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Abstract

In this manuscript, accelerated, sparse and scalable eigenstrain-based reduced order ho-

mogenization models have been developed for computationally efficient multiscale analysis of

polycrystalline materials. The proposed model is based on the eigenstrain-based reduced order

homogenization (EHM) approach, and provides significant efficiency in analysis of structures

composed of complex polycrystalline microstructures. The acceleration is achieved by intro-

ducing sparsity into the linearized reduced order system through selectively considering the

interactions between grains based on the idea of grain clustering. The proposed approach

results in a hierarchy of reduced models that recovers eigenstrain-based homogenization, when

full range of interactions are considered, and degrades to the Taylor model, when all inter-

grain interactions are neglected. The resulting sparse system is solved efficiently using both

direct and iterative sparse solvers, both of which show significant efficiency improvements

compared to the full EHM. A layer-by-layer neighbor grain clustering scheme is proposed and

implemented to define ranges of grain interactions. Performance of the proposed approach is

evaluated by comparing the results against the full EHM and crystal plasticity finite element

(CPFE) simulations.

Keywords: Sparse; Scalable; Reduced order model; Grain cluster; Multiscale model; Polycrys-

tal plasticity.

1 Introduction

We are concerned with the development of a concurrent multiscaling strategy for polycrys-

talline materials that couples the mechanical behavior at the scale of grains to that of the
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overall structure or a structural component. This development is particularly critical in the

prediction of localized phenomena (e.g., damage initiation in a structural component), which

are affected by the local microstructure morphology. It also poses significant challenges in

two respects. The first challenge is the tremendous memory and computational costs asso-

ciated with the evaluation of complex polycrystalline morphologies, especially in the context

of a multiscale analysis. The second challenge is the development of constitutive models that

accurately capture the relevant physical phenomena that lead to damage initiation within the

material microstructures. This manuscript addresses the former challenge.

Crystal plasticity finite element (CPFE) method directly resolves all microstructural het-

erogeneities using finite element discretization, and employs the crystal plasticity theory-based

evolution equations to describe the microstructural behavior. CPFE fully considers all inter-

actions between the grains, ensure compatibility and equilibrium, and hence captures the

local response accurately provided that the evolution equations accurately capture the un-

derling physical mechanisms. CPFE is a very powerful and versatile tool that has been em-

ployed to solve crystal plasticity problems under various loading conditions across different

deformation mechanisms (for a comprehensive review, see Ref. [45]). However, high compu-

tational cost of CPFE simulations on a polycrystalline representative volume element (RVE)

makes its use in concurrent multiscale modeling frameworks (e.g., computational homogeniza-

tion [49, 36, 17, 26]) for structural scale analysis impractical, even on today’s high performance

hardware. Reduced order representation of the microstructural behavior is therefore essential

for structural scale analysis that takes into account the grain level behavior.

Sachs [47] and Taylor [51] models can be viewed as among the earliest attempts of poly-

crystal plasticity homogenization. Both models disregard grain shapes and interactions, and

further assume either iso-stress or iso-strain condition for the grains, which violate compatibil-

ity or equilibrium, respectively. In the context of Taylor model, the spectral crystal plasticity

method developed by Knezevic et al. [24] constructs spectral representation of the crystal

plasticity constitutive relationship a priori, and retrieves local spectral interpolation using the

fast Fourier transformation (FFT) during any specific simulation later on. This approach has

been recently embedded into finite element framework and implemented on high performance

computer hardware [37, 23].

The grain cluster method [19, 20, 53] relaxes the excessive constraints imposed by the Tay-

lor model by applying the macroscale deformation gradient onto a cluster of grains, thereby

accounting for interactions between neighboring grains. The grain cluster approach typically

restricts grain morphologies to regular geometries, and the elimination of this restriction is an

ongoing research topic [55]. Viscoplastic self-consistent (VPSC) formulation [3, 29] approx-

imates each grain as an ellipsoidal inclusion embedded in a homogeneous equivalent media

representing the homogenized behavior of the polycrystal. Among significant extensions of the

VPSC model are the inclusion of finite strain elasto–viscoplastic effects [54], embedding into fi-

nite element framework [48, 25], and extensions to better account for grain interactions [28, 50].

Despite significant progress, the ellipsoidal representation of the grain morphologies limits ac-
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curacy of grain interactions.

The FFT method pioneered by Suquet and coworkers [38, 35] applied to the crystal plas-

ticity problem [27, 30, 16] solves the system using the FFT on regular grids that are often

obtained from the voxelized microstructure images. FFT considers full grain interactions and

provides high efficiency compared with CPFE. Michel and Suquet extended their non-uniform

transformation method [33, 34] into the modeling of polycrystalline materials and reported

two orders of magnitude speedup compared with full field simulation using FFT [32]. While

the FFT method has seen significant success, employing less restrictive boundary conditions

and loss of accuracy due to the use of regular grids remain open questions.

More recently, the eigendeformation-based reduced order homogenization (EHM) [39] has

been extended to polycrystal plasticity [60]. EHM is based on the transformation field the-

ory [14, 15] and operates in the context of computational homogenization. EHM pre-computes

certain microstructure information (i.e., concentration tensors, interaction tensors) and ap-

proximates the microscale problem using a much smaller basis by prescribing spatial variation

of inelastic response fields over the microstructure. A significant benefit of the EHM approach

is that it numerically approximates the influence functions using actual grain morphologies.

Depending on order reduction strategy used, EHM can provide either sub-grain level or grain-

level resolution [60]. While the EHM approach has been shown to provide two orders of

magnitude computational efficiency compared to CPFE simulations, we demonstrate in this

manuscript that the efficiency characteristics of EHM degrades as larger microstructures are

considered.

The application of eigenstrain concepts to heterogeneous materials that exhibit path- and

history-dependent response dates back to Dvorak and coworkers, who studied failure in fiber

reinforced composites using the transformation field analysis ([14, 15]). Oskay and coworkers

employed the EHM approach to investigate the nonlinear response of heterogeneous materi-

als [39, 56, 12, 22, 8, 61, 59] including polycrystalline plasticity, viscoplasticity and damage

mechanics under a range of loading and environmental conditions. Suquet and coworkers em-

ployed non-uniform transformation field analysis to study similar problems using path- and

history-dependent material models to describe the behavior of composite constituents and

polycrystal plasticity [33, 34, 32].

This manuscript presents accelerated, sparse and scalable eigenstrain-based reduced or-

der homogenization models for computationally efficient multiscale analysis of polycrystalline

materials. The proposed models are based on the EHM approach, and provide significant

efficiency in analysis of structures composed of complex polycrystalline microstructures. The

grain-cluster concept is used to identify a neighborhood for each grain, within which the in-

teractions (i.e., short-range interactions) are considered, whereas the interactions with grains

outside the neighborhood (i.e., long-range interactions) are neglected. Computationally, this

strategy introduces sparsity into the linearized reduced order system, facilitating the use of

sparse solvers. This manuscript presents the following novel contributions: (1) A sparse EHM

approach has been formulated and a new set of concentration tensors and interaction tensors
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are derived by only considering interactions between each grain and a cluster of predefined

neighboring grains, and enforcing the constraints derived from transformation field analysis;

(2) A consistent grain-clustering scheme is proposed to identify the grain cluster for each grain.

We provide a thorough assessment of the performance of the sparse EHM formulation for a

range of microstructure sizes using direct and iterative sparse solvers.

The remainder of this manuscript is organized as follows: Section 2 provides a brief overview

of the formulation of eigenstrain-based reduced order homogenization for polycrystal plastic-

ity, and the assessment of its computational efficiency compared with CPFE as a function

of microstructure size. The sparse EHM system is formulated in Section 3 by considering

interactions between each grain and a cluster of selected grains. In Section 4, a consistent

grain-clustering scheme for identifying neighboring grain-clusters is proposed. Appropriate

linear solvers are identified and implemented for maximum computational efficiency. Section

5 evaluates the performance of the sparse EHM by comparing the results with the full EHM

and CPFE. Conclusions and future work are discussed in Section 6.

2 EHM for polycrystal plasticity

This section summarizes the reduced multiscale system that results from the eigenstrain-

based polycrystal plasticity modeling approach recently proposed by the authors [60]. A brief

overview is provided herein, since the proposed formulation builds on the EHM approach. The

reduced order model starts from a two-scale analysis of the governing equation, which results

in the classical form of coupled nonlinear microscale equation (defined over the representative

volume) and the homogenized macroscale problem (defined over the structural domain).

