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Abstract

This manuscript presents a spatial-temporal nonlocal homogenization model for transient

anti-plane shear wave propagation in viscoelastic composites. The proposed model is formu-

lated through asymptotic homogenization with higher order corrections incorporated to extend

the applicability of the homogenization theory to shorter wavelength regime. A nonlocal ho-

mogenization model in the form of a fourth order PDE is consistently derived with all model

parameters directly computed from the microstructure equilibrium. A reduced order model

in the form of a second order PDE is then proposed for efficient transient wave propagation

analysis. The reduced model retains the dispersive character of the original nonlocal model

through the effective stiffness tensor. Transient shear wave propagation in two-dimensional

domain with periodic elastic and viscoelastic microstructures is investigated and the proposed

models were verified against direct numerical simulations. The spatial-temporal nonlocal ho-

mogenization model is shown to accurately capture shear wave dispersion in the first pass band

and attenuation within the first stop band.

Keywords: High order homogenization; Wave dispersion; Band gap; Viscoelastic composites;

Gradient elasticity

1 Introduction

Wave propagation in manufactured composite materials has received increasing research in-

terest over the past decade due to the opportunities for achieving favorable dynamic properties
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within targeted frequency ranges (e.g., acoustic band gaps [41, 39]). Phononic crystals [61, 52]

and acoustic metamaterials [38, 18] demonstrate significant potential in many novel engineer-

ing applications, such as cloaking [59, 9], acoustic diode [36, 35] and blast mitigation [47].

These materials exhibit unique wave propagation and attenuation patterns possible through

the design of the microstructure and constituent material properties. The majority of the

literature in this area so far focused on elastic materials as composite constituents. It has

been recently recognized that employing viscoelastic materials could significantly expand the

possibilities for these materials by leveraging the interactions between material damping and

heterogeneity induced dispersion, such as shifting the stop band to lower frequencies and en-

hancing wave attenuation [42, 43, 33]. This manuscript presents a new homogenization model

that accounts for wave dispersion due to both material heterogeneity and damping.

Direct numerical modeling of transient wave propagation in composites is computationally

prohibitive due to the necessity to resolve the fine scale features of the microstructure. Gen-

eralized continuum theories, pioneered by Mindlin [46], Suhubi and Eringen [60] and others

were developed to describe the macroscopic phenomena accounting for the microstructural

effects without the need to resolve them. Gradient elasticity modeling, a special class of the

generalized theories, introduces higher order gradients in the governing equation in addition

to the terms that pertain to the classical continuum theory. The resulting equations of motion

capture the dispersive and attenuative behavior induced by the material heterogeneity. The

fourth order gradient elasticity model (with fourth order spatial, fourth order temporal and

mixed spatial-temporal derivative terms) has been investigated by Askes et al. [5], Metrikine

[44], Pichugin et al. [55] and others. Dontsov et al. [16] demonstrated the capability of this

model in predicting the dispersion relation of one-dimensional elastic layered composites up

to the second pass band, provided that the length-scale parameters associated with the higher

order gradients are appropriately calibrated. However, the identification of these parameters

in multidimensional problems is an outstanding issue [4] and this approach has so far been

applied to elastic composites only.

Homogenization models based on Willis’ theory [45, 64, 50, 58, 49] have also been proposed

in the past decade. The nonlocal nature of wave propagation in composites is modeled by the

coupled constitutive relation that connects the stress to velocity, and momentum to strain.

This construction allows an accurate description of dispersion band structure for elastic com-

posites. To the best of the authors’ knowledge, transient wave propagation in composites has

not been previously simulated with this type of homogenization models. Computational ho-

mogenization models [53, 57, 37], on the other hand, pose nested and coupled initial-boundary

value problems at the scale of the material microstructure and the scale of the structure. The

problems at two disparate scales are evaluated numerically in a coupled fashion. The energetic

consistency between the problems at the two scales are achieved through the Hill-Mandel con-
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dition. While these models have been successful in capturing wave dispersion in small-scale

transient simulations, the computational cost is high for multi-dimensional structure-scale

simulations.

