s), Êk(s) are the homogenized moduli
at O(ζ2),O(ζ4),O(ζ6), respectively:

Êd(s) = 〈E(y,s)(H2 +H3,y)〉−〈θ(y)E0(s)H2〉 (25a)

Êh(s) =〈E(y,s)(H4 +H5,y)〉−〈θ(y)Êd(s)H2〉
−〈θ(y)E0(s)H4〉

(25b)

Êk(s) =〈E(y,s)(H6 +H7,y)〉−〈θ(y)Êh(s)H2〉
−〈θ(y)Êd(s)H4〉−〈θ(y)E0(s)H6〉

(25c)

For bilayer unit cell, the analytical expressions for E0, Êd and
Êh can be found in [19] and we provide Êk in Appendix C.

The boundary conditions at each order are prescribed as:

BCs : U0(0,s) = 0, U0(L,s) = û(s)

Ui(0,s) = 0, Ui(L,s) = 0 (i = 1,2, ...,6)
(26)

Under the prescribed boundary conditions, the odd or-
der macroscale displacements are trivial (i.e., U1(x,s) =
U3(x,s) = U5(x,s) = 0). It is well known that solving
Eqs. 24a, 24c, 24e, 24g sequentially at each order leads to
secular solutions [19, 54]. The secularity can be eliminated
by either introducing a slow temporal scale to the asymptotic
analysis [54] or employing the definition of a mean displace-
ment, which combines macroscale momentum balance equa-
tions at different orders into a single nonlocal homogenized
momentum balance equation by considering the following
macroscale displacement approximation [20]:

U (2n)(x,s) =
n

∑
i=0

ζ
2iU2i(x,s)+O(ζ2n+2) (27)

where, U (2n) denotes the approximation to the macroscale
displacement of O(ζ2n+2) accuracy.

Taking four spatial derivatives of Eq. 24a and substitut-



ing the resulting expression into Eq. 24e yields:

ρ0s2U4−E0U4,xx = ÊdU2,xxxx +
Êh

E0
ρ0s2U0,xxxx (28)

Inserting Eq. 24c into Eq. 28:

ρ0s2U4−E0U4,xx =ÊdU2,xxxx+

Êhρ0s2

E0Êd
(ρ0s2U2−E0U2,xx)

(29)

Premultiplying Eq. 24a by Êhρ0s2/ÊdE0, and adding the re-
sulting expression to the right hand side of Eq. 24c:

ρ0s2U2−E0U2,xx =ÊdU0,xxxx+

Êhρ0s2

E0Êd
(ρ0s2U0−E0U0,xx)

(30)

Premultiplying Eqs. 30 and 29 by ζ2 and ζ4, respec-
tively, adding the resulting equations to Eq. 24a, and using
Eq. 27 result in:

ρ0s2U (4)−E0U (4)
,xx −EdU (4)

,xxxx +
Eh

Ed
ρ0s2U (4)

,xx −
Eh

E0Ed
ρ

2
0s4U (4)

=−ζ
6
(

ÊdU4,xxxx−
Êh

Êd
ρ0s2U4,xx +

Êh

E0Êd
ρ

2
0s4U4

)
(31)

where, Ed = ζ2Êd and Eh = ζ4Êh contain length scales l2 and
l4, respectively, and are computed with the physical length of
the unit cell. By truncating the O(ζ6) perturbations in Eq. 31,
we obtain the fourth order nonlocal homogenization model
(NHM4):

NHM4: ρ0s2U−E0U,xx−EdU,xxxx +
Eh

Ed
ρ0s2U,xx

− Eh

E0Ed
ρ

2
0s4U = 0

(32)

The superscript (4) that indicates the order of approximation
is dropped for simplicity. The second order nonlocal homog-
enization model [44] (NHM2) and classical homogenization
model (CHM) are recovered by neglecting the last two terms
and last three terms on the left hand side of Eq. 32, respec-
tively.