Consider a macroscopic body Ω, with a locally periodic polycrystalline microstructure

domain Θ in a two-scale problem setting as shown in Fig. 1. The ratio (ζ) between the

characteristic lengths of the macrostructure, parameterized by x, and the microstructure,

parameterized by y, is assumed to be small (i.e., 0 < ζ � 1). The current formulation considers

small deformation assumption at the microscale, where microstructure undergoes inelastic

deformations due to dislocation slip without texture evolution. The governing equation of the

macroscale boundary value problem associated with the heterogeneous body is obtained as

([39, 60]):

∇σ̄σσ(x, t) + b̄(x, t) = 0 x ∈ Ω (1)

in which, σ̄σσ is the macroscopic Cauchy stress tensor, b̄ the body force, and ∇ denotes the

gradient operator. The boundary conditions are given as:

ū(x, t) = ū0 x ∈ Γu (2)

n · σ̄σσ(x, t) = t̄0 x ∈ Γt (3)

in which, ū denotes the macroscopic displacement field, ū0 and t̄0 are the prescribed displace-
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Figure 1: Macroscale and microscale structure in a two-scale problem setting.

ment and traction on the boundaries Γu and Γt, where Γu ∪ Γt = ∂Ω and Γu ∩ Γt = ∅. n is

the unit normal to Γt. Macroscale strain tensor, ε̄εε(x, t) is expressed in terms of macroscale

displacement based on small deformation assumption:

ε̄εε = ∇sū(x, t) (4)

where ∇s is the symmetric gradient operator.

Equations (1)-(4) define the macroscale problem, whereas the eigenstrain-based reduced

order homogenization model is used to approximate the microscale problem. Model order

reduction is achieved by first expressing the microscale component of the displacement field

in terms of “influence functions”, which define its variation over the microstructure. The

influence functions are numerical Green’s functions computed by solving linear-elastic prob-

lems defined over the RVE. The influence functions are computed prior to macroscale analysis

since they depend only on elastic properties of the constituents and the microstructure ge-

ometry. The inelastic strain fields within a microstructure (or eigenstrains in the context of

transformation field theory [14, 15]) are approximated by a coarse discretization. Similar to

finite elements, the discretization (i.e., each coefficient) is associated with a subdomain (part)

of the microstructure domain. Employing the microscale displacement discretization and the

eigenstrain approximation, the microscale governing equations are converted to an algebraic

system, which is solved for the small set of eigenstrain coefficients. The constitutive equation

at the microscale is expressed as:

M
(β)
ijklσ̇

(β)
kl (x, t)−

n∑

α=1

[
P

(βα)
ijkl − δ

(αβ)Iijkl
]
µ̇

(α)
kl (x, t) = A

(β)
ijkl

˙̄εkl(x, t) (5)

where, σ(β) denotes Cauchy stress of part β, µ(α) the inelastic strain in part α, ḟ indicates

time derivative of f (i.e., ḟ = df
dt ), δ is the Kronecker delta function, I the fourth order

identity tensor (i.e., Iijkl = (δikδjl + δilδjk)/2). M(β) is the compliance tensor, P(βα) and A(β)
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the interaction and concentration tensors calculated from the elastic and inelastic influence

functions (see the Appendix for more details). Macroscale stress is then computed as the

volume average of the part-average stress coefficients:

σ̄ij =
n∑

β=1

|Θ(β)|
|Θ|

σ
(β)
ij (6)

in which, |Θ(β)| denotes the volume of part β and |Θ| is the volume of the microstructure.

Due to the static texture and dislocation slip being the sole source of plastic deformation,

inelastic strain in part α, µ(α), results from dislocation slip over all slip systems:

µ̇
(α)
ij (x, t) =

N∑

s=1

γ̇s(α)(x, t)Z
s(α)
ij (7)

in which, Zs(α) is the Schmid tensor of slip system s in part α, uniquely describing the orienta-

tion of the sth slip system as the dyadic product of the slip direction, ns(α), and the normal to

the slip plane ms(α), (i.e., Z
s(α)
ij = n

s(α)
i m

s(α)
j ). EHM admits arbitrary form for the flow rule

describing the shear strain rate γ̇s(α) as well as the hardening rules defined over part-averaged

quantities. A flow rule frequently used for face-centered cubic (FCC) crystals is employed in

this study ([44, 41]):

γ̇s(α)(x, t) = γ̇0

(∣∣τ s(α)(x, t)
∣∣

gs(α)(x, t)

)1/m

sgn
(
τ s(α)(x, t)

)
(8)

where, γ̇0 is the reference shear strain rate, m the rate sensitivity parameter and τ s(α) resolved

shear stress on slip system of part α (i.e., τ s(α)(x, t) = σ(α)(x, t) : Zs(α)). The strength of each

slip system is taken to evolve based on the following hardening rule [6]:

ġs(α) = h0

(
g
s(α)
sa − gs(α)

g
s(α)
sa − gs(α)

0

)
N∑

s=1

|γ̇s(α)| (9)

where h0 is the initial hardening rate, g
s(α)
0 the initial strength of the sth slip system, and

g
s(α)
sa the saturation shear stress. All parameters describing the hardening are taken to be

orientation independent (i.e., same for all slip systems).

Equations (5)-(9) define the reduced order microscale problem. While each part in EHM

can be chosen as a whole grain or subdomain of a grain to provide different local response

resolution, we use the one-part-per-grain scheme in the current work (each grain is considered

a part, and n is equal to number of grains in the microstructure). The full EHM formulation

recovers the representative volume problem in the classical computational homogenization

approach, where each element of the RVE mesh is considered a part (i.e., n equals the number

of elements). The convergence of the EHM approach with increasing model order, n has been
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characterized in Ref. [39, 57]. Zhang and Oskay [60] demonstrated the capability of EHM in

better capturing the local stress distributions within the polycrystalline microstructure as n

increases (i.e., when a grain is subdivided into multiple parts).

2.1 EHM Computational Implementation Overview

The reduced order microscale system defined by Eqs. (5)-(9) has been implemented as a

User supplied MATerial (UMAT) subroutine within the finite element solver Abaqus and is

called to update the stress increment and tangent moduli at each time increment of each inte-

gration point of the macroscale discretization. The constitutive equation (Eq. (5)), along with

the evolution equations for slip and hardening constitutes a nonlinear system, evaluated using

the Newton-Raphson (N-R) method. Evaluating the system with the part-average stresses,

σσσ(α) as unknowns, the system Jacobian is expressed as:

J =




∂φ(1)

∂σ(1)
∂φ(1)

∂σ(2) . . . ∂φ(1)

∂σ(ᾱ) . . . ∂φ(1)

∂σ(β̄) . . . ∂φ(1)

∂σ(n)

∂φ(2)

∂σ(1)
∂φ(2)

∂σ(2) . . . ∂φ(2)

∂σ(ᾱ) . . . ∂φ(2)

∂σ(β̄) . . . ∂φ(2)

∂σ(n)

...
...

. . .
...

. . .
...

. . .
...

∂φ(ᾱ)

∂σ(1)
∂φ(ᾱ)

∂σ(2) . . . ∂φ(ᾱ)

∂σ(ᾱ) . . . ∂φ(ᾱ)

∂σ(β̄) . . . ∂φ(ᾱ)

∂σ(n)

...
...

. . .
...

. . .
...

. . .
...

∂φ(β̄)

∂σ(1)
∂φ(β̄)

∂σ(2) . . . ∂φ(β̄)

∂σ(ᾱ) . . . ∂φ(β̄)

∂σ(β̄) . . . ∂φ(β̄)

∂σ(n)

...
...

. . .
...

. . .
...

. . .
...

∂φ(n)

∂σ(1)
∂φ(n)

∂σ(2) . . . ∂φ(n)

∂σ(ᾱ) . . . ∂φ(n)

∂σ(β̄) . . . ∂φ(n)

∂σ(n)




(10)

where each component is a 6× 6 block expressed as:

(
∂φ(β)

∂σ(α)

)

IK

=
(
δ(αβ)IIJ − P (βα)

IJ

) N∑

s=1

Ωs(α)Z
s(α)
J Z

s(α)
K + δ(αβ)M

(β)
IK

∆t
(11)

in which,

Ωs(α) =
γ̇0

m

1

gs(α)

( |τ s(α)|
gs(α)

) 1−m
m

(12)

Voigt notation has been employed to condense the indices (i.e., ij → K with 11→ 1, 22→ 2,

33→ 3, 23→ 4, 13→ 5, 12→ 6).

The tangent moduli is expressed as:

∂σ̄I
∂ε̄J

=

N∑

α=1

C(α)∂σ
(α)
I

∂ε̄J
(13)

in which, C(α) is the volume fraction of part α and each component
∂σ

(α)
I

∂ε̄J
is the solution of
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the linear system:

n∑

α=1

[(
δ(αβ)IIJ − P (βα)

IJ

)
ϕ

(α)
JL + δ(αβ)M

(β)
IL

∆t

]∂σ(α)
L

∂ε̄K
=
A

(β)
IK

∆t
(14)

where,

ϕ
(α)
JL =

N∑

s=1

γ̇0

m

1

gs(α)

(∣∣τ s(α)
∣∣

gs(α)

) 1−m
m

Z
s(α)
J Z

s(α)
L (15)

The linearized system in Eq. (14) has six right-hand side vectors, while the resulting matrix

on the left-hand side is similar to that in Eq. (10), with the only difference that the former is

evaluated using the converged stress and slip resistance while the latter is evaluated using the

value at each iteration.