Asymptotic homogenization has been frequently employed to compute the effective prop-

erties of composite materials. In the context of dynamics, Boutin and Auriault [7] first inves-

tigated the role of higher order expansions in capturing wave dispersion. Fish et al. [20, 19]

proposed a spatial nonlocal homogenization model that incorporates a fourth order spatial

derivative term in addition to the terms that pertain to classical homogenization model. The

spatial nonlocal model was shown to capture wave dispersion in the long-wavelength regime

[3]. By deriving a homogenization model that employed a mixed spatial-temporal nonlocal

term, Hui and Oskay [29] studied the dispersion and attenuation of transient waves in elastic

composites. More recently, Wautier and Guzina [62] extended the spatial nonlocal homog-

enization model by incorporating the temporal and mixed spatial-temporal nonlocal terms

using the argument of asymptotic equivalence [55]. With appropriately calibrated parameters

associated with the nonlocal terms, this model was shown to capture the onset and size of the

first stop band in the context of dispersion analysis.

While the approaches mentioned above account for wave dispersion due to material het-

erogeneity in elastic composites, the effects of material damping were typically not considered.

In contrast, among many homogenization models developed to capture the wave attenuation

due to material damping in viscoelastic composites [22, 65, 66], few investigated the dispersion

due to material heterogeneity. Hui and Oskay [28, 30] investigated transient wave propagation

in viscoelastic composites using the spatial nonlocal homogenization model which accurately

captures wave dispersion induced by material heterogeneity in the long wavelength regime. Hu

and Oskay [23] developed a spatial-temporal nonlocal homogenization model in one-dimension

by incorporating higher order asymptotic expansions. It was shown that dispersion and atten-

uation in viscoelastic composite were well captured for shorter waves.

In this manuscript, we propose a spatial-temporal nonlocal homogenization model for tran-

sient anti-plane shear wave propagation in viscoelastic composites accounting for dispersion

due to material heterogeneity and material damping. The proposed model is derived based

on the asymptotic expansions of up to the eighth order in order to extend the applicability of

asymptotic homogenization to shorter wavelength scenarios within the limit of separation of

scales. Compared with the previous work by the authors in nonlocal homogenization modeling

of transient wave propagation, the current manuscript provides the following novel contribu-

tions: (1) the current formulation consistently derives the temporal nonlocal term, which is

demonstrated to be important in accurately capturing the initiation of the first stop band and

beyond. The previous multi-dimensional models [28, 29, 30] did not include this effect; and (2)

the current work generalizes the one-dimensional, semi-analytical homogenization approach
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presented in Ref. [23] to the two-dimensional anti-plane shear wave propagation case, which

is evaluated using a numerical solution strategy. Noting that the spatial-temporal nonlocal

equation for anti-plane shear wave propagation in elastic composites has been analyzed by

Wautier and Guzina [62] with calibrated length-scale parameters, a novelty of the proposed

model in this regard is that it provides a consistent recipe for computing all model parame-

ters including the high order ones, and extends the approach to viscoelastic composites. In

addition, we propose a reduced order model for transient wave propagation, which enables the

characterization of wave dispersion and attenuation in the presence of structural effects, such

as geometry and boundary conditions.

The remainder of this manuscript is organized as follows: Section 2 provides the problem

description of anti-plane shear wave propagation in viscoelastic composites and the multiscale

setting. Section 3 describes the asymptotic analysis and homogenization procedure. Section

4 derives the spatial-temporal nonlocal homogenization model and the reduced order model

appropriate for transient simulations. Section 5 provides procedures to numerically implement

the proposed model. Section 6 verifies the proposed model in two examples, i.e., elastic bi-

material layered and viscoelastic matrix-fiber composites. The conclusions and future research

directions are presented in Section 7.

In what follows, scalars are denoted by italic Roman or Greek characters; vectors by bold-

face lowercase Roman characters; tensors by boldface italic Roman characters. Boldface up-

percase Roman characters are reserved for matrices. Boldface Greek characters denote both

vectors or tensors with their meaning explicitly specified when used. Indicial notation is used

when necessary and Einstein summation convention applies to repeated indices.

2 Problem setting

Let Ω ∈ R2 denote the domain of a body constructed by periodic unit cells composed of

two or more constituents. Ω is described using the Cartesian coordinate, x. The momentum

balance equation that governs wave propagation in this heterogeneous body is expressed as:

∇x.σ
ζ(x, t) = ρζ(x)üζ(x, t) (1)

where, σζ denotes the stress tensor; ρζ the density; and uζ the displacement vector. ∇x. is

the divergence operator and superimposed dot denotes derivative with respect to time. The

superscript, ζ, indicates that the response fields oscillate spatially due to the microstructural

heterogeneity.

