
Multi-Yield Surface Modeling of Viscoplastic Materials

Hao Yan and Caglar Oskay∗

Department of Civil and Environmental Engineering
Vanderbilt University
Nashville, TN 37235

Abstract

This manuscript presents a multi-yield surface model to idealize the mechanical be-

havior of viscoplastic solids subjected to cyclic loading. The multi-yield surface model

incorporates the evolution of nonlinear viscoplastic flow through a piece-wise linear

hardening approximation. A kinematic hardening law is employed to account for the

evolution of backstress with respect to the viscoplastic strain rate. The new backstress

evolution strategy is proposed to ensure that all yield surfaces remain consistent (i.e.,

satisfying collinearity) throughout the viscoplastic process. The multi-yield surface

model is coupled with viscoelasticity to approximate the relaxation behavior of high

temperature metal alloys. The model is implemented using a mixed finite element ap-

proach. The capabilities of the proposed approach are demonstrated using experiments

conducted on a high temperature titanium alloy (Ti-6242S) subjected to static, cyclic

and relaxation conditions.

Keywords: Multi-yield surface plasticity; Viscoelastic-viscoplastic behavior; Cyclic

loading.

1 Introduction

Modeling the cyclic response of materials in the presence of material nonlinearity is criti-

cal for many engineering applications, ranging from soils and soil-structure systems under
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earthquake excitations to metals subjected to low cycle fatigue. In this manuscript, we are

particularly concerned with modeling the cyclic response in the presence of viscous effects

for analysis of structures subjected to mechanical loading at elevated temperatures. The

proposed cyclic modeling approach contributes to multiscale modeling in two ways: (a) In

the context of multiple time scale homogenization schemes to characterize the long term

degradation of structural components; and (b) in providing a flexible constitutive framework

for sequential multiscale modeling.

In order to address the presence of multiple time scales, the long term performance of

structures subjected to cyclic loading are traditionally modeled using cycle-jump approaches

(see e.g., [11]). More recently, an alternative methodology based on the multiple time scale

computational homogenization has been developed by Oskay and Fish [29, 30] to investigate

the failure behavior of a range of materials from metals [30, 16] to composites [13, 14, 3].

The multiple time scale methodology, as well as the cycle-jump approaches rely on accurate

evaluation of a select fully-discretized load cycles throughout the life of a structure or a com-

ponent. In addressing the presence of multiple length scales, sequential multiscale modeling

is a promising approach to evaluate the thermo-mechanical behavior of such complex mate-

rials in a computationally efficient manner. In sequential multiscale modeling, the premise

is to calibrate a macroscale constitutive form based on a large suite of detailed fine scale

simulations that accurately describe the nonlinear behavior of the material within a range of

load conditions. This approach clearly rely on the availability of flexible constitutive forms

that can conform to data resulting from the fine scale calculations. The present effort is to

devise such a constitutive form for viscoplastic cyclic thermo-mechanical behavior.

Modeling of the cyclic response of metals at high temperature has seen significant ad-

vances in the past few decades, which have been summarized in thorough literature surveys

such as by McDowell [26] and Chaboche [7]. Beyond the crystal plasticity based cyclic de-

formation models (e.g., [5, 21, 25]), the majority of phenomenological plasticity models rely

on the concept of a yield surface, typically defined in the stress space, as well as evolution

laws for internal state variables (ISVs) consistently derived from thermodynamics principles.

Those deformation mechanisms pertinent to the high temperature environments are incor-

porated using complex functional relationships into the evolution laws of the ISVs. Starting
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from the foundational models of Prager [32] and Ziegler [39], comprehensive ISV formulations

for cyclic plasticity, incorporating time- and rate-dependent effects have been developed, in-

cluding the models of Chaboche [6] and Frederick and Armstrong [17], application of the

viscoplasticity theory based on overstress [22], ratcheting models [28, 2, 19], among many

others.

An alternative approach, named multi-yield surface plasticity (MYSP), was originally

proposed by Mroz et al. [27] and further developed for soil plasticity by Prevost and co-

workers (e.g., [33, 34, 35]), as well as metal plasticity [12]. In multi-yield surface plasticity,

multiple, non-intersecting yield surfaces are employed to define the evolution of the plastic

flow. In this approach, the behavior is approximated as linearly hardening between two

neighboring yield surfaces, leading to a piecewise linear approximation of the plastic flow.

The evolution equations are therefore very simple and the accuracy is controlled by the

number of yield surfaces used. Elgamal et al. [15, 18] proposed a modification to Mroz’s multi-

yield surface model, in order to reduce the computational cost by redefining the backstress

translation direction. Chiang [9] proposed a new description of the unloading and reloading

processes in MYSP by applying a transformation to the stress state. A new hardening rule,

based on the superposition of Mroz’s and Ziegler’s rule in the context of a two-surface model,

was presented by Chen [8]. Choi and Pan [10] derived a generalized anisotropic hardening

rule based on MYSP for pressure insensitive and sensitive materials. The available literature

in multi-yield surface plasticity primarily focuses on the rate independent behavior, where

dissipation is often introduced as structural damping. To the best of the authors’ knowledge,

no attempt has been made so far to introduce rate effects at the material level.

In this manuscript, a multi-yield surface model is proposed to idealize the mechanical

behavior of viscoplastic solids subjected to cyclic loading. The proposed approach builds on

the classical MYSP model [27] by extending it to account for the viscoplastic behavior, which

is critical for the response characterization of metals and alloys at high temperatures. The

effect of rate dependent behavior on the evolution of the backstress is induced without violat-

ing the collinearity rule. The model is implemented using a mixed finite element approach,

in which the displacement and pressure are evaluated as independent unknowns [36, 37]. The

capabilities of the model are assessed by simulating the experimentally observed behavior
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of the high temperature titanium alloy, Ti-6242S subjected to static, cyclic and relaxation

conditions. The main contribution of this manuscript is the extension of the multi-yield sur-

face plasticity approach to the viscoplastic regime. The flexibility of the present approach

in capturing the cyclic behavior makes it attractive for sequential multiscale modeling of

plastic deformation, where MYSP serves as the macroscale material model calibrated using

lower scale (e.g., polycrystal plasticity) simulations.

