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Abstract

This manuscript presents the formulation and implementation of the reduced order varia-

tional multiscale enrichment (ROVME) method for thermo-mechanical problems. ROVME is

extended to model the inelastic behavior of heterogeneous structures, in which the constituent

properties are temperature sensitive. The temperature-dependent coefficient tensors of the

reduced order method are approximated in an efficient manner, retaining the computational

efficiency of the reduced order model in the presence of spatial/temporal temperature varia-

tions. A Newton-Raphson iterative scheme is formulated and implemented for the numerical

evaluation of nonlinear system of equations associated with the proposed ROVME method.

Numerical verifications are performed to assess the efficiency and accuracy of the proposed

computational framework. The results of the verifications reveal that ROVME retains reason-

able accuracy and achieves high efficiency in the presence of thermo-mechanical loads.

Keywords: Multiscale modeling, Thermo-mechanical modeling, Variational multiscale enrich-

ment; Reduced order modeling, Elasto-viscoplastic.

1 Introduction

Performance of structures operating in extreme thermo-mechanical environments is typically

marked by the formation of hot-spots. Hot-spots refer to localized regions within the domain

of the structure that are exposed to higher rates of heating, higher stresses or a combination
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of both. Hot-spots are considered important as they serve as failure initiation sites (such

as, shock-boundary layer interaction-induced localized heating in hypersonic aircraft compo-

nents [51, 43, 38]), and could ultimately define structural survivability.

From the modeling perspective, deformation and failure mechanisms within hot-spots may

be accurately captured using thermo-mechanical multiscale computational approaches, where

the microstructural heterogeneities are resolved at least within a critical subdomain of the

structure. The majority of the previous efforts on thermo-mechanical multiscale modeling

employed computational homogenization principles (e.g., Golanski et al. [18], Ghosh et al. [17,

31], Yu and Fish [53], Zhang et al. [55], Ozdemir et al. [44], Muliana et al. [35, 36]), which

are valid at the scale separation limit. On the other hand, global-local methods, including the

global-local finite element method [33, 37, 28, 14, 16], the domain decomposition method [26],

the generalized finite element method [10], Lagrange multiplier based multiscale method [29],

numerical subgrid algorithms [4, 5], among others, are more appropriate for problems that

exhibit poor or no scale separation. These approaches admit higher resolution within the

hotspots, while coarse discretization is employed within the rest of the structural domain. The

variational multiscale enrichment (VME) method [40, 41, 56] is a global-local method that

addresses problems in which the detailed resolution of the material microstructure is considered

within localized regions of interest. Rooted in the variational multiscale method [19, 20], VME

is a multiscale numerical subgrid algorithm that relies on the additive decomposition of the

cardinal response fields (e.g., displacement) into coarse and fine scale counterparts within the

variational setting.

Evolution of large-sized problems in which the microstructural heterogeneities are resolved

either based on homogenization or global-local methods are well-known to be computationally

very expensive, and often times prohibitive. This issue is typically overcome using massively

parallel simulations (e.g., [32]), reduced order approximations to the microstructure prob-

lems, or a combination of both. In the context of homogenization methods, a number of

order reduction approaches, such as generalized method of cells [2], transformation field anal-

ysis [11, 30, 15], fast Fourier transforms (FFT) [34], proper orthogonal decomposition [54, 39]

and eigendeformation-based model order reduction [42, 58], among others were successful in

reducing the complexity of microstructure computation for linear and nonlinear problems. In

the context of global-local methods, FFT was employed to model the thermo-elastic behavior of

alumina/Al composites [25, 3]. The reduced order variational multiscale enrichment (ROVME)

[57] was recently proposed by the authors to improve the computational efficiency of the VME

method [56]. Derived from the eigendeformation-based reduced order approach, ROVME was

shown to efficiently reduce computational complexity by two orders of magnitude when ap-

plied to deformation problems involving material nonlinearity. Application of the principles of

ROVME to address thermo-mechanical problems presents additional challenges. The primary
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difficulty is that the construction of the reduced order basis (via microstructural influence

functions) depends on the elastic properties of the constituents. Spatio-temporal variation of

temperature within a thermo-mechanically loaded structure therefore requires continuous ba-

sis reconstruction when the elastic properties are temperature-dependent. The computational

expense of the recurrent basis reconstructions may offset the computational efficiency gains to

a significant degree.

The current manuscript extends the reduced order variational multiscale enrichment method

to address thermo-mechanical problems that exhibit global-local character. The thermo-

mechanical coupling effect due to the presence of thermal expansions, temperature-dependent

mechanical inelastic properties, as well as the elastic properties is taken into account [1, 27, 22].

A key novel contribution of the present manuscript is the efficient approximation of the temper-

ature dependence of the reduced order model coefficients, which allows the thermo-mechanical

ROVME to retain the computational efficiency. Numerical studies are performed to verify

the proposed method against direct numerical simulations, and demonstrate its capability in

capturing the thermo-mechanical behavior of heterogeneous structures.

The remainder of the manuscript is organized as follows: Section 2 provides the problem

statement and governing equations of the elasto-viscoplastic problem. Sections 3 and 4 de-

scribe the formulation of the VME and ROVME methods for thermo-mechanical problems,

respectively. Section 5 details the implementation strategy. Sections 6 and 7 present numerical

simulations which demonstrate the accuracy and capability of the proposed methodology. The

conclusions are discussed in Section 8.

2 Problem Statement

The domain of the structure is denoted by Ω ⊂ Rnsd (nsd is the number of spatial dimensions)

as shown in Fig. 1, the equilibrium equation within the problem domain is expressed as:

∇ · σ(x, T, t) = 0; x ∈ Ω, t ∈ [0, te] (1)

where, x and t are the position and time coordinates, respectively; T the temperature; σ the

stress tensor; ∇·(·) the divergence operator and te the end of the observation period. The body

force is taken to be negligible compared with the external force. The constitutive behavior is

expressed as:

σ(x, T, t) = L(x, T ) :
[
ε(x, T, t)− εvp(x, T, t)− εT (x, T )

]
(2)

in which, L is the temperature-dependent tensor of elastic moduli; εvp and εT denote the

viscoplastic and thermal strains, respectively; and (:) is the double inner product. The thermal
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Figure 1: The schematic representation of the overall problem domain (Ω),
enrichment region (Ωb) and two representative enrichment domains (Ω1 and Ω2).

strain is expressed as:

εT (x, T ) = αT (x) [T (x)− T0] (3)

where, T0 is the reference temperature; and αT the tensor of thermal expansion coefficients.

The evolution of the inelastic strain is expressed in the functional form:

ε̇vp = Φ (σ, εvp, T,q; k) (4)

in which, q denotes the vector of internal state variables that represent the internal deformation

mechanisms characterizing the inelastic processes, and k is the set of material properties

associated with the inelastic flow. The specific forms of the evaluation laws of the internal

state variables are provided in Section 6 in the context of numerical examples. As further

explained below, we are interested in the detailed response within a characteristic subdomain

(Ωb ⊂ Ω), where the material microstructure with multiple constituents is resolved. The overall

constitutive model form (i.e., Eqs. (2)-(4)) is taken to be the same for all constituents, whereas

the model parameters and evolution equations (i.e., L,α,k,q and Φ) could be different for

each constituent. The boundary conditions of the mechanical problem are:

u(x, t) = ũ(x, t); x ∈ Γu (5)

σ(x, t) · n = t̃(x, t); x ∈ Γt (6)
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where, ũ is the prescribed displacement along the Dirichlet boundary, Γu, and t̃ is the pre-

scribed traction along the Neumann boundary, Γt. The external boundary decomposition is

performed such that ∂Ω = Γ = Γu ∪ Γt and Γu ∩ Γt ≡ ∅.
The thermal state of the structure is defined by the steady state conditions:

∇ · [K(x) · ∇T (x, t)] = 0; x ∈ Ω (7)

subjected to

T (x, t) = T̃ (x, t); x ∈ ΓT (8)

K · ∇T = q̃(x, t); x ∈ Γq (9)

where, K is thermal conductivity tensor; T̃ and q̃ denote boundary temperature and flux data

along the respective boundaries. The time variation of temperature is due to time-dependent

boundary conditions, which is taken to be independent of the mechanical response. The

transients are taken to occur at time scales significantly shorter than the time scales at which

mechanical loads are applied, and therefore neglected in this study.