Considering anti-plane shear deformation, the displacement field is expressed over the two-
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dimensional problem domain, whereas the displacement vector is normal to the plane:

uζ(x, t) = uζ(x, t)ê3 (2)

where, x = {x1, x2} denotes the position vector of the material point and êj is the unit vector

in the xj direction. ê3 is taken to be the normal to the plane of the problem domain. Under

the assumption of small deformation, the engineering shear strain is expressed in vector form

after degeneration by contraction with ê3:

γζ(x, t) =
[
∇xu

ζ + (∇xu
ζ)T
]
.ê3 = uζ,xj (x, t)êj (3)

in which, the subscript dot denotes single contraction and subscript comma the spatial deriva-

tive. ∇x = ∂(·)/∂xj êj is the gradient operator.

The constitutive behavior at a material point is taken to be linear viscoelastic, expressed

using the hereditary integral:

τ ζ(x, t) =

∫ t

0
Gζ(x, t− t′)γ̇ζ(x, t′)dt′ (4)

where, τ ζ(x, t) is the shear stress vector and Gζ(x, t′) is the time-varying relaxation moduli.

Elastic behavior is recovered by taking Gζ as constant in time. The densities and relaxation

modulus of all constituents forming the composite are assumed of the same order of magnitude.

Under the anti-plane shear wave propagation condition, the momentum balance equation

(Eq. 1) reduces to:

∇x.τ
ζ(x, t) = ρζ(x)üζ(x, t) (5)

The boundary conditions are:

uζ(x, t) = ũ(x, t); x ∈ Γu (6a)

τ ζ(x, t).n = t̃(x, t); x ∈ Γt (6b)

where, n denotes the outward unit normal vector along the traction boundaries; ũ(x, t) and

t̃(x, t) are the displacement and traction data prescribed on Γu and Γt, respectively, and

∂Ω = Γu ∪ Γt; Γu ∩ Γt = ∅. Homogeneous initial displacement and velocity conditions are

assumed:

uζ(x, 0) = 0; x ∈ Ω (7a)

u̇ζ(x, 0) = 0; x ∈ Ω (7b)
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Equations 4-7 define the initial-boundary value problem in the time domain. The convolu-

tional form of the hereditary integral that describe the viscoelastic behavior allows a simpler

formulation of the problem when posed in the Laplace domain [29, 23]. The momentum balance

equation, Eq. 5, expressed in the Laplace domain is:

∇x.τ
ζ(x, s) = ρζ(x)s2uζ(x, s) (8)

where, s = σ+ iw is the Laplace variable, s ∈ C. In the Laplace domain, the response variable

uζ is complex valued and the viscoelastic constitutive relation is written in the proportional

form:

τ ζ(x, s) = Gζ(x, s)γζ(x, s) (9)

where Gζ(x, s) = sL
(
Gζ(x, t)

)
is the shear modulus function in the Laplace domain. The

boundary conditions in the Laplace domain are written as:

uζ(x, s) = ũ(x, s); x ∈ Γu (10a)

τ ζ(x, s).n = t̃(x, s); x ∈ Γt (10b)

2.1 Multiscale setting

The domain of the canonical unit cell is denoted as Θ ∈ R2 expressed using the Cartesian

coordinate, y, which is related to the macroscale coordinate by y = x/ζ, where 0 < ζ � 1 is the

small scaling parameter. In the context of wave propagation, the scaling parameter is defined

as the ratio between the size of microstructure and the characteristic length of deformation

wave (i.e., ζ = l/λ, where λ is the characteristic deformation wavelength).

Consider an arbitrary response function, f ζ(x, s), which oscillates in space due to fluctu-

ations induced by material heterogeneity. The response field is assumed to allow a two-scale

separation in terms of macroscale and microscale coordinates:

f ζ(x, s) = f(x,y(x), s) (11)

The shear modulus and material density are taken to depend on the microscale coordinate

only, i.e., Gζ(x, s) = G(y, s) and ρζ(x) = ρ(y). The spatial derivative of f ζ is obtained by

applying the chain rule:

f ζ,x(x, s) = f,x(x,y, s) +
1

ζ
f,y(x,y, s) (12)
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where, subscript comma followed by x and y denote the spatial derivative with respect to

the macroscale and microscale coordinates, respectively. All response fields are assumed to be

locally periodic:

f(x,y, s) = f(x,y + Nl̂, s) (13)

where, l̂ = [l̂1, l̂2]T denotes the period of the microstructure in the microscale coordinates, i.e.,

l̂ = l/ζ, l is the period of the microstructure in the physical (macroscale) coordinates, and N

is a 2× 2 diagonal matrix with integer components.