The remainder of this manuscript is organized as follows: Section 2 introduces the back-

ground and the basic theory of the multi-yield surface plasticity. The proposed multi-yield

surface viscoplasticity model is explained in Section 3. Section 4 presents the combined

viscoelastic-viscoplastic constitutive model used to describe high temperature behavior of

some metal alloys. Section 5 presents the mixed finite element implementation. Section 6

details a numerical investigation of the cyclic behavior of Ti-6242S at elevated temperatures.

The conclusion and future research directions are provided in Section 7.

2 Overview of multi-yield surface plasticity

In this section, Mroz’s multi-yield surface plasticity model [27], which is the starting point

of the proposed model, is summarized. In Mroz’s formulation, a series of yield surfaces

are defined, each of which is associated with a unique plastic moduli, a yield stress and

a backstress to describe the piecewise linear, elasto-plastic, rate independent constitutive

behavior.

Consider M yield surfaces to approximate the elastoplastic behavior as illustrated in

Fig. 1, where S1, S2, S3 are deviatoric stresses invariants and SI , SII , SIII are principal devia-

toric stresses. The yield surfaces are taken to be initially concentric, indicating the assumed

initial isotropy of yielding. The yield surfaces are ordered according to their sizes in the

π-plane as shown in Fig. 1a. For simplicity, each yield surface is modeled using the Von-

Mises yield function (Fig. 1b). The extension to more complex yield shapes, as well as

pressure-dependent yielding has been previously proposed [20]. An arbitrary yield function

is expressed as:

fm (σ,αm;σmY ) :=
√

3s̄m (σ,αm)− σmY 6 0; m = 1, 2, ...,M (1)
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Figure 1: Yield surfaces of multi yield surface J2 plasticity model in (a) the deviatoric stress
space; and (b) the principal stress space.
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Figure 2: Mroz’s deviatoric hardening evolution.

where, σmY is the flow stress of the mth yield surface; fm the mth yield function. Symbols with

bold fonts indicate tensor notation. s̄m is the second invariant of the difference between the

deviatoric stress, s = σ − tr (σ) /3, (tr(.) denotes the trace of a tensor) and the backstress

αm of the mth yield surface:

s̄m =

√
1

2

(
sij − αmij

) (
sij − αmij

)
(2)

In what follows, the index notation is adopted in the formulation of the model unless oth-

erwise indicated, i = 1, ..., nsd, where nsd is the number of spatial dimensions. Repeated

indices of the spatial dimensions indicate summation unless otherwise stated. A subscript

followed by a comma indicates partial derivative ( i.e., f,i = ∂f/∂xi) and the dummy index

m is reserved for variables associated with the mth yield surface.

In multi-yield surface plasticity, a pure kinematic hardening rule is typically employed.

As illustrated in Fig. 2, each yield surface undergoes rigid body translation in the stress space

towed by the deviatoric stress tensor. The magnitude and orientation of each yield surface

remain unaltered for constant temperature. The shifting of the yield surfaces are performed

such that none of the yield surfaces intersect another (i.e., collinearity condition [27]). Let m̂
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denote the current active yield surface at an arbitrary equilibrium state, defined as follows:

fm = 0 ∀ m = 1, 2, ..., m̂; and f m̂+1 < 0 (3)

The associative flow rule is used to define the evolution of the plastic strain, which follows the

direction of the outward normal to the current active yield surface at the stress point [18, 35]:

Qm̂
ij =

1

Qm̂

∂f m̂

∂sij
(4)

where:

Qm̂ =

√
∂f m̂

∂sij

∂f m̂

∂sij
(5)

Employing the standard complementary and consistency conditions defined on the current

active yield surface, the magnitude of the slip rate is computed as:

Lm̂ =
1

Hm̂
Qm̂
ij ṡij (6)

where Hm̂ is the plastic modulus associated with the current active yield surface. Then the

evolution of the plastic strain, ε̇p is defined as:

ε̇pij =
〈
Lm̂
〉
Qm̂
ij (7)

in which, 〈·〉 denotes the Macaulay brackets (i.e., 〈·〉 = ((·) + | · |)/2).

We consider a pure deviatoric kinematic hardening rule:

α̇m̂ = ‖α̇m̂‖µm̂ (8)

where the magnitude of the translation ‖α̇m̂‖ of the current active yield surface satisfies

the consistency condition and the normalized translation direction µm̂ij as proposed by Mroz

[27]) for elasto-plastic materials. As shown in Fig. 2, the translation tensor µ̄m̂ij for current
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active yield surface m̂ is defined as:

µ̄m̂ =
σm̂+1
Y

σm̂Y

(
s −αm̂

)
−
(
s −αm̂+1

)
(9)

and the normalized direction is:

µm̂ =
µ̄m̂

‖µ̄m̂‖
(10)

The translation direction in Eq. 9 ensures that the yield surfaces m̂ and m̂+1 do not overlap.

All inner yield surfaces are translated in the same fashion and are tangent to the current

active yield surface at the current stress point.

3 Multi-yield surface viscoplasticity

In this manuscript, we propose a new formulation that extends Mroz’s rate-independent

plasticity model into the rate-dependent regime. The relationship between the evolution of

backstress and viscoplastic strain is replaced by a general form that guarantees the collinear-

ity condition [24].

We posit the existence of a viscoplastic potential defined as a function of all yield surfaces,

i.e., Ω
(
f 1, f 2, ..., fM

)
. The evolution of viscoplastic strain is expressed as [7]:

ε̇vpij =
M∑
m=1

∂Ω

∂fm
∂fm

∂σij
(11)

It is convenient to consider a generalization of the Perzyna law in order to specify the

viscoplastic potential. Let the viscoplastic potential consist of the additive sum of the con-

tributions from the viscoplastic potential associated with each yield surface:

Ω
(
f 1, f 2, ..., fM

)
=

M∑
m=1

Ωm (fm) (12)

in which:

Ωm =
γσmY
q + 1

〈
fm

σYm

〉q+1

(13)

where, γ and q denote the fluidity and viscoplastic hardening parameters, respectively. The
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resulting flow rule becomes:

ε̇vpij =
M∑
m=1

γ

〈
fm

σYm

〉q
∂fm

∂σij
(14)

Substituting Eq. 1 into Eq. 14:

∂fm

∂σij
=

√
3

2s̄m
(
sij − αmij

)
(15)

The formulation of the hardening evolution equations for each yield surface requires spe-

cial attention since it differs significantly from rate-independent multi-yield surface plasticity.