2.2 Analysis of EHM scalability

Most of the computational cost of solving the reduced order microscale problem comes

from constructing and solving the linearized EHM system in each N-R iteration, as well as

calculating the tangent moduli by solving the linear system in Eq. (14). The computational

cost is therefore determined by the size of the linear system (i.e., 6n). In what follows, we

study the efficiency of EHM compared with CPFE as a function of RVE size (or alternatively

the order of the EHM model as model order is tied to the number of grains in this study).

In general, the number of grains in an RVE is often on the order of a few hundred depending

on the complexity of the constitutive behavior and the microstructure morphology [40, 10, 52, 5,

61]. The EHM efficiency for RVE sizes within this range is evaluated using uniaxial tension test

as shown in Fig. 2(a). The macroscale mesh consists of a single hexahedron with reduced order

integration regularized with hourglass stiffness. The reference CPFE analysis is performed over

the fully resolved microstructure discretized with trilinear four-noded tetrahedron elements. A

direct solver is used for all reference simulations. Displacement controlled loading with a total

applied strain of 5% at a strain rate of 0.05/s is applied to all simulations with the initial time

step size 1.0×10−6 s and maximum allowable step size of 0.01 s. The investigation is conducted

on a series of increasing size RVEs constructed from the same microstructure morphology and

discretized using the same mesh size as shown in Fig. 2(b)-(h). All simulations were conducted

on the same computer (Intel I7 3.0 GHz processor, 16G RAM) without parallelization and all

finished in 122 increments.

Information on the number of elements (i.e., nelement) and nodes (i.e., nnode) in each mi-

crostructure as well as the simulation times (i.e., TCPFE and TEHM) are listed in Table 1. Since

all microstructures are constructed using the same microstructural statistics and meshed with

the same element size, number of degrees of freedom (DOF) increases linearly with the total

number of grains in the microstructure. For the EHMs, the DOF associated with the linearized

system is 6n. Since each grain constitutes a part, there is a linear relationship between total
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˙ = 0.05/s
(a) (d)(c)(b)

(e) (h)(g)(f)
Figure 2: Schematic demonstration of (a) the boundary conditions, and (b-h) finite element mesh of
RVEs used in the simulation with n = 85, 154, 242, 347, 487, 629, 938.

Table 1: EHM efficiency compared with direct CPFE.

n nelement nnode TCPFE(s) TEHM(s) RDOF RTime

85 29, 369 5,627 2128.66 19.05 33.11 111.74

154 53, 149 9,983 4,034.03 74.85 32.41 53.89

242 84, 642 15,583 7,052.75 265.08 32.20 26.61

347 128, 716 23,339 10,371.25 662.12 33.63 15.66

487 176, 415 31,777 13,998.82 1,671.50 32.63 8.38

629 238, 216 42,651 19,435.03 3,434.18 33.90 5.66

938 337, 818 60,122 29,451.22 11,240.56 32.05 2.62

number of DOF and number of grains for the EHMs as well. Using the current microstructure

statistics and mesh size, each grain is discretized into approximately 350 trilinear tetrahe-

dron elements. The ratio of the number of DOF between CPFE and EHM (i.e., RDOF) is

approximately 33 for all microstructures.

The simulation times of CPFE and EHM using different microstructures are compared

in Table 1 and Fig. 3. While the simulation time of CPFE increases roughly linearly with

number of grains (since calculations on integration points dominate cost compared with solving

the global system in the context of nonlinear FE analysis), simulation time of EHM scales

approximately with n3. Consequently, the efficiency of EHM compared with CPFE (i.e.,

speedup of EHM compared to CPFE, defined by the ratio between simulation time of CPFE

and EHM, RTime, in Table 1) reduces as a function of microstructure size (Fig. 4(a)). Clearly,
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maintaining high efficiency of reduced order models within this range of RVE sizes is critical

and motivates the accelerated reduced order model formulation discussed below.

(a) (b)
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Figure 3: Simulation time as a function of microstructure size using (a) CPFE; and (b) EHM models.
The ratio of DOF between CPFE and EHM simulations is approximately constant as a function of
RVE size (see Table 1).

The primary cause for the efficiency degradation with increasing number of grains is the

structure of the linear system in N-R iterations when solving the reduced order system and

calculating the tangent stiffness. It is straightforward to see that the above linear system

(Eq. (10)) is dense and unsymmetric, with a dimension of 6n. The number of floating-point

operations (FLOPs) of solving a dense unsymmetric linear system of dimension 6n using a

direct solver (e.g., LAPACK LU decomposition routines) is 0.67(6n)3 = 144.72n3 [7]. This

explains the cubic increase in simulation time for the EHM.

Remark 1. We also investigate the effect of using an iterative solver in the evaluation of the

EHM model. Iterative solvers are preferred for large systems, where memory resources are

not sufficient for a direct solver, while direct solvers are advantageous in small and moderate

sized problems. Direct solvers are also advantageous for problems with multiple right-hand side

vectors since numerical factorization (major computational cost) needs to be conducted only

once. In contrast, iterative solvers evaluate each right-hand side as a separate problem and the

cost is proportional to the number of right-hand sides. Flexible General Minimum Residual

method (FGMRES) [46] implemented in Intel MKL library [2] is employed in this study. The

reported results are with Gauss-Seidel pre-conditioning since it provides the highest efficiency

among common preconditions (Jacobi, successive over relaxation, symmetric successive over

relaxation and incomplete LU decomposition-based pre-conditioning) in the current study.
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Figure 4: Efficiency of EHM compared with CPFE as a function of RVE size using: (a) direct solver;
and (b) iterative solver to evaluate the reduced order system.

Table 2: Simulation time of EHM using FGMRES.

n 85 154 242 347 487 629 938

Time (s) 207.59 792.27 2,255.92 3, 992.20 7, 686.17 12, 566.87 27, 820.14

Simulation time of EHM using FGMRES as linear solver is listed in Table 2 and the

efficiency of EHM using FGMRES compared with CPFE is plotted in Fig. 4(b). EHM using

iterative solver is less efficient than direct solver in the current example, but shows similar

EHM efficiency degradation as a function of RVE size.

3 Sparse EHM models.

We seek to develop reduced order models that increase efficiency compared with the full

EHM, and have better scalability. This is achieved by introducing sparsity into the Jacobian

matrix of the linearized EHM system. The off-diagonal components that account for the

interaction between two arbitrary grains ᾱ and β̄ (β̄ 6= ᾱ) takes the form:

(
∂φ(β̄)

∂σ(ᾱ)

)

IK

= −P (β̄ᾱ)
IJ

N∑

s=1

Ωs(ᾱ)Z
s(ᾱ)
J Z

s(ᾱ)
K ; β̄ 6= ᾱ (16)

The interaction term vanishes if P(β̄ᾱ) = 0 is set to zero (similarly ∂φφφ(ᾱ)

∂σσσ(β̄) = 0 if P(ᾱβ̄) = 0). By

neglecting the grain-to-grain interaction, two 6×6 zero blocks are introduced into the Jacobian

matrix (Eq. (10)). A structurally symmetric sparse linear system (zero-valued components

distributed symmetrically across the diagonal) is obtained through neglected interactions for a
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group of selected grain pairs. The sparsity of the resulting system is naturally determined by

the extent of neglected interactions. The consequence of partial consideration of grain-to-grain

interactions are provided in the next section.

Neglecting all grain interactions (i.e., P(αβ) = 0 for α = 1, 2, ..., n,, β = 1, 2, ...., n, α 6= β)

results in a diagonal structure, providing the maximum possible computational efficiency. The

resulting EHM system has n 6× 6 (in 3-D) independent systems, which can be evaluated with

0.67 × (6)3 × n = 144.72n FLOPs. The accuracy and efficiency characteristics of this model

are similar to the Taylor model. Neglecting p pairs of grain-to-grain interactions results in a

sparse system with the sparsity S = 2p/n2.

The goal is to obtain EHM models that exhibit the highest possible sparsity without signifi-

cantly compromising on the computational accuracy compared to the full EHM model. To this

end, we next establish (1) the mathematical and physical consequences of eliminating certain

grain-to-grain interactions; (2) the numerical procedures to determine the interactions to keep

in the resulting sparse system; and (3) the numerical methodology for efficient evaluation of

the sparse EHM models.