3 Variational Multiscale Enrichment (VME)

The VME formulation of the mechanical response of inelastically deforming solids, and coupled

mechanical-diffusion of elastically deforming solids are discussed in detail in Refs. [56] and [43],

respectively. In what follows, the VME equations for the temperature-dependent mechanical

problem are summarized, since the VME formulation forms the basis of the ROVME imple-

mentation.

The domain of the structure Ω ⊂ Rnsd is decomposed into two non-overlapping subdomains,

of which the enrichment region is further discretized into a series of non-overlapping enrichment

(microstructural) domains:

Ω = Ωs ∪ Ωb; Ωs ∩ Ωb ≡ ∅ (10a)

Ωb =

nen⋃
α=1

Ωα; Ωα ∩ Ωβ ≡ ∅ when α 6= β (10b)

where, Ωs and Ωb denote the substrate region and the enrichment region, respectively. nen

denotes the total number of enrichment domains in the structure. The microstructural hetero-

geneity is resolved only in the enrichment region, while using a “homogenized” microstructure

in the substrate region. The geometry of each of the enrichment domains is taken such that it

can be represented by a classical macroscale finite element.

The mechanical displacement field is decomposed into macroscale and microscale compo-
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nents through additive two-scale decomposition:

u(x, T, t) = uM (x, T, t) +

nen∑
α=1

H(Ωα)umα (x, T, t) (11)

where, uM ∈ VM (Ω) and umα ∈ Vα(Ωα) are respectively the macroscale and microscale dis-

placement fields associated with the enrichment domain, Ωα, which are evaluated within the

variational setting. The Heaviside function, H(Ωα) (H=1 if x ∈ Ωα, while H=0 elsewhere),

is employed to ensure the microscale displacement field (umα ) only contributes to the displace-

ment field on the closure of the associated enrichment domain, Ωα. VM and Vα denote the

trial spaces for the macro- and microscale fields, respectively (specialization from infinite to

finite dimensional approximation is skipped for brevity):

VM (Ω) ≡

{
uM (x, T, t)

∣∣∣ uM =

ND∑
A=1

NA(x) ûMA (T, t); ûMA = ũ(xA, t) if xA ∈ Γu

}
(12)

Vα(Ωα) ≡

{
umα (x, T, t)

∣∣∣ umα =

ndα∑
a=1

nα,a(x) ûmα,a(T, t); ûmα,a = 0 if xα ∈ Γuα

}
(13)

in which, ND and ndα are the number of nodes associated with the finite element bases in

the macroscale discretization of Ω, and the microscale discretization of Ωα, respectively; NA

and nα,a are the shape functions for the macroscale and microscale fields, respectively; xA

and xa are the corresponding nodal coordinates. Overhat denotes the nodal coefficients of the

corresponding response field.

The macro- and microscale shape functions are chosen such that the solution space is the

direct sum of the macro- and microscale solution spaces [20, 56], to ensure solution unique-

ness and stability in view of the displacement decomposition of Eq. (11) [16, 21]. In the

current manuscript, homogeneous Dirichlet boundary conditions are employed along the en-

richment domain boundaries (Eq. (13)) [7]. Other microscale boundary conditions have also

been proposed previously to achieve higher accuracy [41, 56]. Similar to the displacement field

decomposition in Eq. (11), the test function is additively decomposed into macroscale (wM )

and microscale (wm
α ) components [56, 57].

Considering the additive decomposition of the displacement field and test function, the

governing equation in the weak form is decomposed into macroscale and microscale problems.

The macroscale equilibrium in the weak form is obtained from Eq. (1) by considering vanishing

microscale test functions:∫
Ω
∇wM : σ

(
uM , {umi }

nen
1

)
dΩ−

∫
Γt

wM · t̃ dΓ = 0 (14)
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Setting the macroscale test functions to zero, the weak form of the microscale problem at an

arbitrary enrichment domain, Ωα, is obtained:∫
Ωα

∇wm
α : σ(uM ,umα ) dΩ = 0; α = 1, 2, ...nen. (15)

The macroscale and microscale problems are coupled through the stress field, which is a func-

tion of both macro- and micro- displacement components. Due to the inelastic, nonlinear

and history-dependent constitutive behavior, the stress field does not admit convenient scale

decomposition.

Similar to the mechanical problem, the temperature field is decomposed into macro- and

microscale components:

T (x, t) = TM (x, t) +

nen∑
α=1

H(Ωα) Tmα (x, t) (16)

where, TM ∈ WM (Ω) and Tmα ∈ Wα(Ωα) are the macroscale and microscale temperature fields,

respectively. WM and Wα are the trial spaces for the macro- and microscale temperatures:

WM (Ω) ≡

{
TM (x, t)

∣∣∣ TM =

ND∑
A=1

NA(x) T̂MA (T, t); T̂MA = T̃ (xA, t) if xA ∈ ΓT

}
(17)

Wα(Ωα) ≡

{
Tmα (x, t)

∣∣∣ Tmα =

ndα∑
a=1

nα,a(x) T̂mα,a(T, t); T̂
m
α,a = 0 if xα ∈ Γqα

}
(18)

Correspondingly, the steady state thermal problem (Eqs. (7)-(9)) yields a macroscale problem,

∫
Ω
∇vM ·K · ∇TM dΩ =

∫
Γq
vM · q̃ dΓ−

nen∑
α=1

∫
Ωα

∇vM ·K · ∇Tmα dΩ (19)

and a series of microscale problems,∫
Ωα

∇vmα ·K · ∇Tmα dΩ = −
∫

Ωα

∇vmα ·K · ∇TM dΩ; α = 1, 2, ...nen. (20)

where, vM and vmα are the macro- and microscale temperature test functions, respectively.

For both thermal and mechanical problems, the macroscale system and microscale problems

are solved iteratively until convergence is achieved at a given time step. In the enrichment

region, stress and strain fields are updated at each integration point of the microscale dis-

cretization. Therefore, the computational complexity of VME is proportional to the number

of enrichment domains within the enrichment region as well as the complexity of the mi-

crostructural morphology within the enrichment domains.
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4 ROVME for Thermo-mechanical Problems

ROVME was recently introduced to improve the computational efficiency of the VME ap-

proach [57]. In this manuscript, ROVME is generalized to address thermo-mechanical prob-

lems. Starting from the mechanical problem under temperature effect, we consider the follow-

ing decomposition of the microscale displacement field:

umα (x, T, t) =

ND∑
A=1

Hα
A(x, T ) · ûMα

A (T, t) +

∫
Ωα

hα(x, x̂, T ) : εvp(x̂, T, t) dx̂

+Gα(x, T ) (T − T0)

(21)

where, ûMα
A denotes the macroscale nodal coefficient of the enrichment domain, Ωα; Hα

A, a

second order tensor, is the influence function associated with the linear elastic component of

the response field in Ωα; hα, a third order tensor, is the influence function for the inelastic

deformation within the microstructure; and Gα, a first order tensor, is the influence function

associated with the thermal expansion in the enrichment domain. The governing equations for

the influence functions Hα
A, hα and Gα are obtained from the microscale problem, Eq. (15).