We adopt a simple pure kinematic piecewise linear hardening law, following Prager’s model.

In the context of single yield surface plasticity, the evolution of the backstress is expressed

as:

α̇ij = Cε̇vpij (16)

where C is the plastic modulus. The direction of translation of a yield surface is shown in

Eq. 10.

It is important to note that in contrast to rate independent plasticity the stress state

does not have to lie within or on the current active yield surface, m̂, when the rate effect is

included. For instance, in case of a creep test where the stress state remains unaltered, all

yield surfaces within the active yield surface (i.e., 1 < m 6 m̂) continue to translate with

respect to each other until eventually reaching a steady state (i.e., image stress) at t=∞. At

the asymptote, all yield surfaces become tangent to each other.

We adopt a form similar to the Prager’s rule to describe hardening evolution for the

current active yield surface, m̂:

α̇m̂ij = Ĉm̂µm̂ij (17)

in which, Ĉm̂ denotes the instantaneous plastic modulus associated with the current active

yield surface expressed as:

Ĉm̂ = Cm̂µm̂ij ε̇
vp
ij (18)

where, Cm̂ is the plastic modulus of the current active yield surface. The instantaneous

plastic modulus is scaled by the magnitude of the projection of the slip rate on to the
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translation direction of the active yield surface. This is analogous to the instantaneous

modulus in case of single yield surface viscoplasticity, where the plastic modulus is scaled

with the magnitude of slip rate. For the yield surfaces that lie outside the current stress

state (i.e., m > m̂), the backstress remains instantaneously stationary.

In contrast to the rate independent plasticity, where the inner surfaces remain tangent

to the active yield surface, the viscoplastic model does not require the stress state to remain

within or on the yield surfaces. To ensure consistency, time dependent translation of the

active yield surface and the inner yield surfaces must satisfy the collinearity condition at all

times. The evolution of backstress for the inner yield surface is expressed as:

α̇mij = Ĉm̂µm̂ij ; m < m̂ (19)

which implies that all inner yield surfaces translate at the same speed and direction with the

current active yield surface. This restriction guarantees that there is no relative translation

among the inner surfaces until the active yield surface m̂ reaches the stress point. Figure 3

illustrates the hardening evolution processes during a creep test. The figure demonstrates the

evolution of the yield surfaces under a prescribed deviatoric stress, s at four time instances

t1 < t2 < t3 < t4. For simplicity, only the active yield surface and the surface immediately

in and out of the active yield surface are depicted in the figure. At time t1, the stress

state remains outside the current active yield surface (i.e., fm > 0 ∀ m 6 m̂), which leads

to viscoplastic flow. The translation of yield surfaces m 6 m̂ proceeds along the direction

and speed dictated by the current active yield surface, m̂, at time t2. When f m̂ vanishes,

the inner surface becomes the active yield surface (i.e., m̂← m̂− 1) and the flow is dictated

by the new, active yield surface at time t3. The flow process proceeds until all inner yield

surfaces become tangent at the current stress point.
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Figure 3: Inner yield surface translation process depicted at four time instances during a
creep process.
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4 Viscoelastic-viscoplastic model for cyclic deforma-

tion at high temperature

In this section, a viscoelastic-viscoplastic model is formulated to capture the cyclic behavior

of metals in high temperature environment. The viscoelastic behavior is modeled based on

the Boltzmann integral and Prony series approximation of the time dependent moduli. The

viscoplastic behavior is modeled using the multi-yield surface viscoplastic model described

in Section 3. The purpose of the proposed model is to accurately idealize the cyclic response

in high temperature environment, where rate dependence of the response is non trivial.

The proposed model builds on the viscoelastic-viscoplastic model previously developed by

the authors [31, 37], and extends the formulation to describe the cyclic behavior using the

multi-yield surface viscoplasticity framework.

The governing equilibrium equations describing the mechanical response of a body occu-

pying domain Ω ⊂ Rnsd are expressed in the following form:

sij,j (x, t)− p,i (x, t) + bi (x, t) = 0; x ⊂ Ω; t ∈ [0, t0] (20)

where, b is the body force per unit volume, x and t parameterize the spatial and tempo-

ral dimensions, respectively, and t0 is the upper limit of the time domain. The following

boundary conditions are prescribed:

ui (x, t) = ūi (x, t) x ∈ ΓD, t ∈ [0, t0] (21)

σijnj = t̄i (x, t) x ∈ ΓN , t ∈ [0, t0] (22)

where, u denotes the displacement field; ū is the prescribed displacement along the Dirichlet

boundary; ΓD ⊂ Γ ≡ ∂Ω; t̄ the prescribed traction along the Neumann boundary, ΓN ⊂ Γ,

such that ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = Γ; and n the outer unit normal to the traction

boundary.
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Assuming small strain kinematics, the total strain tensor, ε, is:

εij (x, t) =
1

2
(ui,j (x, t) + uj,i (x, t)) (23)

The adoption of the small strain theory implies that large rotations and large plastic defor-

mations that may be present in some high temperature applications are not addressed in

this study. The total strain tensor is additively split into three components:

εij = εve
ij + εvp

ij + εT
ij (24)

εve, εvp and εT respectively denote the viscoelastic, viscoplastic and thermal induced strain.