In order to achieve higher accuracy for shorter wave
lengths, we add higher order corrections by employing
Eqs. 24a-g. The procedure for obtaining the higher order
equation is similar to above and aimed at achieving the struc-
ture of Eq. 23 through analysis of higher order momentum
balance equations. Consider the following decomposition of

Eq. 24g:

ρ0s2U6−E0U6,xx = ÊdU4,xxxx + ÊhU2,xxxxxx+

νÊkU0,xxxxxxxx +(1−ν) ÊkU0,xxxxxxxx
(33)

in which ν is the high order correction parameter. Taking two
spatial derivatives of Eq. 24e, and substituting the resulting
expression for U0,xxxxxxxx in the third term of the right hand
side of Eq. 33:

ρ0s2U6−E0U6,xx =

(
Êd−νE0

Êk

Êh

)
U4,xxxx +ν

Êk

Êh
ρ0s2U4,xx

+

(
Êh

Êd
−ν

Êk

Êh

)
ÊdU2,xxxxxx +(1−ν)ÊkU0,xxxxxxxx

(34)

Taking four spatial derivatives of Eq. 24c and substituting the
resulting expression for U2,xxxxxx in Eq. 34:

ρ0s2U6−E0U6,xx =

(
Êd−νE0

Êk

Êh

)
U4,xxxx

+ν
Êk

Êh
ρ0s2U4,xx +

(
Êh

Êd
−ν

Êk

Êh

)
Êd

E0
ρ0s2U2,xxxx

+

[
(1−ν)Êk−

(
Êh

Êd
−ν

Êk

Êh

)
Ê2

d
E0

]
U0,xxxxxxxx

(35)

Substituting Eq. 24e for U2,xxxx in Eq. 35, and taking six spa-
tial derivatives of Eq. 24a and inserting the resulting expres-
sion for s2U0,xxxxxx:

ρ0s2U6−E0U6,xx =

(
Êd−νE0

Êk

Êh

)
U4,xxxx

+

(
2ν

Êk

Êh
− Êh

Êd

)
ρ0s2U4,xx +

(
Êh

E0Êd
−ν

Êk

E0Êh

)
ρ

2
0s4U4

+

[
(1−ν)Êk−

(
Êh

E0Êd
−ν

Êk

E0Êh

)
(Ê2

d +E0Êh)

]
U0,xxxxxxxx

(36)

Rewriting Eq. 24e in the following form:

ρ0s2U4−E0U4,xx =

(
Êd−νE0

Êk

Êh

)
U2,xxxx +ν

Êk

Êh
ρ0s2U2,xx

+νE0
Êk

Êh
U2,xxxx−ν

Êk

Êh
ρ0s2U2,xx + ÊhU0,xxxxxx

(37)

Premultiplying Eq. 24c by s2, replacing the resulting
s2U0,xxxx by the expression resulting from taking four spatial
derivatives of Eq. 24a, and substituting the resulting expres-



sion for U0,xxxxxx into Eq. 37:

ρ0s2U4−E0U4,xx =

(
Êd−νE0

Êk

Êh

)
U2,xxxx+(

ν
Êk

Êh
− Êh

Êd

)
ρ0s2U2,xx +

Êh

E0Êd
ρ

2
0s4U2

+ν
Êk

Êh

(
E0U2,xxxx−ρ0s2U2,xx

)
(38)

In view of Eq. 24a and Eq. 24c, we have:

E0U2,xxxx−ρ0s2U2,xx =−ÊdU0,xxxxxx =

− Êd
ρ0

E0
s2U0,xxxx =

ρ0

E0
s2(E0U2,xx−ρ0s2U2)

(39)

Substituting Eq. 39 into Eq. 38:

ρ0s2U4−E0U4,xx =

(
Êd−νE0

Êk

Êh

)
U2,xxxx

+

(
2ν

Êk

Êh
− Êh

Êd

)
ρ0s2U2,xx +

(
Êh

E0Êd
−ν

Êk

E0Êh

)
ρ

2
0s4U2

(40)

Considering Eq. 24a, we rewrite Eq. 24c as:

ρ0s2U2−E0U2,xx =

(
Êd−νE0

Êk

Êh

)
U0,xxxx

+

(
2ν

Êk

Êh
− Êh

Êd

)
ρ0s2U0,xx +

(
Êh

E0Êd
−ν

Êk

E0Êh

)
ρ

2
0s4U0

(41)