Substituting the constitutive equation, Eq. (2), and the microscale displacement field dis-

cretization, Eq. (21), into Eq. (15) yields (α = 1, 2, ...nen):

ND∑
A=1

∫
Ωα

∇wm
α : L(T ) :

[
∇Hα

A(T ) +∇NA

]
dΩ · ûMα

A (T, t)

+

∫
Ωα

∇wm
α : L(T ) :

[∫
Ωα

∇hα(x, x̂, T ) : εvp(x̂, T, t) dx̂− εvp(x, T, t)
]
dΩ

+

∫
Ωα

∇wm
α : L(T ) ·

[
Gα(T ) (T − T0)−αT (T − T0)

]
dΩ = 0 (22)

We assume that each enrichment domain is sufficiently small compared to the macroscale

structure and that the thermal gradient across an enrichment domain is negligible. A first order

approximation is that the thermal state within the enrichment domain is spatially uniform,

with enrichment domain temperature approximated as:

Tα(t) =
1

|Ωα|

∫
Ωα

T (x, t) dΩ (23)

Considering the elastic state of the enrichment domain at uniform reference temperature,
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Tα, and in the absence of inelastic processes, Eq. (22) reduces to:∫
Ωα

∇wm
α : L(Tα) : ∇Hα

A(Tα) dΩ = −
∫

Ωα

∇wm
α : L(Tα) · ∇NA dΩ;

A = 1, 2, ..., ND

(24)

Equation (24) is the elastic influence function problem, which is evaluated for Hα
A(Tα). Homo-

geneous Dirichlet boundary conditions are imposed to ensure that the microscale displacements

vanish along ∂Ωα (see Eq. (13)). In the presence of inelastic deformation but at uniform ref-

erence temperature within the enrichment domain, the inelastic influence function problem in

weak form is obtained:∫
Ωα

∇wm
α : L(Tα) : ∇hα(x, x̂, Tα) dΩ =

∫
Ωα

∇wm
α : L(Tα) δd(x− x̂) dΩ; ∀x̂ ∈ Ωα (25)

where, δd denotes the Dirac delta distribution. In the presence of thermal deformation and in

view of Eqs. (24) and (25), Eq. (22) yields the thermal influence function problem:∫
Ωα

∇wm
α : L(Tα) ·Gα(Tα) dΩ =

∫
Ωα

∇wm
α : L(Tα) ·αT dΩ (26)

The influence functions, Hα
A, hα and Gα, are temperature-dependent because the elastic prop-

erties of the constituents vary as a function of temperature (i.e., L(Tα)). For a fixed uniform

temperature field, Tα, discrete approximations to the influence functions are evaluated numer-

ically [4, 5, 42, 45].

4.1 Reduced basis for the microscale problem

The reduced basis is achieved through the following approximation of the stress and inelastic

strain fields within an enrichment domain:

σ(x, Tα, t) =

NPα∑
γ=1

Nα
γ (x) σαγ (Tα, t); εvp(x, Tα, t) =

NPα∑
γ=1

Nα
γ (x) µαγ (Tα, t); x ∈ Ωα (27)

where, σαγ and µαγ are the stress and inelastic strain coefficients, respectively. Nα
γ denotes

reduced basis shape functions; and NPα the order of the reduced basis. The reduced basis

shape functions are taken to be piecewise constant over parts of the enrichment domain:

Nα
γ (x) =

1, if x ∈ Ωα
γ

0, elsewhere
(28)
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where, {Ωα
γ | γ = 1, 2, ..., NPα} constitutes a non-overlapping partitioning of the enrichment

domain. By this discretization, the stress and inelastic strain fields are approximated as

piecewise constant over the enrichment domain.

Substituting the reduced order microscale partitioning (Eqs. (27) and (21)) into Eq. (2),

the stress coefficient for an arbitrary part Ωα
η within the enrichment domain Ωα is expressed

as:

σαη (Tα, t) =

ND∑
A=1

[
SαηA(Tα) · ûMα

A (Tα, t)
]

+

NPα∑
γ=1

[
Pα
ηγ(Tα) : µαγ (Tα, t)

]
+Zαη (Tα) (Tα − T0)

(29)

The homogenized coefficient tensors on each part Ωα
η are:

SαηA(Tα) =
1

|Ωα
η |

∫
Ωαη

[L(x, Tα) · ∇Nα
A(x) + L(x, Tα) : ∇Hα

A(x, Tα)] dΩ (30)

Pα
ηγ(Tα) =

1

|Ωα
η |

∫
Ωαη

[
L(x, Tα) :

∫
Ωαγ

∇hα(x, x̂, Tα) dx̂− L(x, Tα) Nα
γ (x)

]
dΩ (31)

Zαη (Tα) =
1

|Ωα
η |

∫
Ωαη

L(x, Tα) :
[
∇Gα(x, Tα)−αT (x)

]
dΩ (32)

Since the homogenized coefficient tensors (SαηA(Tα), Pα
ηγ(Tα) and Zαη (Tα)) are obtained from

the influence functions which always satisfy the microscale weak form equation, the stress

coefficients computed using the coefficient tensors ensures that the reduced order microscale

equilibrium state is satisfied for arbitrary macroscale displacement, inelastic strain coefficient,

and temperature field over the enrichment domain.

In view of the linearity of the thermal problem, the microscale temperature field is expressed

as:

Tmα (x, t) =

ND∑
A=1

H̆α
A(x) · T̂Mα

A (t) (33)

in which, H̆α
A is the temperature influence function evaluated by satisfying the microscale weak

form, Eq. (20). The resulting temperature field is:

T (x, t) =

ND∑
A=1

[
NA(x) + H̆α

A(x)
]
· T̂Mα

A (t) (34)

The uniform temperature field within the enrichment domains (Eq. (23)) is evaluated using:

Tα(t) =

ND∑
A=1

H̄α
A T̂Mα

A (t) (35)
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where,

H̄α
A =

1

|Ωα|

∫
Ωα

∇Nα
A(x) +∇H̆α

A(x) dΩ (36)

4.2 Approximation of Coefficient Tensors over Temperature

It is important to note that the influence functions and consequently the coefficient tensors

(SαηA , Pα
ηγ and Zαη ) are functions of temperature. Within a structural analysis subjected

to thermo-mechanical loads where temperature field is spatially and temporally varying, the

temperature-dependent coefficient tensors need to be stored separately for each enrichment

domain and updated at every increment. The update procedure requires the evaluation of the

influence function problems (Eqs. (24)-(26)) and the numerical integrations (Eqs. (30)-(32)),

both of which are computationally expensive. Instead, we consider the following approximation

of the temperature dependence of the coefficient tensors:

SαηA(Tα) ≈ S̄αηA(Tα; TNα) =

Nα∑
i=1

ψi(T
α) ŜαηAi (37)

Pα
ηγ(Tα) ≈ P̄α

ηγ(Tα; TNα) =

Nα∑
i=1

ψi(T
α) P̂α

ηγi (38)

Zαη (Tα) ≈ Z̄αη (Tα; TNα) =

Nα∑
i=1

ψi(T
α) Ẑαηi (39)

where, {ψi| i = 1, 2, ..., Nα} is a set of interpolation functions for the coefficient tensors. One

dimensional piecewise linear Lagrangian shape functions are employed in the current study.