3.1 Coefficient tensors considering partial interactions

In the context of uniform transformation field analysis, Dvorak and Benveniste [14, 15]

derived the following properties for the coefficient tensors:

Kinematic consistency :
n∑

α=1

P(βα) = I−A(β) (17)

Simultaneous iso-stress/strain condition :
n∑

α=1

P(βα)M(α) = 0 (18)

Elastic reciprocity : c(β)P(βα)M(α) = c(α)M(β)P(αβ),T (19)

Strain compatibility :
n∑

α=1

c(α)P(αβ) = 0 (20)

where, the strain compatibility comes from the requirement that the average of strains in each

part is equal to the macroscale strain; the elasticity reciprocity is derived from the elastic

reciprocal theorem; and simultaneous iso-stress/strain condition and kinematic consistency

are obtained considering a special case where the whole domain is subjected to uniform strain
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and stress. In addition, the concentration tensors A(α) satisfy the Hill relation [18]:

n∑

α=1

c(α)A(α) = I (21)

The new set of coefficient tensors is derived from the coefficient tensors of the full EHM by

selectively considering grain-to-grain interactions (setting the transmitted interaction tensors

to be zero between grains where interaction are neglected) while adopting the concept of mass

lumping in finite element analysis to lump the neglected transmitted interaction tensors onto

the self-induced terms (i.e., contributions from the off-diagonal components in Eq. (10) are

lumped to the diagonal terms) and enforcing some of the constraints in Eqs. (17)-(21). By this

approach, two models that either enforce the kinematic consistency and strain compatibility,

or kinematic consistency and simultaneous iso-stress/strain condition are formulated. In what

follows, these models are referred to as strain compatibility constrained sparse EHM (ε-EHM)

and iso-stress/strain constrained sparse EHM (σ-EHM), respectively.

Below, the lumping procedures to obtain the ε-EHM and σ-EHM by eliminating the inter-

action between a single pair of reduced model grains (ᾱ and β̄) are provided. These procedures

are performed for all reduced model grain pairs, whose interactions are to be neglected.

3.1.1 Strain compatibility constrained sparse EHM (ε-EHM)

Consider a pair of grains ᾱ and β̄, between which the interaction is to be neglected. Let

P′(ᾱβ̄) denote the new sparse set of interaction tensors, which are set to zero:

P′(ᾱβ̄) = 0, P′(β̄ᾱ) = 0 (22)

The compliance tensors remain identical to those in the full EHM:

M′(α) = M(α), α = 1, 2, ..., n (23)

To enforce the strain compatibility (Eq. (20)), the effect of the neglected transmitted in-

teraction tensors are lumped to the self-induced ones:

P′(αβ) =





0 {α, β} = {ᾱ, β̄} or {α, β} = {β̄, ᾱ}

P(ᾱᾱ) + c(β̄)

c(ᾱ) P
(β̄ᾱ) {α, β} = {ᾱ, ᾱ}

P(β̄β̄) + c(ᾱ)

c(β̄) P
(ᾱβ̄) {α, β} = {β̄, β̄}

P(αβ) otherwise

(24)
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Substituting Eq. (24) into Eq. (17), the new concentration tensors are obtained as:

A′(α) =





A(α) α 6∈ {ᾱ, β̄}

A(ᾱ) + P(ᾱβ̄) − c(β̄)

c(ᾱ) P
(β̄ᾱ) α = ᾱ

A(β̄) + P(β̄ᾱ) − c(ᾱ)

c(β̄) P
(ᾱβ̄) α = β̄

(25)

and it is trivial to verify that Eq. (21) holds for the new concentration tensors:

n∑

α=1

c(α)A′(α) =

n∑

α=1

c(α)A(α) = I (26)

We next investigate the impact of the above lumping procedure on the elastic reciprocity

and the simultaneous iso-stress/strain condition of the resulting system. Substituting the new

coefficient tensors (Eqs. (23) and (24)) into the elastic reciprocity (Eq. (19)), we obtain:

c(β)P′(βα)M′(α) = c(β)P(βα)M(α) = c(α)M(β)P(αβ),T = c(α)M′(β)P′(αβ),T ;

α /∈ {ᾱ, β̄} and β /∈ {ᾱ, β̄}
(27)

c(β̄)P′(β̄ᾱ)M′(ᾱ) = 0 = c(ᾱ)M′(β̄)P′(ᾱβ̄),T ; {α, β} = {ᾱ, β̄} (28)

However, in the case of {α, β} = {ᾱ, ᾱ} or {α, β} = {β̄, β̄}, the reciprocity condition implies:

c(ᾱ)P′(ᾱᾱ)M′(ᾱ) = c(ᾱ)M′(ᾱ)P′(ᾱᾱ),T (29)

c(β̄)P′(β̄β̄)M′(β̄) = c(β̄)M′(β̄)P′(β̄β̄),T (30)

Substituting Eq. (24) and the elastic reciprocity into Eqs. (29) and (30) yields:

P(β̄ᾱ)M(ᾱ) −M(ᾱ)P(β̄ᾱ),T = 0

P(ᾱβ̄)M(β̄) −M(β̄)P(ᾱβ̄),T = 0
(31)

which are not guaranteed.

Substituting the new coefficient tensors (Eqs. (23) and (24)) into the simultaneous iso-

stress/strain condition, yields:

n∑

α=1

P′(βα)M′(α) =

n∑

α=1

P(βα)M(α) = 0; β 6∈ {ᾱ, β̄} (32)

n∑

α=1

P′(ᾱα)M(α) =
1

c(ᾱ)

(
c(β̄)P(β̄ᾱ)M(ᾱ) − c(ᾱ)P(ᾱβ̄)M(β̄)

)
(33)

n∑

α=1

P′(β̄α)M(α) =
1

c(β̄)

(
c(ᾱ)P(ᾱβ̄)M(β̄) − c(β̄)P(β̄ᾱ)M(ᾱ)

)
(34)
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Substituting the elastic reciprocity into Eqs. (33) and (34), again leads to Eq. (31). Therefore

ε−EHM fully satisfies the constraints in Eqs. (17) and (20), whereas the constraints in Eqs. (18)

and (19) are partially satisfied.

3.1.2 Simultaneous iso-stress/strain constrained sparse EHM (σ-EHM)

In addition to the strain compatibility constrained sparse EHM, we propose an alternative

formulation, where the kinematic consistency and simultaneous iso-stress/strain condition are

satisfied (denoted as σ-EHM). In σ-EHM, Eqs. (17) and (18) are retained.

The interaction tensors (after neglecting the interaction between grain ᾱ and β̄) are chosen

such that the kinetic consistency in Eq. (18) is satisfied as:

P′(αβ) =





0 {α, β} = {ᾱ, β̄} or {α, β} = {β̄, ᾱ}

P(ᾱᾱ) + c(β̄)

c(ᾱ) M
(ᾱ)P(β̄ᾱ),TM(ᾱ),−1 {α, β} = {ᾱ, ᾱ}

P(β̄β̄) + c(ᾱ)

c(β̄) M
(β̄)P(ᾱβ̄),TM(β̄),−1 {α, β} = {β̄, β̄}

P(αβ) otherwise

(35)

Substituting Eq. (35) into Eq. (17), the new concentration tensors are calculated as:

A′(α) =





A(α) α 6∈ {ᾱ, β̄}

A(ᾱ) + P(ᾱβ̄) − c(β̄)

c(ᾱ) M
(ᾱ)P(β̄ᾱ)M(ᾱ),−1 α = ᾱ

A(β̄) + P(β̄ᾱ) − c(ᾱ)

c(β̄) M
(β̄)P(ᾱβ̄)M(β̄),−1 α = β̄

(36)

We next investigate the impact of the above lumping procedure on the elastic reciprocity

and strain compatibility of the resulting system. Substituting Eqs. (35) and (36) into Eq. (19)

yields:

c(β)P′(βα)M(α) − c(α)M(β)P′(αβ),T = c(β)P(βα)M(α) − c(α)M(β)P(αβ),T = 0; β 6∈ {ᾱ, β̄} (37)

c(β̄)P′(β̄β̄)M(β̄) − c(β̄)M(β̄)P′(β̄β̄),T = c(β̄)(P(β̄β̄)M(β̄) −M(β̄)P(β̄β̄),T )+

c(ᾱ)
(
M(β̄)P(ᾱβ̄),T −P(ᾱβ̄)M(β̄)

) (38)

c(ᾱ)P′(ᾱᾱ)M(ᾱ) − c(ᾱ)M(ᾱ)P′(ᾱᾱ),T = c(ᾱ)(P(ᾱᾱ)M(ᾱ) −M(ᾱ)P(ᾱᾱ),T )+

c(β̄)
(
M(ᾱ)P(β̄ᾱ),T −P(β̄ᾱ)M(ᾱ)

) (39)

Utilizing the elastic reciprocity, the above equations are written as:

c(β̄)P′(β̄β̄)M(β̄) − c(β̄)M(β̄)P′(β̄β̄),T = c(ᾱ)
(
M(β̄)P(ᾱβ̄),T −P(ᾱβ̄)M(β̄)

)

c(ᾱ)P′(ᾱᾱ)M(ᾱ) − c(ᾱ)M(ᾱ)P′(ᾱᾱ),T = c(β̄)
(
M(ᾱ)P(β̄ᾱ),T −P(β̄ᾱ)M(ᾱ)

) (40)

which results in the same constraints as in Eq. (31) to ensure reciprocity.
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Substituting the new coefficient tensors (Eqs. (35) and (36)) into the strain compatibility

(Eq. (20)) yields:
N∑

α=1

c(α)P′(αβ) =
N∑

α=1

c(α)P(αβ) = 0; β 6∈ {ᾱ, β̄} (41)

N∑

α=1

c(α)P′(αβ̄) = c(ᾱ)M(β̄)P(ᾱβ̄),TM(β̄),−1 − c(ᾱ)P(ᾱβ̄) (42)

N∑

α=1

c(α)P′(αᾱ) = c(β̄)M(ᾱ)P(β̄ᾱ),TM(ᾱ),−1 − c(β̄)P(β̄ᾱ) (43)

Considering Eq. (57) and the elastic reciprocity, the above equations are written as:

N∑

α=1

c(α)P′(αβ̄) = c(β̄)P(β̄ᾱ)(M(ᾱ)M(β̄),−1 − I)

N∑

α=1

c(α)P′(αᾱ) = c(ᾱ)P(ᾱβ̄)(M(β̄)M(ᾱ),−1 − I)

(44)

which are not guaranteed. Therefore σ−EHM fully satisfies the constraints in Eqs. (17) and

(18), whereas the constraints in Eqs. (19) and (20) are partially satisfied.