3 Two-scale asymptotic analysis

In this section, the asymptotic analysis procedure [7, 19, 29, 30], in which, asymptotic

expansions of first few orders are employed to derive the momentum balance equations, is

generalized for the development of momentum balance equations considering higher order

expansions. Based on the two-scale setting described above, the displacement is approximated

by the asymptotic expansion of up to the eighth order:

uζ(x, s)≡u(x,y, s) = u(0)(x, s) +
8∑
i=1

ζiu(i)(x,y, s) +O(ζ9) (14)

where, u(0) denotes the macroscopic displacement field and is dependent on the macroscale co-

ordinate only [20]; and u(i) are high order displacement fields which depend on both macroscale

and microscale coordinates. We note that u(0) depends only on x if the assumption of moder-

ate material property contrast between the composite constituents is satisfied. For composites

with highly contrasted constituents, u(0) depends on both micro- and macroscale coordinates

[56, 6]. The shear strain field is obtained as:

γζ(x, s) ≡ γ(x,y, s) =

7∑
α=0

ζαγ(α)(x,y, s) (15)

where,

γ(α)(x,y, s) =
(
u(α)
,xj + u(α+1)

,yj

)
êj (16)

(·),xj = ∂(·)/∂xj and (·),yj = ∂(·)/∂yj .
Employing Eq. 16 along with the constitutive relation (Eq. 9), the shear stress field at

order O(ζα) is obtained as:

τ (α)(x,y, s) = G(y, s)γ(α)(x,y, s) (17)
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Substituting Eqs. 9, 14-17 into the momentum balance equation (Eq. 8), and collecting terms

with equal orders yield the balance equations at each order of ζ:

O(ζ−1) : ∇y.τ
(0)(x,y, s) = 0 (18a)

O(ζα) : ∇x.τ
(α)(x,y, s) + ∇y.τ

(α+1)(x,y, s) = ρ(y)s2u(α)(x,y, s) (18b)

We start by additively decomposing the displacement field at each order of the asymptotic

expansion. Following the procedure proposed in [7], the displacement field at each order is

expressed in terms of a macroscopically constant displacement field and series of locally varying

fields which have zero average over the unit cell:

u(i)(x,y, s) = U (i)(x, s) +

i−1∑
k=0

Ũ (i,k)(x,y, s) (19)

where, Ũ (i,k)(x,y, s) is the kth locally varying field of u(i)(x,y, s) and it is associated with the

successive gradients of macroscopic strain of an inferior order by a locally periodic influence

function that is defined over the unit cell:

Ũ (i,k)(x,y, s) = H(k+1)(y, s)(.∇x)k+1U (i−k−1)(x, s) (20)

where, H(k+1) is the microstructural influence function at order (k + 1), and (.∇x)k+1 is the

(k+ 1)th gradient with respect to the macroscale coordinate, x, with k+ 1 contractions to the

microstructural influence function (e.g., Ũ (3,2) = H(3)(.∇x)3U (0) is written as H
(3)
ijkU

(0)
,xijk in

indicial notation). The microstructural influence function, H(k+1), is an order (k + 1) tensor

and has (k + 2) independent components.

Remark 1. For a kth order tensor H contracting k times with ∇kU , only the symmetric part

of H affects the result of contraction, i.e., H(.∇)kU = Sym (H) (.∇)kU .

This can be shown by defining the symmetric part of H as [11]:

Sym(H) =
1

k!

∑
σ∈S

σ(H) (21)

for all permutations σ ∈ S, and S denotes the symmetric group of permutations on {1, ..., k}.
The linear operator σ is defined as: σ(vi1 ⊗· · ·⊗vik) := viσ(1) ⊗· · ·⊗viσ(k) for vi1 ⊗· · ·⊗vik ∈
Hk(C2), where [i1, · · · , ik] ∈ {1, 2}. Hk(C2) is the set of all kth order tensors. Because

the sequence of differentiation is interchangable, ∇kU is invariant under the permutation

operation. Since the symmetric part of a scalar is the scalar itself, we have:

H(.∇)kU = Sym
(
H(.∇)kU

)
= Sym (H) (.∇)kU (22)
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Substitution of Eqs. 16, 19 and 20 into 17 leads to the expression for the stress field at

O(ζα):

τ (α)(x,y, s) =
α∑
k=0

G(k)(y, s).(.∇x)k∇xU
(α−k)(x, s) (23)

in which, G(k)(y, s) is an order (k + 2) tensor and written as:

G(k)(y, s) = G(y, s)
[
H(k)(y, s)⊗ I + ∇yH

(k+1)(y, s)
]

(24)

where, ⊗ and I are the dyadic product and second order identity tensor, respectively, and

H(0) = 1. Substituting Eqs. 23 and 24 into Eq. 18a, we obtain the equilibrium equation for

H(1)(y, s):

∇y.