Nα denotes the number of nodes in the temperature discretization (TNα) over a temperature

range:

TNα = {T1, T2, ..., TNα}T ; T1 = Tmin and TNα = Tmax (40)

where, Tmin and Tmax denote the minimum and maximum temperature that the structure is

subjected to, respectively. ŜαηA, P̂α
ηγ and Ẑαη are the approximation bases for the corresponding

coefficient tensors such that:

ŜαηA :=
{

ŜαηAi = SαηA(Ti) | Ti ∈ TNα
}T

; P̂α
ηγ :=

{
P̂α
ηγi = Pα

ηγ(Ti) | Ti ∈ TNα
}T

;

Ẑαη :=
{

Ẑαηi = Zαη (Ti) | Ti ∈ TNα
}T (41)

For an arbitrary microstructure, the coefficient tensors for each temperature in TNα are eval-

uated a-priori and stored for the approximation.
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4.3 Identification of the temperature approximation basis

The accuracy of the approximation stated in Eqs. (37) - (39) directly depends on proper

identification of TNα , which in turn depends on the variation of the elastic properties of each

microstructural constituent as a function of temperature. The optimum TNα should contain

the smallest number of basis nodes that confine the error between the directly computed

(Eqs. (30)-(32)) and the approximated (Eqs. (37)-(39)) coefficient tensors. Consequently, the

identification of the approximation basis is posed as an optimization problem. We seek to find

the optimal basis node set (T
N∗
α

opt) for fixed N∗α, such that

Er(Nα
∗) = min

TN
∗
α

{
max

[∥∥∥SηA(Tα)− S̄ηA(Tα; TN∗
α)
∥∥∥
∞
,

∥∥∥Pηγ(Tα)− P̄ηγ(Tα; TN∗
α)
∥∥∥
∞
,
∥∥∥Zη(Tα)− Z̄η(T

α; TN∗
α)
∥∥∥
∞

]}
;

∀ η, γ = 1, 2, ..., NPα and A = 1, 2, ..., ND; Tα ∈ [Tmin, Tmax]

(42)

It is trivial to observe that the error (Er) is non-increasing with N∗α, e.g., Er(Nα
∗) ≥ Er(Nα

∗+

1). The optimal basis order is then the smallest N∗α, such that

Er(Nα) ≤ TOL (43)

and the corresponding basis set is TNα . TOL denotes the tolerance. It is possible to eval-

uate Eq. (42) using traditional optimization methods. In order to reduce the computational

cost associated with solving influence function problems at each iteration of the optimization

operation, an alternative of Eq. (42) is used:

Er(Nα
∗) = min

TN
∗
α

{∥∥Lη(Tα)− L̄η
∥∥
∞

}
; ∀ η = 1, 2, ..., NPα (44)

where, Lη is the temperature-dependent tensor of elastic moduli and L̄η is its discrete approx-

imation. Equations (44) and (43) are numerically evaluated for the optimum TNα using the

adaptive approximation method [49, 50].

To further illustrate the procedure stated above, we consider an example for a SiC/Ti-6242s

composite material [8, 9, 6, 13]. The microstructure of the SiC/Ti-6242s composite is shown

in Fig. 2(a). The silicon carbide fiber (SiC) is assumed to be temperature-independent and

isotropic, with Young’s modulus and Poison’s ratio of 395 GPa and 0.25, respectively. The

Young’s modulus of the matrix material (Ti-6242s) is taken to be temperature-dependent, as

shown in Fig. 2(b) [52]. The Poison’s ratio of the matrix is taken as temperature-independent,

ν=0.32. Through adaptive approximation with 10oC as the minimum partition interval, the
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Figure 2: (a) Microstructure of the SiC/Ti-6242s composite; and (b) temperature
dependence of Young’s modulus for the Ti-6242s matrix.
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optimum temperature approximation basis is determined as TNα={23, 140, 230, 310, 370,

420, 470, 510, 550}. It contains 9 temperature nodes and the approximated Young’s modulus

function is plotted in Fig. 3(a). The tolerance employed is 0.003 in the current example. Using

the determined TNα , the maximum errors between the approximated and directly computed

coefficient tensors are presented in Fig 3(b).

5 Computational Implementation

This section provides the numerical implementation of the ROVME method for thermo-

mechanical problems, along with an implementation strategy. The implementation of the

direct VME method for mechanical problems under temperature effect (employed in the ver-

ification of the ROVME method) is listed in the Appendix. The thermal and mechanical

problems are evaluated incrementally in a staggered fashion, since the two problems include

one-way coupling only (i.e., effect of temperature on mechanical response). The coupled tem-

perature and mechanical response fields are solved separately, through separation of variables.

With the assumption that the enrichment domains are sufficiently small, the uniform temper-

ature field (Tα) of each enrichment domain (Ωα) is obtained by homogenizing the temperature

field of the enriched macroscale element.

Considering a discrete set of instances with the observation period ({0, 1t, 2t, ..., nt, n+1t, ..., te})
and taking the temperature field as a known variable at each time step, the elasto-viscoplastic

mechanical problem under temperature effect is numerically assessed through a Newton-

Raphson iterative scheme summarized below. For simplicity of the presentation, the super-

script, α, has been omitted from the response variable in the implementation described below.

5.1 ROVME formulation in an arbitrary enrichment domain

The rate-form constitutive equation for an arbitrary part, Ωα
η , is obtained by taking the time

derivative of Eq. (29):

σ̇η(t) =

ND∑
A=1

[
SηA(T ) · ˙̂uMA (T, t)

]
+

NP∑
γ=1

[Pηγ(T ) : µ̇γ(T, t)] + Zη(T ) Ṫ

+

ND∑
A=1

[
∂SηA(T )

∂T
Ṫ · ûMA (T, t)

]
+

NP∑
γ=1

[
∂Pηγ(T )

∂T
Ṫ : µγ(T, t)

]
+
∂Zη(T )

∂T
Ṫ (T − T0)

(45)

The viscoplastic slip evolution of the ROVME method for each part Ωα
γ in the enrichment

domain is discretized by a one-parameter family (θ-rule):

µ̇γ(t) = (1− θ) µ̇γ(x, nt) + θ µ̇γ(x, n+1t); t ∈ [nt, n+1t] (46)
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where, θ ∈ [0, 1] is an algorithmic parameter. Performing time discretization of Eq. (45) with

Eq. (46), the residual of the constitutive equation for an arbitrary part Ωα
η yields:

Rη ≡ n+1ση − nση −
ND∑
A=1

n+1SηA ·
(
n+1û

M
A − nû

M
A

)
− (1− θ) ∆t

NP∑
γ=1

n+1Pηγ : nµ̇γ

− θ ∆t
NP∑
γ=1

n+1Pηγ : n+1µ̇γ − nZη (n+1T −n T )

−
ND∑
A=1

n+1

(
∂SηA
∂T

)
· n+1û

M
A (n+1T −n T )−

NP∑
γ=1

n+1

(
∂Pηγ

∂T

)
: n+1µγ (n+1T −n T )

− n+1

(
∂Zη
∂T

)
(n+1T −n T )(n+1T − T0) = 0

(47)

in which, the left subscript n and n + 1 denote the value of a field variable at nt and

n+1t, respectively. The equilibrium states and response fields of the nonlinear system at

nt is the “known” configuration. The temperature field (n+1T ) and the coefficient tensors

(n+1SηA, n+1Pηγ , n+1Zη) are known at n+1t. The temperature derivatives of the coefficient

tensors n+1(∂SηA/∂T ), n+1(∂Pηγ/∂T ) and n+1(∂Zη/∂T ) are assessed numerically. In the re-

mainder of this section, the left subscript n+ 1 of the fields at the current time step is omitted

for simplicity of the presentation. Forming a Newton iteration through a first order Taylor

series approximation of Eq. (47), the residual of the stress-strain equation yields:

Rk+1
η ≈Rk

η +

NP∑
γ=1

[(
δKηγ I− θ ∆t Pηγ : Ck

γ

)
: δσγ

]
−

NP∑
γ=1

(
θ ∆t Pηγ : Gk

γ + Dηγ

)
: δµγ

−
ND∑
A=1

(
S̃ηA · δûMA

)
= 0

(48)

where, superscript k is the Newton iteration count; δ(·) indicates the increment of the response

field (·) during the current iteration (i.e., δ(·) = (·)k+1 − (·)k); δKηγ the Kronecker delta; I the

fourth order identity tensor; and

Dηγ =

(
∂Pηγ

∂T

)
(T − nT ) ; S̃ηA = SηA +

(
∂SηA
∂T

)
(T − nT ) (49)