Remark 2. ε-EHM can be considered as an intermediate model between the Taylor model and

the full EHM. To demonstrate this point, we first consider 0-layer ε-EHM for grain ᾱ only (i.e.,

neglect interactions between grain ᾱ and all other grains while other interactions are retained).

Following Eq. (25), the concentration tensors not related with part ᾱ remain unchanged while

the one related with part ᾱ becomes:

A′(ᾱ) =A(ᾱ) +
n∑

β=1

(
P(ᾱβ) − c(β)

c(ᾱ)
P(βᾱ)

)

=A(ᾱ) +
n∑

β=1

P(ᾱβ) −
n∑

β=1

(
c(β)

c(ᾱ)
P(βᾱ)

) (45)

Substituting the kinematic consistency and strain compatibility into the above equation, we

have:

A′(ᾱ) = I (46)

While the interaction tensors not related with part ᾱ remain unchanged according to Eq. (24),

the new interactions related with part ᾱ are calculated as:

P′(ᾱ,β) = P′(β,ᾱ) = 0; β = 1, 2, ..., ᾱ− 1, ᾱ+ 1, ..., n (47)

P′(ᾱ,ᾱ) = P(ᾱ,ᾱ) +
n∑

β=1, β 6=ᾱ

c(β̄)

c(ᾱ)
P(β̄ᾱ) =

n∑

β=1

c(β̄)

c(ᾱ)
P(β̄ᾱ) (48)
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which, by considering the strain compatibility equation leads to:

P′(ᾱ,β) = P′(β,ᾱ) = 0; β = 1, 2, ..., n (49)

Since the above derivation only employs the kinematic consistency and strain compatibility,

which always hold for ε−EHM coefficient tensors, neglecting interaction between all grains by

propagating the above operations on part ᾱ to all parts leads to:

A′(α) = I; α = 1, 2, ..., n (50)

and

P′(α,β) = 0; α = 1, 2, ..., n, β = 1, 2, ..., n (51)

which results in a diagonal structure in Eq. (11) and recovers the classical Taylor model.

3.2 A consistent grain clustering scheme

The performance of the proposed accelerated EHM models clearly depends on the ap-

propriate choice of the interactions to be kept within the material microstructure. In the

current manuscript, we employ a nearest neighbor algorithm to consistently eliminate weak

interactions between grains that are far away from each other.

The coefficient tensors P(αβ) represent strains in grain α caused by a unit strain applied

on grain β. P(αβ) is typically larger when the two grains are close to each other and decreases

if they are away from each other. Therefore, interactions between those grains that are far

from each other are neglected. Two possibilities exist for choosing the interactions to be kept:

(1) distance-based; and (2) neighborhood-based. The distance-based selection accounts for

the interactions between grains that are within a prescribed distance from each other. In

contrast, the neighborhood-based selection relies on grain connectivity. The distance-based

and neighborhood-based algorithms are nearly identical when microstructures with uniform

grain sizes are considered. Significant differences could exist in microstructures with multi-

modal size distributions. It may also be possible to consider a “magnitude-based criterion”,

where the magnitude of the coefficient tensors (defined, for instance, as the discrete norm of

the coefficient tensor) compared to a tolerance determined based on the magnitude of strong

interactions). In this study, the neighborhood-based selection strategy is employed as further

described below.

Let Θ
(α)
1 denote the domain of all grains in the immediate neighborhood of the grain, α,

with domain, Θ(α) and constitutes the primary influence zone of grain α. The immediate

neighborhood of Θ
(α)
1 is denoted as Θ

(α)
2 and constitutes the secondary influence zone of grain

α. Following the same argument for higher order influence zones, nc-layer grain cluster for
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grain α is defined as:

Ω(α)
nc = Θ(α) ∪

nc⋃

i=1

Θ
(α)
i (52)

The algorithm for constructing the grain clusters is schematically illustrated using a simpli-

fied 2D microstructure discretization as shown in Fig. 5. The index of each grain is illustrated

in Fig. 5(a). For each grain within the microstructure, the boundary nodes are identified first

(Fig. 5(b)). An element connectivity-based search is then conducted to identify all grains that

contain at least one of the boundary nodes of Θ(α) to build Θ
(α)
1 (Fig. 5(c)). To build the

second layer of neighbors, Θ
(α)
2 , the above process is repeated by replacing Θ(α) with Θ

(α)
1

(Fig. 5(d)). Due to the periodicity condition, grains that reside near the two opposing sides

(2D) or surfaces (3D) of the microstructure are considered as neighbors. Typical grain cluster

patterns for different grains of this idealized 2D microstructure are shown in Fig. 6. Figure 7

illustrates the resulting one-layer and two-layer grain clusters in the context of a more realistic

polycrystal microstructure topology.

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

(a) (b)

(c) (d)

Figure 5: Schematic demonstration of the grain-clustering scheme in 2D: (a) mesh of
the RVE with grain index; (b) identify the boundary nodes of the target grain, grain
15; (c) identify grains that contains the boundary nodes to identify the first layer of

neighbor, Θ
(15)
1 ; (d) find boundary nodes of the first layer neighbor, Θ

(15)
1 to identify

the second layer neighbor, Θ
(15)
2 .
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1 2 3

8 9

15

Figure 6: Grain clusters for: (a) grain 1; (b) grain 2; (c) grain 3; (d) grain 8; (e)
grain 9; (f) grain 15.

(b)

(c)

(d)(a)
Figure 7: Schematic illustration of the grain clustering in 3D: (a) full microstructure; (b) first layer
neighbor identification for the center grain (green colored); (c)-(d) identified one-layer and two-layer grain
cluster for center grain (red-highlighted).
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4 Computational implementation

The nonlinear numerical procedures for the sparse EHM models are similar to the full

EHM (detailed in Ref. [60]), where the reduced order system is solved using the N-R process

at each increment and each integration point of the macroscale analysis to update the stress

and internal state variables (e.g., slip resistance) in each part. The focus of the current section

is efficiently utilizing the sparse solver in the evaluation of the linearized system at each N-R

iteration as well as the calculation of the tangent moduli.

4.1 Linear solution procedure for accelerated sparse EHMs

The characteristics of the linearized equations of the sparse EHM system are exploited to

efficiently evaluate the reduced order models. In particular, we leverage the structural sym-

metry, sparsity, compressed storage and reordering of the equation system for computational

efficiency.

Figures 8(a) and (b) show sparsity patterns of the linearized systems for the one-layer and

two-layer sparse EHMs using the microstructure with 487 grains (Fig. 2(f)). The structural

symmetry is clear when we zoom into a small region as shown in Figs. 8(c) and (d). This

can be easily recognized by observing Eq. (11) and considering the fact that P(αβ) and P(βα)

are simultaneously non-zero or zero at the same time depending on whether the interactions

between grain α and β are kept or not.

For a given microstructure, the number of direct neighbor of a grain is independent of the

size of microstructure. Given that the sparsity of the proposed models is defined by grain

connectivity alone, sparsity increases as the size of the microstructure increases. For example,

the above 487-grain microstructure gives sparsity of S = 0.9764 for the 1-layer sparse EHM

and S = 0.8906 for the 2-layer sparse EHM. For the 938-grain microstructure (Fig. 2(h)),

S = 0.9875 for the 1-layer sparse EHM and S = 0.9397 for the 2-layer sparse EHM. The

increasing sparsity as a function of microstructure size indicates higher efficiency of the sparse

EHM at larger microstructure sizes, which is discussed further below.