Premultiplying Eqs. 41, 40, 36 by ζ2, ζ4 and ζ6, respec-
tively, adding the resulting equations to Eq. 24a and using
Eq. 27:

ρ0s2U (6)−E0U (6)
,xx −

(
Ed−νE0

Ek

Eh

)
U (6)
,xxxx−(

2ν
Ek

Eh
− Eh

Ed

)
ρ0s2U (6)

,xx −
(

Eh

E0Ed
−ν

Ek

E0Eh

)
ρ

2
0s4U (6) =

+ζ
6
[
(1−ν)Êk−

(
Êh

E0Êd
−ν

Êk

E0Êh

)
(Ê2

d +E0Êh)

]
U0,xxxxxxxx

−ζ
8

[(
Êd−νE0

Êk

Êh

)
U6,xxxx +

(
2ν

Êk

Êh
− Êh

Êd

)
ρ0s2U6,xx

+

(
Êh

E0Êd
−ν

Êk

E0Êh

)
ρ

2
0s4U6

]
(42)

where, Ek = ζ6Êk has length scale l6 and is computed with

physical length of the unit cell. We note that Eq. 42 has the
same asymptotic accuracy as Eq. 32 for an arbitrarily cho-
sen ν, due to the presence of O(ζ6) term on the right hand
side. In particular, when ν = 0, the left hand side of Eq. 42
recovers Eq. 32 (i.e. NHM4). Therefore, Eq. 42 represents
a one-parameter family of nonlocal homogenization models
as a function of ν. O(ζ8) accuracy could be achieved by set-
ting ν such that the coefficient of O(ζ6) term vanishes. The
expression for the correction parameter is obtained as:

ν =
Êh
(
Ê2

h E0 + Ê2
d Êh−E0ÊdÊk

)
Ê3

d Êk
(43)

By truncating the O(ζ8) perturbations in Eq. 42, we obtain
the sixth order nonlocal homogenization model (NHM6):

NHM6: ρ0s2U−E0U,xx−
(

Ed−νE0
Ek

Eh

)
U,xxxx

−
(

2ν
Ek

Eh
− Eh

Ed

)
ρ0s2U,xx−

(
Eh

E0Ed
−ν

Ek

E0Eh

)
ρ

2
0s4U = 0

(44)

The superscript (6) is dropped hereafter.

The Laplace domain derivation presented above applies
to both elastic and viscoelastic layered composites. For com-
posites that only consist elastic phases, momentum balance
equations, NHM4 and NHM6, can also be derived in time
domain following a similar procedure and result in:

NHM4: ρ0U,tt −E0U,xx−EdU,xxxx +
Eh

Ed
ρ0U,xxtt

− Eh

E0Ed
ρ

2
0U,tttt = 0

(45)

NHM6: ρ0Utt −E0U,xx−
(

Ed−νE0
Ek

Eh

)
U,xxxx

−
(

2ν
Ek

Eh
− Eh

Ed

)
ρ0U,xxtt −

(
Eh

E0Ed
−ν

Ek

E0Eh

)
ρ

2
0U,tttt = 0

(46)

The nonlocal homogenization model, NHM6, possesses
the same equation structure as the nonlocal equation (Eq. 23)
of gradient elasticity models. One can easily observe the cor-
responding relation of −

(
Ed
E0
−ν

Ek
Eh

)
and l2

1 ,
(

2ν
Ek
Eh
− Eh

Ed

)
and l2

2 , −
(

Eh
Ed
−ν

Ek
Eh

)
and l2

3 , respectively. While the lat-
ter parameters have to be calibrated in the gradient elasticity
models, the former are fully determined through the homog-
enization process.



4.2 High order boundary conditions

Due to the presence of fourth order derivative term, two
additional high order boundary conditions, in addition to
Eq. 11, must be prescribed to solve the nonlocal momentum
balance equation (Eq. 44). The choice of high order bound-
ary conditions to solve nonlocal equations of this type has
been extensively discussed in [37, 34, 55, 56, 57]. Most often
the second derivatives of displacement at the boundaries are
prescribed [37]. The dispersion analysis of the nonlocal ho-
mogenization model for elastic composites (Appendix A) in-
dicates that non-physical solutions exist along with the phys-
ical ones for steady-state wave propagation. In this study, the
high order boundary conditions are prescribed such that the
non-physical solutions are suppressed:

U,xx(0,s) = 0, U,xx(L,s) = ξ
2û(s), ω≤ ωen (47a)

U,xx(0,s) = 0, U,xx(L,s) = η
2û(s), ω > ωen (47b)

where ξ and η are the solutions to the characteristic equations
of Eq. 44 and are given in Appendix B. ωen (see Appendix
A) is the frequency at end of the first stop band.