The operators Ck
γ and Gk

γ are defined as:

Ck
γ =

(
∂µ̇γ
∂σγ

)k
; Gk

γ =

(
∂µ̇γ
∂µγ

)k
(50)
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The explicit expressions for Ck
γ and Gk

γ are described in Ref. [57]. Taylor series approximation

does not include the derivative with respect to the temperature field, since it is taken as a

known variable for the mechanical problem. The residual of the kinematic equation (Eq. (46))

for an arbitrary part Ωα
γ is defined as:

λγ ≡ µγ − nµγ −∆t (1− θ) nµ̇γ −∆t θ µ̇γ = 0 (51)

Performing a first order Taylor series approximation of Eq. (51), the inelastic coefficient incre-

ment at the current Newton iteration is expressed as:

δµγ =
(
I− θ ∆t Gk

γ

)−1
:
(
θ ∆t Ck

γ

)
: δσγ −

(
I− θ ∆t Gk

γ

)−1
: λkγ (52)

Substituting Eq. (52) into Eq. (48), the inelastic coefficients are condensed out to yield:

NP∑
γ=1

(
Qk
ηγ : δσγ

)
=

ND∑
A=1

(
S̃ηA : δûMA

)
−Vk

η (53)

where, Qk
ηγ and Vk

η are defined as:

Qk
ηγ = δKηγ I− θ ∆t Pηγ : Ck

γ

− θ ∆t
(
θ ∆t Pηγ : Gk

γ + Dηγ

)
:
(
I− θ ∆t Gk

γ

)−1
: Ck

γ

(54)

Vk
η =Rk

η +
NP∑
γ=1

(
θ ∆t Pηγ : Gk

γ + Dηγ

)
:
(
I− θ ∆t Gk

γ

)−1
: λkγ (55)

Considering the stress increment over each part of the enrichment domain (η = 1, 2, ..., NP )

in Eq. (53) separately, the stress increment vector for the enrichment domain is obtained as:

δσ =
(
Qk
)−1

S δûM −
(
Qk
)−1

Vk (56)

in which, the coefficient tensors Qk and S are defined as:

Qk =
[
Qk
ηγ

]
η,γ∈[1,NP ]

; S =
[
S̃ηA

]
η∈[1,NP ],A∈[1,ND]

(57)
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and

δσ =

{(
δσk+1

1

)T
,
(
δσk+1

2

)T
, ...,

(
δσk+1

NP

)T}T
(58a)

δûM =

{(
δûM,k+1

1

)T
,
(
δûM,k+1

2

)T
, ...,

(
δûM,k+1

ND

)T}T
(58b)

Vk =

{(
Vk

1

)T
,
(
Vk

2

)T
, ...,

(
Vk
NP

)T}T
(58c)

Correspondingly, the vector-matrix form of the weak form residual of the enrichment domain

at the current iteration (k + 1) yields:

Ψ̃M,k+1 = K δûM − δf (59)

where,

K = (B)T
(
Qk
)−1

S (60)

δf = (B)T
(
Qk
)−1

Vk − Ψ̃M,k + Ψ̃MT (61)

B =

[∫
Ωαγ

∇NA dΩ ŵM
A

]
γ∈[1,NP ], A∈[1,ND]

(62)

Ψ̃MT =

[∫
Γt
NA t̃ dΓ ŵM

A

]
A∈[1,ND]

(63)

The linearized reduced order macroscale weak form (Eq. (59)) is solved incrementally until

convergence is satisfied.

5.2 ROVME implementation algorithm

The implementation of the formulation is performed using the commercial software package,

Diffpack [24], in C++ computer language. The overall implementation strategy is summarized

in Fig. 4, where the microscale superscript (α) and part subscript (γ) are omitted for clarity.

In the preprocessing phase prior to the simulation, the coefficient tensors (SηA(T ), Pηγ(T )

and Zη(T )) at each temperature in TN are computed using Eqs. (30), (31), (32) and stored

(A = 1, 2, ..., ND; γ and η = 1, 2, ..., NP ) for each enrichment domain. The temperature

influence function (H̆α
A) and the homogenization tensor (H̄α

A) are also evaluated and stored

for each enrichment domain (A = 1, 2, ..., ND). At an arbitrary time nt, the system is in

equilibrium with the constitutive relations satisfied for the problem domain. The algorithm

seeks to find the equilibrium state at n+1t as follows:
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current time step 

Compute 𝑪𝑘, 𝑮𝑘, 𝑸𝑘, 𝑹𝑘, 𝛌𝑘, 𝑽𝑘 

for each enrichment domain and 

each substrate element 

Construct macroscale element 

systems and assemble the structural 

system 

Solve the macroscale problem 

for 𝛿𝒖  𝑀 and update 𝒖  𝑀,𝑘+1 
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Figure 4: Reduced order variational multiscale enrichment implementation strategy (the
subscripts , γ and η, indicating parts in enrichment domains are omitted for clarity ).
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Given: nû
M , nσ, nε

vp and nε̇
vp (nµγ and nµ̇γ for enrichment domains) at time nt.

Find : ûM ,σ, εvp and ε̇vp (µγ and µ̇γ for enrichment domains) at time n+1t.

1. Initialize by setting: k=0, ûM,0 = nû
M , σ0 = nσ, εvp,0 = nε

vp, and ε̇vp,0 = nε̇
vp

(µ0
γ = nµγ , and µ̇0

γ = nµ̇γ for enrichment domains).

2. Solve the steady state thermal problem for the current time, and for each enrichment

domain (Ωα, α = 1, 2, ..., nen):

(1) Homogenize the temperature field over the enrichment domain (Eq. (35)).

(2) Update the coefficient tensors (SηA(T ), Pηγ(T ) and Zη(T )) using Eqs. (37)-(39).

(3) Evaluate Dηγ and S̃ηA from Eq. (49) and assemble S using Eq. (57).

3. Loop over all enrichment domains:

(1) Compute Ck
γ , Gk

γ , Qk
ηγ , Rk

η, λ
k
η, Vk

η , Qk and Vk from Eqs. (50), (54), (47), (51),

(55), (57) and (58c) .

(2) Construct K and δf for the current enrichment domain using Eqs. (60) and (61).

4. Following the standard finite element procedure, construct the macroscale elementary

stiffnesses for the substrate elements and assemble the macroscale system.

5. Solve the macroscale problem for δûM and update the macroscale displacement field

(ûM,k+1 = ûM,k + δûM ).

6. Loop over all enrichment domains:

(1) Determine the stress coefficient increment δσ (Eq. (56)) and update the stress coef-

ficient σk+1 = σk + δσ.

(2) Evaluate the inelastic strain coefficient increment δµγ (Eq. (52)) and update the

inelastic strain coefficient µk+1
γ = µkγ + δµγ .

(3) Compute the inelastic strain rate coefficient µ̇γ using the evolution equation of the

material.

7. Loop over all substrate elements to update stress (σk+1), strain (εvp,k+1) and strain rate

(ε̇vp,k+1) using classical response update procedures [56].

8. Check for convergence:

eM =
‖ûM,k+1 − ûM,k‖2
‖ûM,k+1 − nûM‖2

≤ Convergence tolerance (64)

9. If convergence is not satisfied, set iteration counter k ← k+ 1 and proceed with the next

iteration.
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Table 1: Materials parameters for phase II material in the microstructure.