{
G(y, s)

[
I + ∇yH

(1)(y, s)
]}

= 0 (25)

which is defined over the unit cell domain. H(1)(y, s) is unique when the local periodicity

condition is applied and average is set to vanish, i.e.,
〈
H(1)(y, s)

〉
= 0, where the averaging

operator 〈·〉 is defined as:

〈·〉 =
1

|Θ|

∫
Θ

(·) dy (26)

where |Θ| is the area of the unit cell. The O(1) macroscale balance equation is obtained by

applying the averaging operator to Eq. 18b (with α = 0) and considering Eqs. 19 and 23:

Ḡ(0)..∇2
xU

(0)(x, s) = ρ0s
2U (0)(x, s) (27)

where, Ḡ(0)(s) =
〈
G(0)(y, s)

〉
is the O(1) homogenized shear moduli, and ρ0 =

〈
ρ(y)

〉
is the

homogenized density. Overbar denotes the homogenized value throughout this manuscript.

The procedure to evaluate influence functions and derive momentum balance equations

presented above can be generalized for higher orders, i.e., α ≥ 0. At order O(ζα), the equilib-

rium equation for the influence function, H(α+2), is derived by substituting Eqs. 19, 20, 23, 24

and lower order equilibrium equations for the influence functions (e.g., Eq. 25) and macroscale

balance equations up to order O(ζα) (e.g., Eq. 27) into Eq. 18b. The macroscale balance

equation at order O(ζα+1) is then obtained by substituting Eqs. 19, 20, 23, 24 and lower order

equilibrium equations for influence functions and macroscale balance equations into Eq. 18b

at O(ζα+1) and applying the averaging operator. The equilibrium equation for the influence

function, H(α+2), is derived as:

G(α)(y, s) + ∇y.G
(α+1)(y, s) = θ(y)

α∑
j=0

H(j)(y, s)⊗D(α−j)(s) (28)
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where, D(α−j)(s) is the O(ζα−j) homogenized shear moduli expressed as:

D(α−j)(s) = Ḡ(α−j)(s)−
α−j∑
m=1

θ(y)H(m)(y, s)⊗D(α−j−m)(s) (29)

for α − j ≥ 1 and D(0)(s) = Ḡ(0)(s). The macroscale balance equation at O(ζα) is obtained

as:
α∑
n=0

D(n)(.∇)n+2
x U (α−n)(x, s) = ρ0s

2U (α)(x, s) (30)

The boundary value problems to evaluate the influence functions and compute the homogenized

shear moduli are summarized in Box 1.

Given: Viscoelastic shear modulus, G(y, s), and density, ρ(y).

Find: Microscale influence functions, H(n+1)(y, s), and

the homogenized shear moduli, D(n)(s), for n = 0, 1, ..., 6, such that:

• Equilibrium:

n = 0, ∇y.G
(0)(y, s) = 0

n = 1, ..., 6, ∇y.G
(n)(y, s) = θ(y)

n−1∑
j=0

H(j)(y, s)⊗D(n−1−j)(s)−G(n−1)(y, s)

• Periodic boundary condition:

H(n+1)(y, s) = H(n+1)(y + l̂, s), y ∈ ∂Θ

• Normalization condition: 〈
H(n+1)(y, s)

〉
= 0

• The homogenized shear moduli:

D(0)(s) = Ḡ(0)(s)

D(n)(s) = Ḡ(n)(s)−
n∑

m=1
θ(y)H(m)(y, s)⊗D(n−m)(s)

Box 1: Boundary value problems for the evaluation of the influence functions and
computation of the homogenized shear moduli.

4 Spatial-temporal nonlocal homogenization model

4.1 Higher order gradient formulation

In this section, we propose a novel spatial-temporal nonlocal homogenization model for anti-

plane shear wave propagation in viscoelastic composites. The nonlocal model is derived based
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on the macroscale momentum balance equations and all the model parameters are computed

from the homogenized shear moduli and density which are determined through the asymptotic

analysis. The key novelty of the proposed model is the introduction of the temporal nonlocal

term that is derived from high order macroscale momentum balance equations.