4.1 Modeling viscoelasticity

The constitutive relationship between the deviatoric stress and the viscoelastic strain is

modeled using the Boltzmann superposition integral in the context of linear viscoelasticity:

sij (t) =

∫ t

0

L
′

ijkl (t− τ)
dεve

kl (τ)

dτ
dτ (25)

in which, the spatial dependence of the pertinent fields is suppressed for simplicity. L′ is

the time-dependent deviatoric component of the tensor of viscoelastic moduli, taken to be

symmetric and positive definite at any time during the deformation process:

L′ijkl = L′klij = L′jikl = L′ijlk (26)

ζijL
′
ijklζkl ≥ ηζijζij; ∀ζij = ζji; η > 0 (27)

A convenient time evolution expression for the viscoelastic moduli is the Prony series:

L′ijkl (t) =

[
Ke +

ME∑
me=1

Kmeexp

(
− t

ξme

)]
L̄′ijkl (28)

in which, L̄′ is the initial moduli tensor; ME the number of Maxwell elements incorpo-

rated in the viscoelastic model; Ke denotes the ratio of equilibrium deviatoric moduli over
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instantaneous deviatoric moduli; and Kme and ξme are the ratio of deviatoric moduli on

meth Maxwell element over instantaneous deviatoric moduli and the time parameters asso-

ciated with the meth Maxwell element, respectively. Prony series approximation is utilized

to generate a component-dependent relaxation. In order to make time independent moduli

tensor the instantaneous elastic moduli; i.e., L̄′ = L′(t = 0), the values of the Prony series

parameters are constrained such that Ke +
∑M

me=1 Kme = 1,

For an isotropic solid, the deviatoric component of the elastic moduli is expressed as:

L
′

ijkl (t) = 2G (t)

(
δikδjl −

1

3
δijδkl

)
(29)

Substituting Eqs. 28 and 29 into Eq. 25, the deviatoric stress tensor becomes:

sij (t) = 2ḠKeε
ve
ij (t) + 2Ḡ

ME∑
me=1

Kmeε
me
ij (t) (30)

where,

εmeij (t) =

∫ t

0

exp

(
−t− τ
ξme

)
dεve

ij (τ)

dτ
dτ (31)

in which, εve is the viscoelastic strain, and Ḡ = G(0) the instantaneous shear modulus.

The variation of the relaxation behavior as a function of temperature is modeled using

the Williams-Landel-Ferry (WLF) equation. Let aT denote the WLF time-temperature shift

factor expressed in the form:

logaT (T ) =
−C1 (T − Tref)

C2 + (T − Tref)
(32)

where, T denotes temperature; C1 and C2 are material constants and Tref is the reference

temperature, typically taken to be the room temperature. Provided that the relaxation

behavior at the reference temperature and the material constants are known, the relaxation

behavior at an arbitrary temperature is obtained by shifting the time scale within a master

WLF curve using aT :

t =

∫ τ

0

dξ

aT (T (ξ))
(33)

where ξ is dummy time variable and τ is the upper limit of temperature variation, the
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thermal strains are taken to be volumetric:

εT
ij = α (T − Tref) δij (34)

where, α is the thermal expansion coefficient. The viscoplastic strain is taken to remain in

the deviatoric strain space (i.e., tr(εvp) = 0). Considering an isotropic solid with insignificant

relaxation under hydrostatic loading, the constitutive relationship for pressure becomes:

p (t) = −kui,i (t) + 3k [α (T (t)− T0)] (35)

in which, k is the bulk modulus.

4.2 Temperature dependent yielding

The viscoplastic behavior of the material is idealized based on the model defined in Section 3.

The viscoplastic hardening exponent, q, is expressed as a function of the non-dimensional

temperature, T ?, as:

q (T ?) = qref + (q̄ − qref)T
?; T ? =

T − Tref

T̄ − Tref

(36)

where qref = q(Tref) and q̄ = q(T̄ ) are exponents evaluated based on experiments performed

at two temperatures.

In the multi-yield surface model, the yield stress and the plastic moduli values of each

yield surface need to be identified using experimental data. At a given temperature T ?,

where experimental data is available, the yield strength associated with each yield surface

is chosen by linearly spacing the yield functions using the experimentally observed stress -

strain relationship:

σmY (T ?) = σ1
Y (T ?) +

(m− 1)
(
σMY (T ?)− σ1

Y (T ?)
)

M − 1
(37)

where, M is the total number of the yield surfaces, σ1
Y (T ?) is the yield strength of the first

yield surface and σMY (T ?) is the yield strength of the Mth yield surface as observed in the
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experiments. We note that Eq. 37 does not include an approximation, but a sampling of flow

stress from the experimental stress strain curves. The plastic modulus associated with each

surface, along with the yield surface strength, fully defines the flow behavior. The plastic

moduli Cm (T ?) that controls the hardening rate is obtained by minimizing the discrepancy

between experimental and simulated stress -strain behavior.

Particularly in the context of thermomechanical cycling, it is necessary to establish the

variation of flow stress evolution as a function of temperature. Leveraging the piecewise

linear approximation idea of the multi-yield surface plasticity theory, we approximate the

temperature variation of flow stress evolution characteristics as piecewise linear as well.

Consider a set of stress-strain data at temperatures {T ?i ;Ti < Ti+1|i = 1, ..., Ntest}, where

Ntest denotes number of experiments. Then for any T ?i 6 T ? 6 T ?i+1, the yield strength and

plastic modulus are:

σmY (T ?) = σmY (T ?i ) +
(
σmY
(
T ?j
)
− σmY (T ?i )

) T ? − T ?i
T ?j − T ?i

(38)

and

Cm (T ?, σmY ) = Cm (T ?i , σ
m
Y ) +

(
Cm

(
T ?j , σ

m
Y

)
− Cm (T ?i , σ

m
Y )
) T ? − T ?i
T ?j − T ?i

(39)

It may be possible to employ more elaborate functional forms to idealize the temperature

variation of flow evolution compared to Eq. 38 and Eq. 39. The accuracy of the above ap-

proximations is clearly controlled by the number and temperature ranges of the experiments.

5 Numerical Implementation

This section provides the details of the mixed finite element formulation and implementation

of the viscoelastic-viscoplastic cyclic plasticity model, as well as the implementation algo-

rithm of the multi-yield surface viscoplasticity model. Isothermal conditions are assumed

and the thermal state of the system is regarded as input to the deformation problem. Ther-

mal transients were taken to be insignificant at time scales and loading conditions considered

in this manuscript.
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5.1 Mixed FEM formulation

The system of equations for idealizing the viscoelastic-viscoplastic behavior is numerically

evaluated based on the mixed finite element method. In this approach, both displacement

and pressure fields are taken to be the cardinal unknowns (as opposed to the standard

finite element method, where the displacement field is the sole unknown field and stress is

computed at quadrature points). In the current mixed formulation, the nodal displacement

and pressure are simultaneously evaluated as described below.