Property E0 [GPa] 1 ν A [MPa] B [MPa] m n

Value 120.8 0.32 895 125 0.85 0.2

Property Troom [oC] Tmelt [oC] γ [MPa/second] q αT [1/oC] k [W/mK]

Value 23 1700 25 1.0 7.7×10−6 20

6 Numerical Verification

The verifications of the ROVME method particularly focus on the coupling effects in the

thermo-mechanical behavior. The accuracy characteristics of the ROVME method is assessed

by comparing the results with the direct VME approach, as well as with the single scale fi-

nite element method (FEM), in which the heterogeneous microstructure is resolved within

the enrichment region. A two-phase particulate composite with circular inclusions is em-

ployed (Fig. 2(a)). Phase I is the silicon carbide constituent, taken to be elastic with Young’s

modulus (E) of 395 GPa, Poisson’s ratio (ν) of 0.25, the thermal expansion coefficient (α)

of 4.2×10−6/oC and the thermal conductivity (k) of 120 W/mK [12, 13]. Phase II is Ti-

6242s, taken to be elasto-viscoplastic [23, 46]. The flow stress is expressed using the modified

Johnson-Cook model [22, 43]:

σy = [A+B(ε̄vp)n] [1− (T ∗)m] (65)

where, A,B, n and m are material parameters; ε̄vp the effective viscoplastic strain and T ∗ is

the non-dimensional temperature:

T ∗ =
T − Troom

Tmelt − Troom
(66)

where, Troom and Tmelt are the room and melting temperatures, respectively. Instead of incor-

porating the strain rate term directly as in the standard Johnson-Cook model, the strain rate

effect is modeled through the Perzyna formulation [56, 57]. The values of the parameters for

Ti-6242s are shown in Table 1, in which γ is the fluidity parameter and q is the viscoelastic

hardening parameter. The Young’s modulus of Ti-6242s is taken to vary as a function of

temperature as shown in Fig. 2(b). Phase III denotes the homogenized composite used in the

substrate region, the properties of which are computed using the rule of mixtures and taken to

remain elastic [8, 6]. The Young’s modulus of Phase III at the room temperature is 170 GPa

and linearly drops to 140 GPa at 550oC. The Poisson’s ratio is 0.3. The thermal expansion

coefficient is 5.0×10−6/oC and the thermal conductivity is 48 W/mK.

1E0 denotes the Young’s modulus at the room temperature.
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Figure 5: Model sketch and discretization of: (a) finite element method; (b) macroscale
problem of the VME and ROVME method; (c) microscale problem of the VME method; and

(d) microscale problem of the ROVME method with 2 parts.
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Figure 6: Errors in equivalent stress for specimen with uniform temperature field.

A 2-D plane strain, 3 mm × 0.3mm, composite beam is considered. Due to symmetry,

only half of the beam is discretized. The ratio between the size of the enrichment domain

and the size of the critical subregion is 1/5. The macro- and microscale discretization for

the ROVME and VME models are shown in Fig. 5, along with the reference finite element

discretization. The macroscale discretization, Fig. 5(b), contains 64 nodes and 45 quadrilateral

finite elements. The enrichment region contains 15 macroscale elements, and is positioned close

to the center of the beam since the center of the beam has the largest deformation and stress

state under the applied loads. Each of the enrichment domains contains a phase I inclusion

at the center, and a phase II matrix. The particle volume fraction is 28.3% [8, 6, 13]. The

ROVME model of the enrichment domain (Fig. 5(d)) consists of 2 parts that corresponds to

the domains of the constituents, and 6 degrees of freedom (DOFs). Each VME microstructure

(Fig. 5(c)) is discretized using 148 quadrilateral elements and 338 DOFs. The corresponding

direct finite element mesh (Fig. 5(a)) contains 2,340 quadrilateral elements and 4,844 DOFs.

The temperatures in TNα as determined in Section 4.3 is employed for the approximation of

the ROVME coefficient tensors.

6.1 Specimen subjected to uniform temperature field

The first specimen is confined at both ends (i.e., ũx = 0 and P̃ = 0 in Fig. 5(a) and (b))

subjected to uniform temperature field that monotonically increases from 23oC to 550oC in

6 minutes. The mechanical deformation of the specimen is therefore induced by the thermal

expansions only. The time step size is set to 0.72 second. Further reduction in the time step

size does not significantly improve the results. To investigate the performance of the ROVME
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and VME models compared with the reference model, the stress error over the enrichment

region at an arbitrary time, t, is computed:

eσ̄(t) =

nen∑
α=1

NPα∑
γ=1

∥∥σ̄FEM
γ (t)− σ̄γ(t)

∥∥
2,Ωαγ

nen∑
α=1

NPα∑
γ=1

∥∥σ̄FEM
γ (t)

∥∥
2,Ωαγ

(67)

where, σ̄FEM
γ and σ̄γ denote the homogenized equivalent stress over part, Ωα

γ , obtained from the

direct finite element method and the model being assessed (VME or ROVME), respectively. ‖·
‖2,Ωαγ is the L2 norm of the response field computed over Ωα

γ . The equivalent stress errors for the

ROVME and direct VME methods are shown in Fig. 6 as a function of time. Until temperature

reaches 477oC (t = 310 seconds), the structure deforms elastically. Further heating causes

plastic deformation as marked by the elastic-plastic transition line in Fig. 6. The maximum

errors occur at the end of the simulation, and are less than 8.4% and 5.2% for the ROVME

and VME models, respectively. The primary cause of the errors in the VME model is the

microscale boundary condition, which leads to more rigid reactions than the reference model.

The ROVME model displays slightly higher errors primarily due to the kinematic constraints

imposed by Eq. (27). The slight increase in error as a function of time within the elastic

loading stage is attributed to the increase in the stiffness contrast between the inclusion and

the matrix as a function of temperature. Larger stiffness contrast leads to slightly higher errors

as demonstrated in Ref. [57].

Figure 7 presents the equivalent stress contours of the structure at the end of the simulation

predicted by the reference, VME and ROVME models. The stress contours of the VME and

ROVME models are obtained by embedding the response of each enrichment domain into the

coarse response field at post-processing. The stress contours computed by the VME and the

ROVME approaches show slightly stiffer response compared with the reference solution due to

constrained kinematics, but are able to capture the local and global stress distributions with

reasonable accuracy. The equivalent stress over the line at the center of the enrichment region

(x=1.0-1.5 mm, y=0.15 mm in Fig. 5 (a) and (b)) is plotted for all of the models, as shown

in Fig. 8. Although the peak values of the ROVME model are closer to the results of the

reference solution, the direct VME model generally follows the stress variation of the reference

model more closely. Since the stress is taken to be constant over each part, the ROVME

method does not resolve the stress variation around the inter-enrichment domain interfaces.

The computational cost for the ROVME simulation is 5.58 minutes while for the finite element

simulation is 63.8 minutes. The ROVME is 11.43 times faster than the reference model for

the current example, which demonstrates the efficiency of the proposed method.
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Figure 7: Equivalent stress contours of the specimen with uniform temperature field: (a) finite
element model; (b) direct VME model; and (c) ROVME model.
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Figure 8: Equivalent stresses over a line (x=1.0-1.5 mm, y=0.15 mm) on the specimen with
uniform temperature field.
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Figure 9: Errors in equivalent stress for the specimen with temperature gradient.

6.2 Specimen subjected to temperature gradient

To further verify the proposed approach, the accuracy is assessed in the context of a specimen

subjected to temperature gradient. The mechanical boundary conditions of the specimen are

identical to that discussed in Section 6.1. The temperature field T1 (in Fig. 5(a) and (b))

along the bottom edge of the specimen linearly increases from 23oC (at t = 0) to 550oC (at

t = 360 seconds), while the temperature field T2 along the top edge remains constant at

23oC. The time step size is set to 0.72 second. At the end of the simulation, the temperature

variation across an enrichment domain is significant (approximately 175oC per enrichment

domain) which clearly violates the assumption that the temperature field is uniform over each

enrichment domain. This example is performed to test the capability of the proposed method

at or beyond the limits of the above stated assumptions.