Figure 9 demonstrates the compressed row storage (CRS) format of a sparse matrix em-

ployed in this study, which significantly decreases the storage requirements proportional to

the system sparsity. Figure 10 shows the reordered one-layer and two-layer sparse EHM sys-

tems for the 487-grain microstructure (Fig. 8) using the reverse Cuthill-McKee ordering and

approximate minimum degree ordering schemes. While the former is intended to reduce the

bandwidth of the matrix [13], the latter aims at producing factors with relatively low fill-in

operations for efficient calculation [4] and is employed in the current study. Since the system

sparsity structure remains unchanged throughout the multiscale analysis, the CRS format con-

struction and reordering of the sparse linear system is performed only once at the beginning

of the analysis.

Both direct and iterative solvers are available for sparse systems. For the direct sparse
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Figure 8: Structurally symmetric sparsity pattern of the linearized 487-grain EHM
system: (a) one-layer clustering scheme; (b) two-layer clustering scheme; (c)-(d)
zoom into the first 180x180 components of (a) and (b).

A =




a11 a12 0 a14
0 a22 a23 0
a31 0 a33 a34
a41 0 0 a44


CRS





Column index : ja(nnz) = 1 2 4 2 3 1 3 4 1 4

V alues : a(nnz) = a11 a12 a14 a22 a23 a31 a33 a34 a41 a44

Row pointer : ia(N + 1) = 1 4 6 9 11

N = 4 nnz= 10

Figure 9: Illustration of the CRS format of a sparse matrix.

21



Figure 10: Reordering of the sparse EHM system: (a)-(b) reverse Cuthill-Mckee
ordering of the one-layer and two-layer sparse EHM system; (c)-(d) approximate
minimum degree ordering of the one-layer and two-layer sparse EHM system.
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solver, PARDISO ([43, 42]) is used. PARDISO stands for Parallel Sparse Direct Solver and

is an LU decomposition-based high-performance linear solver for solving large sparse linear

system of equations. PARDISO splits the solving process into four sequential tasks: analysis

and symbolic factorization, numerical factorization, forward and backward substitution and a

final termination to release all internal solver memory. These four separate procedures allow

the flexibility to conduct certain operations only once and to be used multiple times later on as

discussed next since the sparsity pattern of the linear system remains unchanged throughout

the macroscale analysis. For the iterative solver, we use FGMRES and GS preconditioning

as discussed in Section 2. While direct sparse solvers can save some operations when solving

different systems (e.g., linear system from different N-R iterations) with the same sparsity

pattern, iterative sparse solvers could not. This requires different treatment when embedding

the direct and iterative sparse solvers into EHM for maximum efficiency. Since the focus in

this manuscript is to introduce and leverage the sparsity, we do not employ the parallelism in

either solvers and only use them as serial solvers.

4.2 Efficient embedding of direct sparse solver into EHM

Figure 11 shows the implementation strategy for the sparse EHM approach using the sparse

linear solvers discussed above. The implementation is performed in two stages (1) preprocess-

ing; and (2) multiscale analysis. In the preprocessing stage, the grain clustering procedure is

conducted on the microstructure to identify the grain cluster, Ωα
nc, for each grain. The lump-

ing procedures elaborated in Section 3 are performed for each grain to obtain the coefficient

tensors for the sparse EHM. The grain clustering information is further utilized to identify

sparsity pattern of the linear system and construct the CRS.

At the onset of the multiscale analysis, all material data is read and the sparse solver is

initialized. At each integration point of each increment of the multiscale analysis, the reduced

order system is solved using the N-R procedure and the tangent moduli is calculated (right

dashed box in Fig. 11). At the end of the multiscale analysis, the sparse solver is terminated.

When initializing the sparse solver, the sparsity pattern of the system is used to identify the

positions of non-zero blocks of the linear system and to conduct the reordering of the system.

In the case of direct solver, symbolic factorization is also conducted once since it only depends

on the sparsity pattern. At each N-R iteration (right dashed box in Fig. 11), only non-zero

blocks of the Jacobian (Eq. (10)) are calculated to directly feed the CRS, and passed to the

linear solver. While the number of FLOPs for constructing a full EHM system scales with

(6n)2, the number of FLOPs for constructing a sparse EHM system scales with (6n)2 ∗ (1−S).

In the case of direct solver, only numerical factorization and back substitutions are needed

to solve the system at each iteration, allowing computational cost savings on the analysis,

reordering and symbolic factorization. The number of FLOPs needed for numerical factoriza-

tion and back substitution in the full EHM is O((6n)3). Number of FLOPs needed for the

same operations on the sparse EHM, while dependent on the level and pattern of sparsity, is
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Initialization: 1) Read in data 
                       2) Initialize sparse solver 
                       3) Reordering, if direct solver also  
                           symbolic factorization 

Start of multiscale FE analysis 

Loop over: 1)  ith macroscale increment  
       2)  jth integration point 

                    

Loop over:  1)  kth N-R iteration 
                  2)  mth grain 
                  3)  nth grain in the grain cluster of mth grain 
Do:            1) Calculate  !"

($%%%)

!'(())
  

                  2) Feed  !"
($%%%)

!'(())
 into CRS format 

                  3) Solve the linear system: numerical factorization & back  
                        substitution for direct solver; preconditioning and solving 
                        for iterative solver 
 

Grain clustering to identify 
Ω+,- (𝛼 = 1,2, . . , 𝑛)  

New coefficient tensor for 
sparse EHM  

Identify zero positions and 
CRS format for the sparse 

system in Eq. (10) 
 

Coefficient tensors 
from EHM  

Termination of the sparse solver 

Construct & solve the linear system in 
Eq. (14) similar to previous procedure 

and calculate tangent moduli 

Figure 11: Schematic demonstration of the embedding of the sparse solver: left, preprocessing and
right, multiscale analysis.
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typically far less than O((6n)3). In the case of iterative solver, a complete preconditioning

and solving is necessary for each N-R iteration to obtain the solution. While it is generally

difficult to theoretically estimate the number of FLOPs of an iterative solver, system sparsity

contributes to the overall efficiency as demonstrated by the numerical examples below.

Upon convergence, a similar procedure is taken to evaluate Eq. (14) for the tangent moduli

calculation. Although Eq. (14) has six right-hand side vectors, one numerical factorization

(major computation cost) and six back-substitutions (minor computation cost) are performed

in the direct solver. In the case of iterative solver, computational cost is directly proportional

to the number of right-hand side vectors.

5 Numerical verification

The verification of the sparse reduced order homogenization based crystal plasticity model

is performed using two sets of examples. The examples aim at probing the accuracy and

efficiency characteristics of the proposed sparse EHM models as compared with CPFE as

well as full EHM. The first set of examples compare different sparse EHM models (one-layer

and two-layer, strain compatibility or simultaneous iso-stress/strain constrained) with CPFE

and full EHM on single phase polycrystal microstructures. While the accuracy of different

sparse EHM models are evaluated in terms of overall stress-strain response and local stress

distributions, we particularly focus on the assessment of efficiency of the proposed models.

The second set of examples evaluate the performance of sparse EHM on two-phase polycrystal

microstructures in order to quantify accuracy in the presence of high phase property contrast.

A multiscale example is also provided to demonstrate the capability of sparse EHM in solving

a large polycrystalline structure.

5.1 Single phase polycrystals

The material considered is pure aluminum which has FCC lattice and 12 {111}〈111〉 slip

systems. The elastic parameters are C11 = 108.2 GPa, C12 = 61.3 GPa, C44 = 28.5 GPa, while

the remainder of the inelastic parameters are listed in Table 3. The RVE is taken to consist of

487 grains and the microstructure is shown in Fig. 2(f). The microstructure is loaded uniaxially

along X direction up to 5% strain at strain rate of 0.05/s. The finite element discretization of

the reference CPFE model is composed of 176,415 trilinear four-noded tetrahedron elements

with 31,777 nodes, resulting in a system with 95,331 DOF. The CPFE models with tri-linear

tetrahedral elements are known to exhibit some volumetric locking [11]. The CPFE simulations

were checked for the existence of checkerboard patterning in the pressure contours [1]. The

checkerboard patterning was observed to be very small indicating a minor effect of volumetric

locking. The partitioning of the proposed reduced order models were performed such that

each part coincides with a single grain (i.e., n= 487) leading to a nonlinear system with 2,922

degrees of freedom. The macroscale discretization of the multiscale model consists of a single

tri-linear eight-noded hexahedron element.
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Table 3: Inelastic parameters [31].

m γ̇0(s−1) h0 (MPa) gs0 (MPa) gssa,0 (MPa) m′ γ̇s0(s−1)

0.05 1.0 20.4 3.7 30.8 0.0 5.0× 1010

The overall stress-strain response obtained by the CPFE, full EHM and the ε-EHM models

are shown in Fig. 12(a), in which -1 and -2 indicates the 1-layer and 2-layer sparse EHM, respec-

tively. The comparison between CPFE, full EHM and σ-EHM models are shown in Fig. 12(b).