The weak forms of the governing equations of equilibrium in terms of the deviatoric stress

and pressure (i.e., Eqs. 20 and 35, respectively) are expressed as:

∫
Ω

νhi,jsijdΩ−
∫

Ω

νhi,ipdΩ−
∫

Γu
N

νhi t̄idΓ−
∫

Ω

νhi bidΩ = 0 (40)∫
Ω

1

k
qhphdΩ +

∫
Ω

qhuhi,idΩdΩ = 0 (41)

where, v and q are the test functions for displacement and pressure, defined within the

appropriate Sobolev spaces and with sufficient smoothness, and Let vh and qh belong to the

corresponding finite dimensional subspaces of the test functions, v and q, respectively. We

perform a Bubnov-Galerkin discretization of the displacement and pressure fields, as well as

the corresponding test functions:

uhi (x, t) =
nu∑
a=1

Nu
a (x) ûai (t) (42)

ph (x, t) =

np∑
a=1

Np
a (x) p̂a (t) (43)

in which, Nu
a and Np

a are respectively the basis functions of the displacement and pressure

fields that correspond to node a; (̂·) denotes the nodal coefficients of the corresponding field;

and nu and np are the total number of displacement and pressure nodes, respectively.

Substituting Eqs. 42 and 43 into Eqs. 40 and 41, respectively, the discretized equilibrium
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equations take the form:

Ψbi :=

∫
Ω

Nu
b,jsijdΩ−

np∑
c=1

∫
Ω

Nu
b,iN

p
c dΩp̂c −

∫
ΓN

Nu
b t̄idΓ

−
∫

Ω

Nu
b bidΩ = 0; b = 1, ..., nu (44)

Θc :=

np∑
a=1

∫
Ω

1

k
Np
cN

p
adΩp̂a +

nu∑
b=1

∫
Ω

Np
cN

u
b,idΩûbi

−
∫

Ω

3Np
c [α (T − T0)]dΩ = 0; c = 1, ..., np (45)

Differentiating Eq. 30 in time, employing Eq. 31 and discretizing in time yields the

recurrence formula of the deviatoric stress tensor as:

t+∆tsij −t sij = 2Ḡ
(
t+∆tε

ve
ij −t εve

ij

)
K̄ − 2Ḡ

ME∑
me

Kme

(
1− exp

(
−∆t

ξme

))
tε
me
ij (46)

where,

K̄ = Ke +
ME∑
me

Kme

(
1− exp

(
−∆t

ξme

))
ξme
∆t

(47)

The left subscript indicates the value of the fields evaluated at discrete time points. Equa-

tion 46 indicates that the calculation of the deviatoric stress at current time step requires the

strain value at the previous time step only, rather than its entire history as Eq. 31 implies.

Consider a one-parameter discretization of the viscoplastic strain rate in the form:

t+∆tε
vp
ij −t ε

vp
ij

∆t
= θ t+∆tε̇

vp
ij + (1− θ) tε̇

vp
ij (48)

in which, θ ∈ [0, 1] is an algorithmic parameter. The choices of θ = 0, 1 and 0.5 correspond

to the explicit, implicit and midpoint rules, respectively. Substituting Eqs. 24 and 42 into

Eq. 46 and using Eq. 48, the discretized form of the constitutive equation for the deviatoric
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stress is expressed as:

Rij :=t+∆t sij −t sij − 2Ḡ
nu∑
a=1

Nu
a,j (x) t+∆tûaiK̄ + 2Ḡ

nu∑
a=1

Nu
a,j (x) tûaiK̄

+ 2Ḡ∆tθt+∆tε̇
vp
ij K̄ + 2Ḡ∆t (1− θ)t ε̇

vp
ij K̄ + 2Ḡ

ME∑
me

Kme

(
1− exp

(
−∆t

ξme

))
tε
me
ij (49)

Using Eqs. 17, 19 and 48, the discretized form of the constitutive equation for the backstress

of the mth yield surface is expressed as:

Rm
ij :=t+∆t α

m
ij −t αmij −t+∆t C

m̂∆tθ
(
t+∆tµ

m̂
ij

) (
t+∆tµ

m̂
kl

)
(t+∆tε̇

vp
kl )

−t Cm̂∆t (1− θ)
(
tµ
m̂
ij

) (
tµ
m̂
kl

) (
tε̇

vp
ij

)
(50)

Equations 44, 45, 49 and 50 together consist of the discretized nonlinear system of the

viscoelastic-viscoplastic deformation problem. Newton’s method is employed to solve the

system of equations [23]. Considering the first order Taylor-series expansion of all four

equations:

k+1Ψbi ≈ kΨbi +
k(
∂Ψbi

∂skl

)
k+1δskl +

np∑
c=1

k(
∂Ψbi

∂p̂c

)
k+1δp̂c

= kΨbi +

∫
Ω

Nu
b,j

k+1δsijdΩ−
np∑
c=1

∫
Ω

Nu
b,iN

p
c dΩ k+1δp̂c = 0 (51)

k+1Θc ≈ kΘc +
nu∑
b=1

k(
∂Θc

∂ûbk

)
k+1δûbk +

np∑
a=1

k(
∂Θc

∂p̂a

)
k+1δp̂a

= kΘc +
nu∑
b=1

∫
Ω

Np
cN

u
b,idΩ k+1δûbi +

np∑
a=1

∫
Ω

1

k
Np
cN

p
adΩ k+1δp̂a = 0 (52)

k+1Rij ≈ kRij +
k(
∂Rij

∂skl

)
k+1δskl +

nu∑
a=1

k(
∂Rij

∂ûak

)
k+1δûak

= kRij − 2ḠK̄
nu∑
a=1

Nu
a,j

k+1δûai +
(
Iijkl + 2ḠK̄θ∆t

k
C̄ijkl

)
k+1δskl = 0 (53)
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k+1Rm
ij ≈ kRm