The errors in equivalent stress for the VME and ROVME models are shown in Fig. 9,

along with the temperature gradient. The structure remains in the elastic state during the

simulation. Both VME and ROVME methods produce higher errors than the previous example

(Fig. 6), partially because the uniform temperature field assumption is violated. The stress

error of the VME method is stable, while the error of the ROVME method slightly reduces

as the temperature gradient increases. The largest error in equivalent stress for the ROVME

model is 8.8% and for the direct VME method is 6.5%. The equivalent stress contours of the

models at the end of the simulation are shown in Fig. 10, for all of the models. The contours

of the direct VME and ROVME models are less smooth than the finite element method, while

still closely follow the stress distribution of the reference model. The computational cost for

the ROVME simulation is 5.8 minutes while for the finite element simulation is 63.3 minutes.
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Figure 10: Equivalent stress contours of the specimen with temperature gradient: (a) finite
element model; (b) direct VME model; and (c) ROVME model.

The ROVME method is 10.91 times faster than FEM for this example.

6.3 Specimen subjected to combined thermo-mechanical load-

ing

To further study the performance of the proposed methodology, a specimen subjected to

combined thermal and mechanical loading is investigated. The time history of the applied

boundary conditions T1, T2 and P̃ are shown in Fig. 11. The bottom and top edges of

the specimen are heated at the same rate up to 200oC and 150oC, respectively. Then the

temperatures are kept constant. Between t = 270 - 360 seconds, the specimen is exposed to a

monotonically increasing temperature gradient. The specimen is also subjected to a constant

boundary pressure of 800 MPa. The time step size of the current example is set to 0.36 second.

The time history of error in equivalent stress is presented in Fig. 12. Until t = 76 seconds,

the specimen deforms elastically. The inelastic deformation initiates at t = 76 seconds, induced

by the increasing thermal stress. After t = 360, the errors become steady for both VME and

ROVME methods, since the loading conditions remain the same and the specimen deforms

incrementally elastic at each time step. The maximum error in equivalent stress is 6.6 % for

the ROVME method and 4.5% for the VME method.
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Figure 11: Loading conditions of the specimen with pressure.
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Figure 13: Equivalent stress contours of the specimen with pressure: (a) finite element model;
(b) direct VME model; and (c) ROVME model.
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Figure 14: Equivalent stresses over a line (x=1.35 mm, y=0-0.3 mm) on the specimen with
pressure.
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The stress contours of the reference, VME and ROVME models are shown in Fig. 13. The

stress contours of the VME and ROVME approaches are in close agreement with the stress

distribution predicted by the reference model. The stress contours are relatively uniform

since the pressure load dominates the deformation. The equivalent stress over a line in the

enrichment region (x = 1.35 mm, y= 0 - 0.3 mm in Fig. 5(a) and (b)) is plotted for all of the

models in Fig. 14.

The stress variation observed between two neighboring inclusions in the FEM approaches

are not well captured with the ROVME model, as shown in Fig. 14. This is attributed to

the fact that the ROVME model only includes weak interactions between neighboring enrich-

ment domains through the macroscopic equilibrium. The homogeneous Dirichlet boundary

conditions employed along the enrichment domain boundaries limit the strong interactions

between the neighboring enrichment domains. The accuracy loss could be higher in the pres-

ence of stronger inter-enrichment domain interactions, such as in the case of composites with

high inclusion volume fractions. Incorporation of more accurate boundary conditions (e.g.,

mixed boundary conditions proposed in Refs. [41, 56]) could improve the accuracy between

two inclusions.

The accuracy of the proposed model is consistent with the previous example in Section 6.1,

and demonstrates that both VME and ROVME methods have the capability of accurately

capturing the response of structures subjected to combined thermo-mechanical loads. The

computational cost for the ROVME simulation is 8.1 minutes while for the finite element

simulation is 164.3 minutes. The ROVME model is 20.3 times faster than FEM for this

specimen.

The accuracy and efficiency characteristic of the ROVME model is directly related to the

model order, NPα. For instance, Ref. [57] demonstrated that the accuracy could be improved

with some loss of efficiency by increasing the model order. We also note that the computational

efficiency of the ROVME model is expected to scale with the problem size (i.e., as the number

of the enrichment domains within the problem domain increases), as the ratio of the degrees

of freedom in the ROVME and direct FEM approach (as well as the VME approach) increases

with the problem size.

7 Functionally Graded Beam

The capabilities of the ROVME approach is further demonstrated by the analysis of a function-

ally graded composite beam subjected to combined thermo-mechanical loading. The present

study builds on the thermo-elastic analysis of functionally graded composites performed by

Refs. [47, 48] and extends the analysis to investigate the behavior of the composite within the
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Table 2: Materials parameters for zirconia and aluminum of the composite beam

Zirconia
E [GPa] ν k [W/mK] αT [1×10−6/oC]

151 0.3 2.09 10.0

Aluminum

E [GPa] ν k [W/mK] αT [1×10−6/oC]
70 0.3 204 23

A [MPa] B [MPa] m n
517 405 0.41 1.1

10
 m

m

100 mm
T 2

T 1

P̃Layer Ceramic

Layer Metal

Layer (a)

Layer (h)
...Enrichment 

Region

x

y

Figure 15: Model sketch and the ROVME macroscale discretization of a functionally graded
composite beam under thermo-mechanical loads.
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Figure 16: Microscale problems of the ROVME method for layer (a) to layer (h); and (i)
microscale discretization for the coefficient tensors computation of layer (a).
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Figure 17: Temperature variations along the thickness of the beam.

plastic regime.

A 2-D, simply supported plane-strain functionally graded beam with length, a = 200 mm,

and thickness, t = 10 mm is considered. The zirconia-aluminum composite is idealized as

metal matrix reinforced with randomly positioned ceramic inclusions of circular cross section.

The geometry and the boundary conditions are shown in Fig. 15. Due to symmetry, only half

of the beam is modeled. The temperatures at the bottom and top edges of the beam, T1 and

T2, are set to 23oC and 300oC, respectively. A uniform pressure q0 is applied on the top of

the beam.

The beam is discretized into 500 macroscale quadrilateral finite elements and 561 nodes.

The enrichment region is set as the entire domain. The enrichment domains employed are

shown in Fig. 16. The top layer of the beam consists of pure zirconia ceramic material and the

bottom layer is pure aluminum metal material. From the top to the bottom of the enrichment

region (denoted as layer (a) to layer (h) in Fig. 15), the volume fraction of the ceramic in the

composite decreases from 55% in layer (a) to 20% in layer (h). The radius of each inclusion

is 178.4 µm. The ceramic inclusions remain elastic throughout loading, whereas the metal

matrix exhibit inelastic deformations. The Young’s moduli of both materials are taken as

temperature independent. The material properties for zirconia and aluminum are summarized

in Table 2. The room temperature, Troom, for both of the materials is set to 23oC and the

melting temperature, Tmelt, for aluminum is set to 502oC.

For each of the enrichment domains, a two-part reduced order model is considered. The

domains of the parts correspond to the matrix and the inclusion phases. Figure 16(i) shows

the microscale mesh employed in pre-processing to compute the coefficient tensors for enrich-

ment domain in layer (a). Similar meshes were used for the other layers. For the purpose

of comparison, the reference predictions of two specimens, made of pure aluminum and pure

31



Pre-
pri

nt
0 50 100 150

−0.8

−0.6

−0.4

−0.2

0

N
or

m
al

iz
ed

 d
ef

le
ct

io
n 

[w
/h

]

Load parameter [P]

 

 

Ceramic
Metal
Composite
Elastic response

0 50 100 150
−1

−0.5

0

0.5

Load parameter [P]

 

 

Ceramic
Metal
Composite
Elastic response

(b)(a)

N
or

m
al

iz
ed

 d
ef

le
ct

io
n 

[w
/h

]
Figure 18: Non-dimensional center deflections along with load parameter for beam under: (a)

mechanical loading; and (b) thermo-mechanical loading.
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Figure 19: Non-dimensional center deflections along with load parameter for beams using
different sets of microstructures.
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zirconia, are performed using the finite element method, respectively. Figure 17 shows the

steady state distribution of temperature under the prescribed boundary conditions for the

monolithic materials and the functionally graded composite. The spatially varying conduc-

tivity of the composite beam results in non-linear variation of the temperature field through

the thickness. The steady state temperatures within the composite are lower than those in

monolithic materials.