For harmonic loads, the high order boundary conditions
are determined based on the loading frequency. For non-
harmonic loads, a Fourier analysis of the applied load that
identifies the frequency spectrum is performed apriori and
the high order boundary conditions are selected based on the
dominant frequency components.

An alternative approach to obtain the high order bound-
ary conditions is by deriving the expression for U,xx from
lower order models. Taking two spatial derivatives of the
momentum balance equation of CHM:

ρ0s2U,xx−E0U,xxxx = 0 (48)

Substituting Eq. 48 into the governing equation of NHM4
(Eq.32), an approximation to the fourth order differential
equation is obtained:

[(
Eh

Ed
− Ed

E0

)
ρ0s2−E0

]
U,xx +ρ0s2(1− Eh

E0Ed
ρ0s2)U = 0

(49)
From Eq. 49, we obtain the high order boundary conditions
for NHM6 (Eq. 44):

U,xx(0,s) = 0, U,xx(L,s) =
ρ0s2( Eh

E0Ed
ρ0s2−1)(

Eh
Ed
− Ed

E0

)
ρ0s2−E0

û(s)

(50)
This set of high order boundary conditions does not depend
on the frequency of the applied load, which makes it more
convenient for viscoelastic composites, where solving for
ωen is usually non-trivial.

y

Θ1 Θ2

αl̂ (1 − α) l̂

y

Θ1 Θ2 Θ3 Θ2 Θ1

αl̂ βl̂

(a) (b)

Fig. 2: Unit cell of the microstructure: (a) elastic bilayer, (b) vis-
coelastic four-layered.

5 Model verification

In this section, two examples, elastic bilayer and vis-
coelastic four-layered microstructures are investigated to
demonstrate the capability of the proposed nonlocal homog-
enization model in capturing the characteristics of dispersion
and transient wave propagation in periodic layered media.

5.1 Elastic bilayer microstructure

Consider a bilayer unit cell microstructure as illustrated
in Fig. 2(a). The phases within the unit cell, Θ, is character-
ized by the density, Young’s modulus and length. The vol-
ume fraction of phase Θ1 is taken as 0.5. Aluminum and
steel are used for phases 1 and 2, respectively. The elastic
modulus and density are 210 GPa and 7800 kg/m3 for steel,
and 68 GPa and 2700 kg/m3 for aluminum, respectively.

5.1.1 Dispersion relation

The dispersion relation of NHM6 and the mathemati-
cal description of attenuation in the stop band are provided
in Appendix A. Figure 3 shows the dispersion relation of
NHM6 and the reference dispersion relation (real part of the
wavenumber solution is plotted). The horizontal and ver-
tical axes are the normalized wavenumber and normalized
frequency, respectively, and c0 is the homogenized wave
speed (i.e., c0 =

√
E0/ρ0). The reference dispersion rela-

tion is plotted following Bedford and Drumheller [58]. The
two physical wavenumber solutions of NHM6, k1 and k2,
match with the analytical wavenumber solutions in the first
pass band and second pass band, respectively. The non-
physical solutions lead to negative group velocity, therefore
not characteristic of wave propagation in the homogenized
medium. NHM6 captures the dispersion behavior accurately
in the first pass band, and the initiation and end of the first
stop band, where kl/(2π) = l/λ = ζ = 0.5, the limit of the
first Brillouin zone [59]. The model starts to deviate from
the reference solution as the frequency further increases and
kl/(2π) approaches 1, where the second stop band initiates.
As the scaling ratio reaches unity, the fundamental assump-
tion of scale separation in homogenization is no longer valid
[19, 60].
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Fig. 3: Dispersion relation of NHM6 and the reference
solution for bilayer microstructure.