ij +
k(∂Rm

ij

∂αmkl

)
k+1δαmkl

= kRm
ij +

(
Iijkl − kCmθ∆t

(
kµm̂ij

) (
kµm̂st

) k
C̄m
stkl

)
k+1δαmkl = 0 (54)

in which, the left superscript denotes the Newton iteration count. The Taylor series expan-

sion is performed about the previous iteration, k. δ(·) denotes the incremental change in the

corresponding response field (·) within the Newton iteration. Incorporating Eq. 14, at each

yield surface yields:

k
C̄m
ijkl =

k(∂ε̇vp
ij

∂αmkl

)
= −γ

〈kfm

kσmY

〉q(T ?)
( √

3

2
(
ks̄m
)Mijkl +

(
q (T ?)
kfm

−
√

3

3
(
ks̄m
)) k(

∂fm

∂σij

)k(
∂fm

∂σkl

))
(55)

where:

k
C̄ijkl =

k(∂ε̇vp
ij

∂skl

)
= −

M∑
m=1

k
C̄m
ijkl (56)

Mijkl = δikδjl −
1

3
δijδkl (57)

The increment of deviatoric stress, k+1δsij is evaluated using Eq. 53 as:

k+1δsij = kQijkl

(
2ḠK̄

nu∑
a=1

Nu
a,l
k+1δûak − kRkl

)
(58)

where, the modulus kQ is defined as:

kQijkl =
(
Iijkl + 2ḠK̄θ∆t

k
C̄ijkl

)−1

(59)

The increment of backstress of the mth yield surface, k+1δαmij is evaluated using Eq. 54 as:

k+1δαmij = −kQm
ijkl

kRm
kl (60)
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where, the modulus kQm is defined as:

kQm
ijkl =

(
Iijkl − kCmθ∆t

(
kµm̂ij

) (
kµm̂st

) k
C̄m
stkl

)−1

(61)

Substituting Eq. 58 into Eqs. 51 and 52 yield:

∫
Ω

2ḠK̄kQijklN
u
b,j

nu∑
a=1

Nu
a,ldΩ k+1δûak

−
np∑
c=1

∫
Ω

Nu
b,iN

p
c dΩ k+1δp̂c =

∫
Ω

kQijklN
u
b,j

kRkldΩ− kΨbi (62)

and,

−
nu∑
b=1

∫
Ω

Np
cN

u
b,idΩ k+1δûbi −

np∑
a=1

∫
Ω

1

k
Np
cN

p
adΩ k+1δp̂a = kΘc (63)

Equations 62 and 63 are simultaneously evaluated for the increments of the displacement

(k+1δû) and pressure fields (k+1δp̂) at the current iteration, k + 1.

When expressed in the matrix form, Eqs. 62 and 63 result in: kKuu Kup

(Kup)T Kpp


k+1δû

k+1δp̂

 =


kfu

kfp

 (64)

in which, the components of the tangent stiffness matrix are expressed as:

kKuu
αβ =

∫
Ω

2ḠK̄kQijmnN
u
b,j

nu∑
a=1

Nu
a,ndΩ; α = b+ (i− 1)nu; β = a+ (m− 1)nu (65)

Kup
αc = −

∫
Ω

Nu
b,iN

p
c dΩ; α = a+ (i− 1)nu; 1 ≤ c ≤ np (66)

Kpp
ab = −

∫
Ω

1

k
Np
aN

p
b dΩ; 1 ≤ a, b ≤ np (67)

The left superscript is included only on the submatrix, Kuu, which is the only nonlinear part

of the tangent stiffness matrix. The unknown displacement and pressure coefficients, as well
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as the force vectors are expressed in the vector form as:

k+1δû = {k+1û1, ...,
k+1ûnsd×nu}T ; kfu = {kfu1 , ...,

kfunsd×nu
}T (68)

k+1δp̂ = {k+1p̂1, ...,
kp̂np}T ; kfp = {kfp1 , ..., kfpnp

}T (69)

and the components of the force vector are given as:

kfuα =

∫
Ω

kQijklN
u
b,j

kRkldΩ−k Ψbi; α = b+ (i− 1)nu (70)

kfpa = kΘa; 1 ≤ a ≤ np (71)

The finite elements discretizing the displacements and the pressure fields are chosen such

that the Babuska-Brezzi stability constraint is satisfied [1, 4]. Ensuring this constraint affects

the choice of the pressure and displacement discretization and avoids the potential numerical

instability and oscillations observed in the response. In the numerical studies provided in

this manuscript, we employ nine-node biquadratic elements to discretize the displacement

field, and four-node bilinear elements to discretize the pressure field.

5.2 Implementation algorithm of the multi-yield surface deforma-

tion model

Based on the expressions above, the following algorithm is employed to compute the pressure

and displacement fields:

Given: At arbitrary time t+ ∆t, the state at the previous time step; tû, tp̂, ts , tα, tε̇
vp and

tε̇
vp
m ;

Find : The response at the current step; t+∆tû, t+∆tp̂.

1. Initiate the algorithm: k = 0.

2. Set the initial guesses for the pressure and deformation coefficients at the current

increment:

0û = tû; 0p̂ = tp̂; 0s = ts; 0αm = tαm; 0ε̇vp = tε̇
vp; 0ε̇vp

m = tε̇
vp
m (72)
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3. Loop until convergence:

(a) Compute the moduli: K̄,
k
C̄, kQ,

k
C̄m and kQm using Eqs. 47, 56, 59, 55 and

61, respectively at each quadrature point.

(b) Calculate kΨ, kΘ using Eqs. 44, 45, and kR, kRm using Eqs.49 and 50, respec-

tively at each quadrature point.

(c) Update the pressure and displacement increments, k+1δû and k+1δp̂ by solving

the linear system in Eq. 64.

(d) Compute deviatoric stress increment k+1δs and backstress increment k+1δαm at

each quadrature point using Eq. 58 and Eq. 60.