Under the uniaxial loading, both ε-EHM and σ-EHM models provide almost identical results

to the full EHM model, indicating the relative insignificance of the grain interactions on the

overall response in this example. The discrepancy between the EHM and CPFE models is

about 3% at the end of the simulation. The normalized stress distributions at the grain-

scale, computed with the CPFE and the EHM models are shown in Fig. 13. The normalized

stress refers to the Von Mises stress within a grain normalized with the initial strength, g0

in Fig. 13(a,b). Similarly, the normalized stresses transverse to the loading direction (σ22/g0)

are compared in Fig. 13(c,d). The figures display the volume fraction of grains within the

microstructure as a function of the normalized stress experienced by the grains, in the form

of a histogram. For clarity, the bin plot representation is included only for the CPFE model.

The data points on the line plots for the EHM models refer to the mid-point of the stress

range associated with each bin of the histogram plot. The ε-EHM-0 is identical to the Taylor

model as stated in Remark 2. The local normalized stress distributions predicted by ε-EHM-0

have a larger error compared to the other EHM models, especially in the transverse direction.

The stress distributions for the remainder of the EHM models match the CPFE results with

reasonable accuracy. While the Von-Mises stresses for the ε-EHM-1,2 and σ-EHM-1,2 models

are very similar, transverse stresses indicate some variation with slightly better accuracy in the

σ-EHM models. The accuracy of the EHM models in capturing the local stress distributions

could be further improved by increasing the reduced model order by partitioning the grains

with more than a single part as discussed in Ref. [60].

We also compared the response of different EHM models and the CPFE model under

simple shear loading up to 5% strain loaded at a strain rate of 0.05/s. The overall stress-

strain responses are shown in Fig. 14(a) and the local responses are shown in Fig. 14(b). The

behavior and accuracy characteristics of the EHM models are similar to the cases discussed

above. For the overall response, the discrepancy between the stress magnitudes computed by

the full EHM and the CPFE models at the end of the simulation is approximately 2.5%, while

ε-EHM-1 and ε-EHM-2 results show a discrepancy of 2.7% compared with the CPFE results.

The efficiency characteristics of the EHM models are assessed by performing simulations

with varying microstructural complexity (parameterized by the RVE size) as shown in Fig. 2(b)-

(h). The speedup of different EHM models compared with CPFE are listed in Table 4 and

plotted in Fig. 15. One-layer sparse EHM models (i.e., ε-EHM-1 and σ-EHM-1) provide sig-

nificant speedup compared with full EHM and a much slower efficiency degradation as the
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Figure 12: Overall stress-strain response comparison between CPFE, EHM and: (a)
ε-EHMs; (b) σ-EHMs.
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Figure 14: The 487-grain under simple shear: (a) Overall stress strain response; (b)
Normalized Von Mises stress distribution.

Table 4: Speedup of EHM and sparse EHM models compared with CPFE.

n R EHM Rε-EHM-1 Rσ-EHM-1 Rε-EHM-2 Rσ-EHM-2

85 111.74 279.35 258.96 120.13 118.46

154 53.89 200.20 197.26 68.40 67.45

242 26.61 164.51 166.06 64.66 64.50

347 15.66 116.05 113.69 45.11 43.92

487 8.38 85.08 83.72 34.96 34.55

629 5.66 70.24 68.22 26.11 25.67

938 2.62 48.15 48.36 14.31 14.72

microstructure size increases. From the 85-grain to the 938-grain RVE, speedup of full EHM

reduces by a factor of 44.1, while the ε-EHM-1 only reduces by a factor of 5.8 and theε-EHM-2

reduces by a factor of 8.4. For a 938-grain microstructure, the one-layer sparse EHM models

provide speedup of 48 compared with the direct CPFE simulation.

To investigate the effect of sparsity, we compare the efficiency of different sparse EHM

compared with the full EHMs. To ensure a fair comparison between full EHM and different

sparse EHM models, we first confirmed that all models compared have similar number of

load increments and iterations at the micro- and macroscopic scales. All analyses consist of

approximately 122 load increments, and 246 macroscale iterations, resulting in a total of 2050

microscale iterations. The fluctuations in number of iterations in different models are within

5% compared with the above values. The speedup of sparse EHMs compared with the full

EHM (defined by the ratio between simulation time of full EHM and sparse EHM models) are

plotted in Fig. 15(b), together with the speedup of linear solver portion (accumulated CPU
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Figure 15: Speedup of: (a) EHM and sparse EHM models compared with the CPFE
model; (b) sparse EHM models compared with the full EHM model.

time spent for linear solver in N-R iterations). It is observed that the speedup of one-layer

sparse EHM compared with full EHM increases linearly as the number of grains increases. The

speedup of the two-layer sparse EHM compared with EHM, shows a sub-linear relationship

with number of grains. This is because sparsity decreases fast from the one-layer sparse EHM

to the two-layer sparse EHM, and the FLOPs for solving a sparse linear system increase fast

with decrease in sparsity. The behavior of speedup for the linear solver portion is generally

similar to the total simulation times, the curves display much higher slopes. This is because

the other procedures (i.e. computation of slip and hardening evolution, matrix constructions

etc.) are of similar order for all models, including the full EHM and sparse EHM.

Figure 15 shows the efficiency of ε-EHM-1 using the iterative solver as a function of RVE

size. It clearly shows that sparsity also significantly increases the efficiency of EHM when using

the iterative solver, while the speedup is less than that of direct solver in the cases we studied.

For both direct and iterative solvers, the sparse EHM scales larger than O(n) observed in the

CPFE model. This implies that there may exist a trade-off point, for which the sparse EHM

model performance could degrade below the performance of the CPFE model. However, the

number of grains to reach this trade-off point is beyond microstructure sizes typically needed

to define a representative volume.

5.2 Two-phase polycrystals

The accuracy characteristics of the reduced order microstructure models degrade as a func-

tion of the property contrast between constituents. For example, Taylor’s hypothesis generally

performs well in single-phase materials exhibiting moderate crystal anisotropy, but yields too

stiff response for multiphase materials with higher anisotropy or hexagonal symmetry [28]. In
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Figure 16: Speedup of ε-EHM-1 using iterative solver compared with: (a) CPFE
model and (b) full EHM model using iterative solver.

single phase materials such as discussed in the above example, the material property contrasts

are relatively small. In the current example we consider a two-phase FCC material where the

two phases have significant property contrast.

Figure 17 illustrates the morphology of the two microstructures employed in this example.

The microstructures consist of 242 and 629 grains. Each grain within the microstructures is

randomly assigned to one of the two phases. The volume fraction of each phase is approxi-

mately 0.5. The material parameters of the two phases are listed in Table 5. In all simulations

considered below, phase 1 parameters are fixed (first row in Table 5). Two cases of simula-

tions are considered, in which all the grains in phase 2 are assigned either the “low contrast”

parameters (second row in Table 5) or the “high contrast” parameters (third row in Table 5).

To evaluate the accuracy of different sparse EHM formulations (i.e., ε-EHM and σ-EHM) in

the two-phase polycrystal case, we first use the 242-grain microstructure as shown in Fig. 17(a).

The material properties for phase two are taken to have the smaller phase contrast (row 2 of

Table 5). The microstructure is loaded uniaxially along the X direction up to 5% strain at a

strain rate of 0.05/s. The overall stress-strain response of the two different formulations com-

pared with CPFE and full EHM are shown in Fig. 18, which shows increasing predicted stress

from CPFE to full EHM to one-layer and two-layer sparse EHM. The discrepancies between

the full EHM and the sparse EHM are more distinguishable in the two-phase microstructure,

while they are nearly identical in the case of single phase polycrystals. The local response in

terms of the spatial distribution of the Von Mises stress computed with, sparse EHM, CPFE

and full EHM are shown in Fig. 19. The predictions from ε-EHM and σ-EHM are very similar

and closely match those of the CPFE and full EHM. While the differences between one-layer

sparse EHM and full EHM are relatively larger than that in the single phase microstructure,

the differences between one-layer sparse EHM and two-layer EHM are still very small. The
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(a) (b)
Figure 17: Two-phase microstructures with: (a) 242-grain microstructure; (b) 629-
grain microstructure rendered with green for phase 1 and blue for phase 2.

Table 5: Inelastic parameters for different phases.

Phase ID m γ̇0(s−1) h0 (MPa) gs0 (MPa) gssa,0 (MPa) m′ γ̇s0(s−1)

1 0.05 1.0 20.4 3.7 30.8 0.0 5.0× 1010

2 (low contrast) 0.05 1.0 50.0 10.0 30.8 0.0 5.0× 1010

2 (high contrast) 0.05 1.0 200.0 30.0 50.0 0.0 5.0× 1010

full EHM, one-layer and two-layer sparse EHM all provide better local stress predictions than

Taylor model compared with CPFE simulation.