5.1.2 Effect of material property contrast on model ac-
curacy

A parametric study on the prediction error of NHM6
in terms of capturing the initiation and end of the first stop
band is conducted with a large number of constituent mate-
rial property combinations for the unit cell. With the mate-
rial phase 1 chosen as aluminum, the material property for
phase 2 is sampled in two families of materials, i.e., met-
als and polymers, with the material property domains Ωm =
{(E2,ρ2)∈R | 100≤E2≤ 400 and 4000≤ ρ2≤ 10000} and
Ωp = {(E2,ρ2) ∈ R | 1 ≤ E2 ≤ 10 and 1000 ≤ ρ2 ≤ 2000},
respectively. In each of the material property domain, 100
samples are generated for E2 and ρ2, and the prediction error
is computed as |ωNHM6−ωre f |/ωre f at the stop band initi-
ation and end frequencies for each sample. Figure 4 shows
the prediction error of NHM6 for the two sets of constituent
material combinations. Solid dots are the sampling points
and the surface is created by quadratic fitting to the points
to enhance visualization. The maximum error for stop band
initiation prediction is approximately 2.5% for both Al-metal
and Al-polymer microstructures. The error of stop band end
prediction is relatively high compared to the initiation. In
Figs. 4(b) and (d), it is noticeable that error grows as the
Young’s modulus ratio increases, especially for the cases
which have low density ratio. The general trend of error in-
dicates that NHM6 accurately captures the initiation of stop
band for a large range of constituent material combinations.
It predicts the end of the stop band reasonably well for low
stiffness contrast combinations, and starts to lose accuracy
for high stiffness contrast cases.

5.1.3 Models comparison
The capability of NHM6 in capturing the dispersion and

band gap formation is due to the presence of high order
terms. In order to further study the effects of the high order
terms, we compare the dispersion curves of NHM6 (Eq. 46),
NHM4 (Eq. 45), NHM2 and CHM in Fig. 5. While all mod-
els capture the non-dispersive wave propagation character-
istics at normalized frequency of less than 0.2, CHM and
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Fig. 4: Error in the prediction of the stop band. (a) Al-metal stop
band initiation, (b) Al-metal stop band end, (c) Al-polymer stop

band initiation, (d) Al-polymer stop band end.

NHM2 deviate from the reference dispersion relation and do
not capture the band gap. NHM4 captures the dispersion up
to the onset of the first stop band, but not the bandwidth. By
incorporating the high order correction, NHM6 predicts the
dispersion in the first and second pass band, as well as the
onset and the width of the first stop band.
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Fig. 5: Dispersion curves of NHM2, NHM4 and NHM6
compared to the reference model.

The dispersion relations of Eq. 46 and the gradient elas-
ticity model in Eq. 23 are shown in Fig. 6 using material pa-
rameters provided in [36]. The two dispersion curves overlap
with each other except the minor difference at the end of the
stop band. In addition, O

(
Ed
E0
−ν

Ek
Eh

)
= O(l2

1) = O(10−4),

O
(

2ν
Ek
Eh
− Eh

Ed

)
= O(l2

2) = O(10−5) and O
(

Eh
Ed
−ν

Ek
Eh

)
=

O(l2
3) = O(10−4). The close match between the dispersion

curves and the length-scale parameters indicates that the pro-
posed model could serve as an alternative method for gradi-
ent elasticity models to determine the length-scale param-
eters directly from material properties and microstructures,
without referring to the analytical solution, which may not
be available in multidimensional problems or in the presence
of viscoelastic constituents.
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Fig. 7: Responses at two time instances under step loading:
(a) t=0.1 ms, (b) x=0.15 ms.

5.1.4 Transient wave propagation
We consider the transient response of a composite

structure with aluminum-steel bilayer microstructure (see
Fig. 2(a)) subjected pulse loads. The overall length of the
structure is taken to be long enough, L = 0.5 m, such that
wave does not reflect at the fixed end within the time window
of interest. The unit cell is taken to have l = 0.01 m. Two
pulse loads are considered, i.e., step load, ũ(t) = M0H(t),
H(t) is the Heaviside function, and sinusoidal load, ũ(t) =
M0 sin(2π f t). The study compares the responses computed
by NHM6, CHM and the direct solution (DS) of the origi-
nal problem, where each unit cell is resolved throughout the
problem domain. The time domain solution procedure for
NHM6 is provided in Appendix B. The solutions for DS and
CHM can be found in [44].