(e) Update displacement, pressure, deviatoric stress and backstress:

k+1û = k+1δû + kû (73)

k+1p̂ = k+1δp̂ + kp̂ (74)

k+1s = k+1δs + ks (75)

k+1αm = k+1δαm + kαm (76)

(f) Update viscoplastic strain rate k+1ε̇vp using Eq. 14.

(g) Update viscoplastic strain k+1εvp by evaluating:

k+1εvp = tε
vp + θ∆t k+1ε̇vp + (1− θ) ∆t tε̇

vp (77)

(h) Update yield surface translation direction k+1µm using Eq. 10.

(i) Check Newton-Raphson method convergence criterion
‖k+1δû‖
‖k+1û‖ .

(j) k = k + 1

6 Numerical Investigations

The proposed computational model is employed to investigate the mechanical response of

a titanium alloy at elevated temperatures. The alloy of the interest Ti-6Al-2Sn-4Zr-2Mo-
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Figure 4: The geometry and loading profile used in the numerical verification study.

0.1Si (Ti-6242S) displays good mechanical properties at elevated temperature, making it a

candidate structural material for hypersonic aircraft applications. The present investigations

start with the verification of the multi-yield surface viscoplastic model (Section 6.1), where a

parametric study is conducted to investigate the effectiveness of the proposed formulation in

ensuring that the collinearity rule is strictly enforced. Section 6.2 presents the performance of

the proposed model in idealizing the response of Ti-6242S under cyclic, static, and relaxation

tests.

6.1 Verification of multi-yield surface viscoplasticity implementa-

tion

We consider the response of a specimen loaded in biaxial direction, as illustrated in Fig.4.

The lateral stress loading S11 is monotonically increased to 550 MPa in 36 s then gradually

reduced to 440 MPa until 72 s, after that it increased again to 530 MPa until 108 s. The

vertical stress load, S22 linearly increases to 435 MPa in the compressive direction in 36 s,

then it keeps increasing to 550 MPa monotonically at 108 s. Two simulations are performed

and compared to assess the capability of the proposed model in capturing the viscoplastic

behavior without violating the collinearity assumption. The first simulation is executed
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without the incorporated direction correction term; therefore the backstress evolution in

each yield surface follows Prager’s linear kinematic hardening rule. The second simulation

follows the proposed evolution law as shown in Eq. 17. The evolution of the yield surfaces

as a function of time using both models are summarized in Fig. 5. Seven yield surfaces are

employed and 3 snapshots are plotted from the yield stress translation process; at 36 s, at

72 s, and at 108 s. The yield surfaces are concentric circles at the beginning of the test.

At 36 s, both simulations yield similar outcomes as shown in Fig. 5 (a) and (d), implying

the collinearity of the backstress of each yield surface using both approaches. This result is

expected since no significant creep is observed during the monotonic loading process in the

first 36 seconds of loading. As the stress tensor translates after 36 s due to the change of

loading directions, Fig. 5 (b) and (c) clearly begins to demonstrate several intersecting yield

surfaces. In contrast, the proposed approach eliminates the intersections as shown in Fig. 5

(e) and (f).

6.2 Simulation of the response of Ti-6242S alloy

The material properties for the viscoelastic and viscoplastic components, as well as the

multi-yield surface parameters (e.g., number of yield surfaces, yield stresses, plastic moduli,

etc.) of the titanium alloy, Ti-6242S were identified. Model calibration is performed based

on the experimental data conducted at the Air Force Research Laboratory, as well as data

available in the literature. Due to the temperature dependence of the cyclic test, experiments

at varying temperatures are required to generate a complete calibrated model. Due to

the limited amount of available data across a wide range of temperature spectrum, the

cyclic model is partially calibrated only. We further note that since the proposed model is

phenomenological, the purpose of this section is to demonstrate its capabilities in capturing

the behavior of metal alloys, rather than assessing predictive capability.

The monotonic elastic and plastic parameters are calibrated based on a series of uniaxial

tensile experiments conducted at room temperature, 5380C, 5930C and 6500C, from which

the temperature variation of Young’s modulus, Poisson’s ratio, number of yield surfaces, yield

strengths, plastic moduli and strain hardening variable are calibrated. 11 yield surfaces were

used to describe the behavior of the alloy, in which the outermost yield surface is set to be
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Figure 5: Yield surface translation process of translation direction at times (a) 36 s; (b)
72 s; (c) 108 s without translation correction; and with corrected translation direction at
times (d) 36 s; (e) 72 s ; and (f) 108 s.
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large enough to ensure that the stress point always remains inside of it. For the initially

undamaged material all the yield surfaces are concentric and share the same origin. The

material parameters at other temperatures are linearly interpolated or extrapolated from

the calibrated parameters at known temperatures. The loading rate effect is investigated

at room temperature only, where the viscosity at room temperature was determined. The

stress-strain response at high temperatures using the calibrated properties are compared to

the experimental measurements in Fig. 6. The proposed approach is capable of accurately

representing the stress-strain behavior under the monotonic loading conditions.

The viscoplastic parameters of the multi-yield surface model including the fluidity param-

eter, γ, the hardening parameters, q0 and q∗, and the viscoelastic parameters are calibrated

based on stress relaxation tests conducted at temperatures of 5930C and 6500C. Figure 7

shows the comparisons between the experimentally observed and simulated short term relax-

ation behavior at temperatures of 5930C and 6500C under the constant strain magnitude of

3.5%. During the first 40 seconds of relaxation, both viscoelastic and viscoplastic relaxation

processes are active since the specimens were loaded to stress levels beyond the static yield

strength. Figures 8 and 9 compare the simulated and observed long-term relaxation behavior

up to 100 hours. The long-term relaxation behavior is governed by the viscoelastic compo-

nent of the model, as the stress drops below the temperature dependent static yield stress.

The calibrated model shows a good match with the experiments at the given temperatures.

The cyclic response of Ti-6242S are compared to the experimental data conducted at

the Air Force Research Laboratory. The test specimen is a round bar with a cross section

diameter of 0.25 in and a gauge length of 1 in. The uniaxial experiments were displacement

controlled with a strain range 0.012 and constant strain rate of 1.0e−3/s. Three tests were

performed at high temperature environment: 450 0C with a strain ratio of -1, 550 0C with a

strain ratio of -∞ and 550 0C with a strain ratio of -1 accompanied by stress relaxation at

the compression side. The test conditions are summarized in Table 1. The plastic moduli

are less nonlinear in the low temperature environment and generally require less number of

yield surfaces to generate accurate results than in the high temperature environment.