Figure 18 presents the normalized deflection, w/h, where w is the deflection of the center

of the beam as a function of the normalized load parameter, P = (q0 a
4)/(Em h4). Em is the

Young’s modulus of the metal material and q0 is taken as 0.01 MPa. Figure 18(a) corresponds

to the pure mechanical loading at the room temperature, whereas Fig. 18(b) includes the

effect of thermal gradients. In both figures, the dotted lines indicate the responses under

the assumption of elastic behavior for both constituents. In the pure mechanical loading, the

normalized deflection of the composite beam lies between those of the pure ceramic and pure

metal specimens, under both elastic and inelastic material behavior assumptions. The results

in Fig. 18(b) include the effect of thermal expansions induced by the temperature gradient over

the specimen. In the presence of thermo-mechanical loading, the deflection of the composite

beam is lower than both ceramic and metal beams when subjected to moderate mechanical

load, under both elastic and inelastic material assumptions. This observation is consistent with

those in Refs. [47, 48]. As the load increases, the deflection in the pure metal beam significantly

increases due to rapid accumulation of plastic deformation. In contrast, the presence of the

ceramic inclusion reduces the amount of plastic flow in the composite specimen, and the rate

of deflection remains contained compared with the pure metal specimen.

In order to ensure that the results shown are independent of the microstructural morphol-

ogy, the thermo-mechanical simulation discussed above is repeated by three separate sets of

randomly generated microstructures for each layer of the composite. Figure 19 shows that the

overall deflection of the composite is not significantly affected by the microstructural morphol-

ogy, as long as the volume fraction distribution is maintained.

8 Conclusions

This manuscript provided the reduced order variational multiscale enrichment method (ROVME)

for thermo-mechanical problems. The effects of varying thermal state on the mechanical behav-

ior are considered through thermal deformations, temperature-dependent material properties,

as well as temperature-dependent flow evolution. In the proposed method, the temperature-

dependent coefficient tensors are numerically approximated in order to avoid costly repetitive

evaluations at every temperature. The accuracy and computational efficiency characteristics of
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the proposed ROVME method are verified by comparing with the results of the direct numeri-

cal simulations and the VME method. The verification results demonstrate the high accuracy

and efficiency of the ROVME method for coupled thermo-mechanical problems. We make the

following observations and conclusions: (1) the ROVME approach provides one order of mag-

nitude efficiency compared to direct finite element method with reasonable loss of accuracy,

and the efficiency gains are expected to be even higher for larger simulations; (2) the approx-

imation to capture the temperature variation of the coefficient tensors allows the proposed

approach to retain the efficiency in the presence of spatio-temporal thermal fluctuations.
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A Appendix

This appendix provides the implementation of the VME method within an arbitrary enrich-

ment domain, Ωα. The starting point is the rate form of the constitutive equation which is

obtained by taking the time derivative of the constitutive equation:

σ̇ = L(T ) :

[
ε̇M (uM ) +

nen∑
α=1

H(Ωα) ε̇mα (umα )− ε̇vp(σ,uM ,um)−αT Ṫ

]

+

(
∂L(T )

∂T
Ṫ

)
:

[
εM (uM ) +

nen∑
α=1

H(Ωα) εmα (umα )− εvp(σ,uM ,um)−αT (T − T0)

]

= L(T ) :

[
ε̇M (uM ) +

nen∑
α=1

H(Ωα) ε̇mα (umα )− ε̇vp(σ,uM ,um)−αT Ṫ

]

+ Ṫ
∂L(T )

∂T
: L(T )−1 : σ

(68)

Perform the discretization of the viscoplastic slip evolution using a one-parameter family (θ-

rule):

ε̇vp(x, T, t) = (1− θ)ε̇vp(x, nt) + θε̇vp(x, n+1t); t ∈ [nt, n+1t] (69)

Substituting Eq. (69) into Eq. (68), the time discretization of the constitutive equation in rate

form yields:

R(σ,uM ,um) ≡n+1σ − nσ − n+1L : ∆εM −
nen∑
α=1

H(Ωα)n+1L : ∆εmα

+ (1− θ)∆t n+1L : nε̇
vp + θ∆t n+1L : n+1ε̇

vp + n+1L : αT (n+1T − T0)

− n+1

(
∂L

∂T

)
: n+1L

−1 : n+1σ (n+1T − nT ) = 0

(70)

where, ∆εM = n+1(∇uM )−n(∇uM ) and ∆εmα = n+1(∇umα )−n(∇umα ). The temperature field

(n+1T ) and tensor of elastic moduli (n+1L = L(n+1T )) are known at the current time step

(n+1t). The time derivative of the elastic tensor of moduli (∂L/∂T ) is evaluated numerically.

In the rest of the current section, the subscript n+ 1 of the fields at the current configuration

is omitted for clarity of presentation. Approximate Eq. (70) using a first order Taylor series

expansion for a Newton iteration yields the residual of the stress-strain equation:

Rk+1 ≈ Rk + (I + θ ∆t L : Ck −D) : δσ + θ ∆t L : Gk : δεvp − L : ∇(δuM )

−
nen∑
α=1

H(Ωα)L : ∇(δumα ) = 0
(71)
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where, the operators Ck, Gk and D are defined as:

Ck =

(
∂ε̇vp

∂σ

)k
; Gk =

(
∂ε̇vp

∂εvp

)k
; D =

(
∂L

∂T

)
: L−1 (T − nT ) (72)

The detailed formulation of Ck and Gk can be found in Ref. [56]. Taylor series approximation

does not include the derivative respect to the temperature field, since it is taken as a known

variable for the mechanical problem. The residual of the kinematic equation (Eq. (69)) is

defined as:

P ≡ n+1ε
vp − nε

vp −∆t (1− θ) nε̇
vp −∆t θ n+1ε̇

vp = 0 (73)

Performing linearization of Eq. (73), the viscoplastic strain increment is expressed in terms of

the stress increment as:

δεvp = (I− θ ∆t Gk)−1 : (θ ∆t Ck) : δσ − (I− θ ∆t Gk)−1 : Pk (74)

Substituting Eq. (74) into Eq. (71), the viscoplastic strain is condensed out to represent the

stress increment at the current Newton iteration as:

δσ(δuM , δumα ) = L̂k : ∇(δuM ) +

nen∑
α=1

H(Ωα) L̂k : ∇(δumα )−Qk : (Rk − Zk) (75)

where,

L̂k = (L−1 + θ ∆t Ck − L−1 : D + L−1 : Hk)−1 (76)

Qk = (I + θ ∆t L : Ck −D + Hk)−1 (77)

Hk = (θ∆t)2 L : Gk : (I− θ ∆t Gk)−1 : Ck (78)

Zk = θ ∆t L : Gk : (I− θ ∆t Gk)−1 : Pk (79)

Substituting Eq. (75) into the linearized weak form equilibrium equations for the macroscale

and microscale problems, a coupled two-scale system of equations is obtained and solved

through finite element discretization. The structural responses are determined incrementally

using Newton-Raphson iterative scheme. At each iteration, the two scales are evaluated se-

quentially by taking the known solution of the other scale. Detailed formulation and imple-

mentation can be found in Ref. [56]. They are skipped in the current manuscript for brevity.
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