Figure 7 shows the normalized displacement along the
layered composite at T = 0.1 ms and T = 0.15 ms. The
responses obtained from NHM6 with high order boundary
conditions, Eq. 47a, and DS both show dispersion induced
phase distortion, manifested by the oscillatory behavior be-
hind the step wave front. Due to the presence of dispersion,
both NHM6 and DS have peak amplitude of 1.2M0. NHM6
shows good agreement with DS in terms of capturing the dis-
persive response under the prescribed step load.

Figure 8 shows the displacement histories of x = 0.9L
for 0.15 ms, with the structure subjected to sinusoidal loads
at frequencies 132.71 kHz and 221.18 kHz, corresponding to
the normalized frequencies (ωl/(2πc0)) of 0.3 and 0.5, re-
spectively. At ωl/(2πc0) = 0.3, the response is in the first
pass band where dispersion occurs. NHM6 predicts the dis-
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Fig. 8: Displacement histories at x=0.9L under sinusoidal
loading at frequencies: (a) 132.71 kHz, (b) 221.18 kHz.

placement time history accurately compared to DS. The dis-
persion is manifested by the distorted phase shape of the first
two cycles and slight phase shift of the dispersive models
(NHM6 and DS) compared to CHM. As the frequency is in-
creased to 221.18 kHz, the response resides in the first stop
band. At this frequency, the displacement response is signif-
icantly attenuated with peak normalized amplitude of 0.25,
which asymptotes to complete attenuation in time.

Figure 9 shows the maximum transmitted wave ampli-
tude at x = 0.9L within t/T ∈ [0.5,1] for sinusoidal loads
at a range of frequencies f ∈ [10,442.4] kHz. Solutions of
NHM6 with two high order boundary conditions, i.e., Eq. 52
(BC-1) and Eq. 50 (BC-2), are compared to DS. BC-1 leads
to accurate wave amplitude for frequencies within the first
pass band and stop band. It starts to over predict the ampli-
tude in the second pass band due to the increasingly poor sep-
aration of scales at high frequencies. The transmitted wave
amplitude computed by BC-2 is accurate up to f = 120 kHz
in the first pass band and within the first stop band. As the
applied loading frequency is near the initiation and end of the
first stop band, the result loses accuracy.
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Fig. 9: Transmitted wave amplitude at x=0.9L at frequency
between 10 kHz and 442.4 kHz



5.2 Four-layered viscoelastic microstructure
In this section, the proposed model is assessed in the

context of a four-layered microstructure (see Fig. 2(b)) with
both elastic and viscoelastic phases. The unit cell is com-
posed of elastic layers, epoxy (phase 1) and rubber (phase 3),
with viscoelastic layers (phase 2) inserted in between. The
volume fractions of phase 1 and phase 2 are 2α and 2β. In
the following discussion, the volume fractions for phase 1
and phase 2 are taken as α = 0.3 and β = 0.1.

The constitutive relation of the viscoelastic phase is
given by Eq. 2, where the modulus function is expressed with
Prony series in time domain. After Laplace transformation,
the modulus function is expressed as:

E2(s) = E∞

(
1+

n

∑
i=1

pis
s+1/qi

)
(51)

where, the material properties of the viscoelastic phase is

Table 1: Material properties for elastic and viscoelastic
phases.

Elastic phases

E1 [GPa] ρ1 [kg/m3] E3 [GPa] ρ3 [kg/m3]

1.0 1200 0.1 1100

Viscoelastic phase

E∞ [MPa] ρ2 [kg/m3]

67.2 1070

p1 p2 p3 p4

0.8458 1.686 3.594 4.342

q1 [ms] q2 [ms] q3 [ms] q4 [ms]

463.4 0.06407 1.163×10−4 7.321×10−7

provided in Table 1. The sizes of the macro- and micro-
structures are identical to the example for the bilayer mi-
crostructure.