The above mentioned investigation is repeated in the presence of a higher phase contrast

(i.e., material properties of phase two taken to be row 3 of Table 5). The stress-strain response

of the higher phase contrast case is shown in Fig. 20(a), along with the corresponding local

stress distributions (Fig. 20(b)). The one-layer and two-layer sparse EHM provide almost

identical results, yet the discrepancies between the sparse EHMs, full EHM and CPFE are more

distinguishable. The stress level from full EHM is 6.4% higher than the CPFE, whereas one-

layer and two-layer sparse EHMs are 8.3% higher than CPFE. Similar discrepancies between

the sparse EHMs, full EHM and CPFE in the local stress distributions are observed. At the

end of the analyses of the low contrast case shown in Fig. 18, the stress magnitude from full

EHM is 2.8% higher than the CPFE, whereas one-layer and two-layer sparse EHMs are 3.6%

higher than CPFE. In the higher phase contrast case shown in Fig. 20, the stress magnitude

from full EHM is 5.8% higher than the CPFE, whereas one-layer and two-layer sparse EHM

models are 8.3% higher than the CPFE. This comparison indicates that higher phase contrast

increases the discrepancy between full EHM and CPFE as well as the discrepancy between

full EHM and sparse EHMs. Increase in the property contrast has been previously shown to

degrade the full EHM accuracy (Ref. [59]). The current results indicate that the accuracy

of sparse EHMs also degrades compared to the full EHM as a function of property contrast.

The reduction in the accuracy of sparse EHMs compared to the full EHM is attributed to
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Figure 20: Response of the 242-grain microstructure with high phase contrast: (a)
overall stress-strain; (b) local Von Mises stress distribution.

the increasing role of grain interactions (i.e., longer range stresses within the microstructure),

which are partly neglected in the sparse EHM models.

Fig. 21 illustrates the accuracy characteristics of the proposed models under different load-

ing conditions. We consider biaxial tension with either monotonic loading or cyclic loading

conditions for the 629-grain microstructure (Fig. 17(b)) using the above higher contrast two-

phase material. The figure shows the overall stress-strain response along the X and Y direc-

tions. For the biaxial monotonic tension with proportional loading, 5% strain is applied along

the X direction with a strain rate of 0.005/s, while a 3% strain is applied along the Y direction

with a strain rate 0.003/s (Fig. 21(a,b)). Compared with the CPFE, the full EHM exhibits

errors of 9.36% and 14.13% at 1% strain for X and Y directions, respectively. ε-EHM-1 and

ε-EHM-2 show similar accuracy with the full EHM with 11.01% and 15.06% error. At the end

of the simulation, the full EHM as well as the sparse EHM models display stress errors less

than 1% and 6.5% along the X and Y directions, respectively. For the non-proportional biaxial

loading case, 6% maximum strain is applied along the X direction with a constant strain rate

of 0.04/s. Upon reaching the maximum strain, the loading is held constant at 6% until the

end of the simulation. Along the Y direction, the microstructure is cyclically loaded with an

R-ratio of −1 and applied strain range of 4% at constant strain rate 0.04/s (Fig. 21(c,d)). The

duration of the cyclic biaxial tension simulation is 2.5 s. Compared with the CPFE, the full

EHM exhibits errors of 9.61% and 14.29% at 1% strain for X and Y directions, respectively.

ε-EHM-1 and ε-EHM-2 show similar accuracy with the full EHM with 10.76% and 15.66%

error. At the end of simulation, the full EHM as well as the sparse EHM models display stress

errors less than 6.5% and 6.9% along the X and Y directions, respectively.

While some discrepancy between the CPFE and the EHM models exists, the errors intro-
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Figure 21: Stress-strain response of: (a) proportional biaxial loading, X direction;
(b) proportional biaxial loading, Y direction; (c) non-proportional biaxial loading, X
direction; (d) non-proportional biaxial loading, Y direction.

duced by the proposed sparse formulation are small. The accuracy characteristics of the full

EHM method compared to the CPFE has been presented in Ref. [60]. Additional assessment of

accuracy in the context of damage mechanics has been provided in Refs. [39, 57, 56, 21, 12, 58].

5.3 A macroscale example: plate with hole under bolt pres-

sure

To demonstrate the capability of the sparse EHM in solving structural scale problems,

we investigated the response of a thick plate subjected to bolt pressure. The geometry and

dimensions of the plate are shown in Fig. 22. The bold load is applied as tractions at the inner

surface of the hole with a spatially varying form [9]:

Ti = − 4P

πD
nicosθ (53)

in which, D is the diameter of the hole (50 mm), Ti denotes the traction distribution inside

the hole at point i, which is characterized by angle θ that measure clockwise from point A as

shown in Fig. 22(b); ni is the unit normal of the hole surface at point i; and P=350 N/mm.

Half of the plate is discretized due to symmetry with 27,680 tri-linear eight-noded hexa-
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Figure 22: A plate under bolt pressure: (a) geometry and loading conditions of the
plate; (b) finite element mesh.

hedron elements as shown in Fig. 22(b). The microstructure is the 938-grain RVE as shown

in Fig. 2 (h). The simulation therefore tracks 25,963,840 grains throughout the domain of the

specimen. Clearly, such a simulation is computationally prohibitive using the direct CPFE

simulation and the classical computational homogenization. The full EHM is also expensive

due to the size of the system associated with the model. In this study, the one-layer ε-EHM

and zero-layer ε-EHM (i.e., Taylor model) are used to model the response of the plate.

The stress-contours of the plate at the end of loading using the zero- and one-layer ε-EHM

are shown in Fig. 23. The macroscopic stresses are close between the two models. The overall

bearing force versus the displacement at the far end of the hole (point A) predicted using the

two models are identical and shown in Fig. 24. Plastic deformations near stress concentration

around the hole are responsible for the nonlinearity in the force-displacement behavior.

To better understand the microscale stress variations at the grain level, three different

positions around the hole are probed as shown in Fig. 22(a). 12 elements at each position are

selected (probing 938 × 12 = 11, 256 grains at each position), and the normalized Von Mises

stress distributions of the microscale grains at each position are plotted in Fig. 25 at the middle

and end of the simulation, respectively. The figures clearly show an increase in the local stress

as deformation continues. Microscale stress histograms also show a decreasing grain level Von

Mises stress from position 1, 2 to 3, which is in accordance with the macroscale stress at

position 1, 2 and 3 as shown in Fig. 22. In contrast to the global behavior, the ε-EHM-0 and

ε-EHM-1 models demonstrate variations in local stresses as shown in Figs. 23 and 24. The
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middle; (b) end of the simulation.

variations are relatively more significant during the elastic-plastic transition. Once most of the

grains within the localized regions start to undergo fully plastic deformations, the variations

between the two models decrease in magnitude.

6 Conclusions and Future Research Interests

We presented a grain-cluster accelerated eigenstrain-based reduced-order homogenization

model for computationally efficient modeling of complex polycrystal microstructures. The ef-

ficiency gain is obtained through introducing sparsity into the linear system associated with

full EHM formulation by selectively considering grain-to-grain interactions. A neighborhood-

based grain-clustering scheme is developed to consistently identify grain neighborhoods for

each grain, between which interactions are considered. This manuscript introduced a hier-

archy of reduced models that recovers eigenstrain-based homogenization when full range of

interactions are considered. The proposed sparse EHM maintains high efficiency as the RVE

size increases with negligible reduction in accuracy compared to the full EHM approach. The

proposed sparse EHM models open the possibility of performing relatively large scale struc-

tural simulations, in which the grain level information can be directly tracked throughout the

structural domain and throughout the duration of a structural analysis. The future work will

focus on analysis of structural components subjected to extreme loading and environments,

which requires the extension of the proposed model to (a) address thermo-mechanical behavior,

and (b) incorporate HCP grains for applicability to a wider range of materials.
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Appendix

The coefficient tensors A and P are functions of elastic (H(y)) and phase inelastic (h(α)(y))

influence functions. The expressions for the coefficient tensors are:

A
(β)
ijkl = Iijkl +

∫

Θ(β)

H(i,yj),kl(y)
)

dy (54)

P
(βα)
ijkl =

1

|Θ(β)|

∫

Θ(β)

∫

Θ(α)

h(i,yj)kl(y, ŷ) dŷ dy (55)

M
(α)
ijkl =

1

|Θα|

∫

Θ(α)

Mijkl(y) dy (56)

where I is the identity tensor, M the compliance tensor. Elastic and phase inelastic influence

functions, H(y) and h(y), are calculated from the so called elastic influence function problem

and phase inelastic influence function problem given in Box 1 and 2. Inspecting the expression

for P(α,β) in Eq. (55, one can find:

c(β̄)P(β̄ᾱ) = c(ᾱ)P(ᾱβ̄) (57)

{Lijmn(y)[H(m,yn)kl(y) + Imnkl]},yj = 0; y ∈ Θ

Θ− periodic boundary conditions on y ∈ ΓΘ

Box 1: Elastic influence function problem.

{
Lijmn(y)

[
h(m,yn)kl(y, ŷ)− Imnkl d(y − ŷ)

]}

,yj

= 0; y, ŷ ∈ Θ

Θ− periodic boundary conditions on y ∈ ΓΘ

d− the Dirac delta function

Box 2: Phase inelastic influence function problem.
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