The simulation results at 450 0C are compared to the experimental results in Fig. 10.

The applied strains in the experiment and the simulation are shown in Fig. 10(a), where
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Figure 6: The stress-strain response of Ti-6Al-2Sn-4Zr-2Mo-0.1Si at room and elevated
temperatures.
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Figure 7: The stress relaxation test of Ti-6Al-2Sn-4Zr-2Mo-0.1Si at 5930C and 6500C
for 40 seconds.
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Figure 8: The stress relaxation test of Ti-6Al-2Sn-4Zr-2Mo-0.1Si at 5930C for 100 hrs.
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Figure 9: The stress relaxation test of Ti-6Al-2Sn-4Zr-2Mo-0.1Si at 6500C for 100 hrs.

Table 1: Cyclic test conditions of Ti-6242S.

Experiments R ∆ε T [0C] ε̇ [1/s]
C1 -1 0.012 450 1.0 e-3
C2 -1 0.012 550 9.6 e-4
C6 −∞ 0.012 550 1.0 e-3
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Figure 10: Strain controlled low cycle fatigue test at 450 0C of (a) simulation and experiment
strain input history comparison; (b) simulation and experiment stress history comparison; (c)
simulated viscoplastic strain rate history; and (d) simulated stress vs. strain and stress vs.
plastic strain comparison.

first two cycles of the test are modeled. The simulated stress presented in Fig. 10(b) is in

a good match with the experimental data. The simulated viscoplastic strain rate history is

shown in Fig. 10(c), where each section of the viscoplastic strain rate magnitude is a direct

consequence of the activation of a new yield surface. The comparison of the experimental

and simulated initial hysteresis loop of stress-strain curve and stress-plastic strain curve are

shown in Fig. 10(d). The applied 0.6% strain generates approximately 0.3% plastic strain.

Figure 11 shows the results of the simulation and experiments at 550 0C. The applied

strain is shown in Fig. 11(a). The strain range is the same as the test at 450 0C (1.2%) but

with a different R ratio, -∞. The simulated and experimental stress presented in Fig. 11(b)
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Figure 11: Strain controlled low cycle fatigue test at 550 0C of (a) simulation and experiment
strain input history comparison; (b) simulation and experiment stress history comparison;
(c) simulated viscoplastic strain rate history; and (d) stress vs. strain comparison and the
simulated stress vs. plastic strain.

shows a more pronouced nonlinearity compared to 450 0C due to the higher temperature.

The simulated viscoplastic strain rate history is presented in Fig. 11(c). The peak value

of the viscoplastic strain reduces after the initial loading, as a result of the asymmetric

strain ratio. The comparison of the simulated and experimental initial hysteresis loops and

stress plastic strain curve are demonstrated in Fig. 11(d). The applied 1.2% strain also

generates an approximate 0.6% plastic strain. Eventually the stress, viscoplastic strain rate

and stress-strain hysteresis loop are all shifted toward the compression direction due to the

applied strain ratio.

Figure 12 demonstrates the results of the creep-fatigue experiment and the corresponding
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simulation performed at 550 0C. The strain hold time of 119 sec was applied following the

compression as shown in Fig. 12(a). The simulated and experimental stress time data are

presented in Fig. 12(b). The stress relaxation, primarily due to viscoelasticity at high tem-

perature is apparent. While some discrepancy exist between the simulated and experimental

relaxation data, the proposed model clearly captures the significant and fast relaxation be-

havior. The simulated viscoplastic strain rate history is presented in Fig. 12(c), show that

the viscoplastic strain rate vanishes shortly after hold as the stress point retreats inside

the initial yield surface during the stress relaxation. The comparison of the simulated ini-

tial hysteresis loop of stress-strain curve and stress-plastic strain curve are demonstrated

in Fig. 12(d). The comparison of the initial experimental and simulation hysteresis loops

demonstrates some discrepancy at the initial loading stage, but the simulated behavior is in

overall agreement with the experiments.

7 Conclusion

This manuscript provided a multi-yield surface viscoplastic model to study the cyclic response

of alloys in high temperature environment, from which the time dependent effect has been

addressed on the backstress evolution and the collinearity rule. The computational model

was verified in a parametric study and then calibrated against experiments conducted in

a variety of temperatures of Ti-6242S. The proposed computational model eliminates the

non-smooth intersection of yield surfaces in viscoplastic regime and generates a good match

of the hysteresis curve compared to the experiments conducted on Ti-6242S specimens at

high temperatures.

The proposed approach is phenomenological in nature and intended to provide a rea-

sonable accurately estimate of the stress and deformation state in structural systems in a

computationally efficient manner. The proposed approach, due to its parametric form and

flexibility in representing the constitutive behavior, could serve as a macroscale constitutive

form for sequential multiscale models, where the parameters and response patterns are ob-

tained directly from lower scale computations (as opposed to relying on experiments for the

same purpose [38]).

Prediction of the mechanical and thermo-mechanical fatigue life of viscoplastic materials
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Figure 12: Strain controlled low cycle fatigue stress relaxation test at 550 0C of (a) simulation
and experiment strain input history comparison; (b) simulation and experiment stress history
comparison; (c) simulated viscoplastic strain rate history; and (d) stress vs. strain comparison
and the simulated stress vs. plastic strain.
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at high temperatures are of significant interest and will be investigated in the near future.

Several developments on the computational front are needed to achieve such a life prediction

capability, particularly for thermo-mechanical loading. First is the extension of the multiple

time scale approaches to in-phase and out-of-phase thermo-mechanical load cycles. Presently,

the multiple time scale homogenization has been developed in the context of mechanical

fatigue alone. Second, modeling long-term degradation requires incorporation of progressive

damage models (e.g., continuum damage mechanics or phase field) to the proposed multi-

yield surface framework. The near term efforts will focus on the development of these

computational capabilities.
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