Figure 10 shows the transmitted wave amplitude at x =
0.9L for the four-layered viscoelastic composite structure un-
der sinusoidal load. Loading frequency ranges from 1 to
50 kHz. Solutions obtained by NHM6 using BC-1(a), i.e.,
Eq. 47a, and BC-2 are compared to DS and CHM. Since the
explicit expression for ωen is not available for viscoelastic
microstructures, Eq. 47b is not used for high frequency loads.
The wave amplitude reduction in the first pass band caused
by viscoelastic dissipation, which increases monotonically
as the loading frequency increases, is observed in all models.
As is for elastic composite, CHM does not predict dispersion
and band gap formation of viscoelastic composite. BC-1(a)
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Fig. 10: Transmitted wave amplitude at x = 0.9L for the
four-layered viscoelastic composite at frequency between 1

kHz and 50 kHz.

leads to accurate solution up to the end of the first stop band
and deviates from the direct simulation in the second pass
band. BC-2 predicts the transmitted wave amplitude up to
the second pass band, except for the error near the edges
of the first stop band. With BC-1(a), NHM6 captures the
decreasing wave amplitude caused by dispersion in the first
pass band (15-18 kHz) which is not observed in the elastic
composite example (Fig. 9). The phase distortion and phase
shift of the dispersive models (NHM6 with BC-1(a) and DS)
in the first pass band are observed in Fig. 11(a). Within the
stop band, near complete wave attenuation is present due to
the combination of viscoelastic dissipation and destructive
wave interactions, as is shown in Fig. 11(b).
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Fig. 11: Displacement histories of viscoelastic composite at
x=0.9L under sinusoidal loading at frequencies: (a) 15 kHz,

(b) 25 kHz.

The effect of viscoelasticity is investigated by compar-
ing the transmitted wave amplitude for the viscoelastic com-
posite to an elastic counterpart where the modulus function
of the viscoelastic phase is replaced by its instantaneous
modulus, i.e., E2(s) = E2 = E∞ (1+∑

n
i=1 pi). As is shown in



Fig. 12, viscoelastic dissipation results in enhanced wave at-
tenuation within the stop band, compared to the elastic case.
Moreover, the first stop band of the viscoelastic composite
is shifted towards lower frequency and its width becomes
narrower. Similar observation was reported in [42] for one-
dimensional bilayer viscoelastic phononic crystals using the
plane wave expansion method.
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Fig. 12: Transmitted wave amplitude of elastic and
viscoelastic composite computed by NHM6.

6 Conclusion
This manuscript presented a nonlocal homogenization

model (NHM6) for the dynamic response of elastic and vis-
coelastic periodic layered media. The proposed model is
derived based on asymptotic expansions of up to the eighth
order. By introducing high order corrections, a momentum
balance equation that is nonlocal in both space and time is
derived. The proposed model shares the same differential
equation structure as the gradient elasticity models, whereas
all parameters are computed directly from the microscale
boundary value problems and dependent on the material
properties and microstructure only. High order boundary
conditions to solve the nonlocal momentum balance equa-
tion are also discussed.

The performance of the proposed model is assessed by
investigating the wave propagation characteristics in elastic
bilayer and viscoelastic four-layered composite structures,
and verified against analytical solutions and direct numerical
simulations. NHM6 is accurate in predicting the dispersion
relation of elastic wave propagation within the first pass band
and the initiation and end of the first stop band for low mate-
rial contrasts. The accuracy of predicting the end of the stop
band decreases as the contrasts become high. In addition,
NHM6 captures the transient wave dispersion and attenua-
tion within the first pass band and stop band for elastic and
viscoelastic composites. The procedure to compute model
parameters of NHM6 could serve as an alternative to derive
the gradient elasticity model length-scale parameters. The
effect of viscoelasticity is observed to introduce viscoelastic
dissipation that monotonically intensifies as the frequency
increases, shift the first stop band towards lower frequency
and reduce its width.

The following challenges will be addressed in the near
future. First, the proposed model is developed in one-
dimensional setting and it is necessary to extend NHM6 to
multiple dimensions. This will naturally contribute to the
applicability of NHM6 to wider range of problems with in-
creased microstructural complexity. Second, the accuracy of
the proposed model decreases as the contrasts of the phase
material properties increase. Extension of the current model
to account for large material property contrasts will be per-
formed to model the dynamics of metamaterials, where the
stiffness of the material phases varies by orders of magni-
tude.
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Appendix A: Dispersion relations

The dispersion relation for the nonlocal homogenization
model defined by Eq. 44 (NHM6) is obtained by consider-
ing a harmonic steady-state wave propagation in the homog-
enized medium:

U(x, t) =U0ei(ωt−kx) (52)

where, U0 is the displacement amplitude, and ω and k are
the frequency and wavenumber, respectively. By substituting
Eq. 52 into Eq. 46, the dispersion equation is obtained as:
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(53)

In general, this fourth order polynomial equation has
four roots. Considering the elastic wave propagating in the
positive direction:

k =
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The wavenumber solutions for NHM4, NHM2 and CHM are
obtained similarly. To seek the mathematical description of
attenuation in stop bands, we rewrite the wavenumber k in
the complex form, k = kre + ikim, where, kre and kim are the
real part and imaginary part of wavenumber, respectively.
Applying the complex wavenumber expression to the dis-
placement solution Eq. 52, the displacement reads:

U(x, t) =U0ei(ωt−krex)ekim (55)

in which, ei(ωt−krex) contains the oscillatory feature of the
displacement, while ekim determines the solution to be atten-
uating or amplifying depending on whether kim is negative
or positive. Stop bands are characterized as the frequency
ranges within which the elastic waves are subjected to expo-
nential attenuation due to negative imaginary wavenumber
with magnitude of strength proportional to |kim|. Within the
pass bands, kim = 0.

The existence of complex-valued wavenumber k within

the first stop band requires −B±
√

B2−4AC
2A being complex, i.e.,

y(ω) = B2− 4AC < 0. Therefore, the initiation and end of

the first stop band are found by y(ω) = B2−4AC = 0:

ωin =

√
−b−

√
b2−4ac

2a
, ωen =

√
−b+

√
b2−4ac

2a

a = ρ
2
0

[
(2ν

Ek

Eh
− Eh

Ed
)2−4(Ed−νE0

Ek

Eh
)(

Eh

E0Ed
−ν

Ek

E0Eh
)

]
b =−ρ0

[
2E0(2ν

Ek

Eh
− Eh

Ed
)+4(Ed−νE0

Ek

Eh
)

]
c = E2

0
(56)

where, ωin and ωen are the frequency that the first stop band
initiates and ends, respectively.

Denote k1 =

√
−B−
√

B2−4AC
2A and k2 =

√
−B+
√

B2−4AC
2A .

While k1 and k2 are both the solutions of the dispersion equa-
tion (Eq. 53), they have to be examined by physical consider-
ations. Within the first pass band, when ω = 0, k1 = 0, which
recovers the result of dispersion relation of infinitely long
wave, i.e., k = w/c = 0; on the other hand, k2 =

√
(E0/A),

which is not characteristic of long wave propagation. There-
fore, k1 is used in the first pass band and stop band. In the
second pass band, a typical observation (see Section 5.1.1)
is that while k2 matches with the analytical solution well,
k1 leads to negative group velocity followed by zero real
wavenumber solution at higher frequencies.

Appendix B: Time domain solution
This appendix provides the time domain solution for

the nonlocal homogenization model (NHM6). The boundary
value problem of NHM6 is evaluated in the Laplace domain.
Time domain solution is then obtained by applying a numer-
ical inverse Laplace transform [61]. Rewrite the nonlocal
momentum balance equation (Eq. 44):
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The fourth order differential equation is evaluated by
considering the following solution form:

Û(x,s) =D1(s)sinh(ξx)+D2(s)sinh(ηx)+

D3(s)cosh(ξx)+D4(s)cosh(ηx)
(58)

where ξ and η are the solutions of the characteristic equation
of Eq. 57. With the boundary conditions Eqs. 11 and 52, the
solution for frequencies in the first pass band and stop band
is obtained as:

Û(x,s) = D1(s)sinh(ξx) (59)



and in the second pass band:

Û(x,s) = D2(s)sinh(ηx) (60)

The coefficients D1, D2, D3, D4 are:
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Appendix C: Analytical expression for Êk
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