Remark 2. For macroscopically orthotropic composites, the homogenized shear moduli at

odd and even orders have the following characteristics: (1) D(i) = 0, i is odd; (2) The

components of D(0), D(2), D(4), D(6) with odd number of repeated indices are zero (e.g.,

D
(0)
12 =D

(2)
1112=D

(4)
111112=D

(6)
11111112 = 0).

This can be shown by considering the two planes of material symmetry that have unit

normals, ê1 and ê2. The corresponding transformation matrix for reflection with respect to

the two planes are:

R̄ =

−1 0

0 1

 , ¯̄R =

1 0

0 −1


The orthotropy condition requires the shear moduli is invariant under reflection [34], i.e.,

D(i) = R̄TD(i)R̄ = ¯̄RTD(i) ¯̄R, which implies that the components of the moduli tensor with

odd number of repeated index have to be 0. For example, D
(1)
111 = R̄11R̄11R̄11D

(1)
111 and D

(2)
1112 =

R̄11R̄11R̄11R̄22D
(1)
1112, indicating D

(1)
111 = 0 and D

(2)
1112 = 0, respectively.

Considering that the macroscopic behavior of the composite is orthotropic and using Re-

mark 2, the macroscale momentum balance equations are written in indicial notation as:

O(1) : ρ0s
2U (0)(x, s)−D(0)

kl (s)U
(0)
,kl = 0 (31a)

O(ζ1) : ρ0s
2U (1)(x, s)−D(0)

kl (s)U
(1)
,kl = 0 (31b)

O(ζ2) : ρ0s
2U (2)(x, s)−D(0)

kl (s)U
(2)
,kl = D

(2)
klmn(s)U

(0)
,klmn (31c)

O(ζ3) : ρ0s
2U (3)(x, s)−D(0)

kl (s)U
(3)
,kl = D

(2)
klmn(s)U

(1)
,klmn (31d)

O(ζ4) : ρ0s
2U (4)(x, s)−D(0)

kl (s)U
(4)
,kl = D

(2)
klmn(s)U

(2)
,klmn +D

(4)
klmnpq(s)U

(0)
,klmnpq (31e)

O(ζ5) : ρ0s
2U (5)(x, s)−D(0)

kl (s)U
(5)
,kl = D

(2)
klmn(s)U

(3)
,klmn +D

(4)
klmnpq(s)U

(1)
,klmnpq (31f)

O(ζ6) : ρ0s
2U (6)(x, s)−D(0)

kl (s)U
(6)
,kl = D

(2)
klmn(s)U

(4)
,klmn +D

(4)
klmnpq(s)U

(2)
,klmnpq

+D
(6)
klmnpqrs(s)U

(0)
,klmnpqrs (31g)

O(ζ7) : ρ0s
2U (7)(x, s)−D(0)

kl (s)U
(7)
,kl = D

(2)
klmn(s)U

(5)
,klmn +D

(4)
klmnpq(s)U

(3)
,klmnpq

+D
(6)
klmnpqrs(s)U

(1)
,klmnpqrs (31h)

where, D(0), D(2), D(4), D(6) have 2, 8, 32, 128 non-zero components, respectively. Moreover,

only the symmetric parts of these tensors affect the solution, as a consequence of Remark 1. The
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number of non-zero independent components in the symmetric part, Sym(D(0)), Sym(D(2)),

Sym(D(4)), Sym(D(6)) are, 2, 3, 4, 5, respectively. Sym(D(0)) = D(0).

Equations 31a-h are combined into a single homogenized momentum balance equation by

averaging the displacement field (Eq. 14) at each scale:

U(x, s) =
7∑
i=0

ζiU (i)(x, s) +O(ζ8) (32)

where, U(x, s) denotes the homogenized displacement field of O(ζ8) accuracy. Combining the

two lowest order balance equations (Eq. 31a and Eq. 31b) leads to the classical local homog-

enization model which is valid in the absence of wave dispersion (i.e., when the wavelength is

much larger than the microstructure). The spatial nonlocal homogenization model previously

studied in Refs. [20, 3, 28] incorporates additional two equations (Eq. 31c and Eq. 31d). It

predicts wave dispersion in the long-wavelength regime in the first pass band. The prediction

error increases as the wavelength becomes shorter, therefore, the initiation of the stop band

and beyond is not well captured. Following the line of increasing asymptotic accuracy by

incorporating higher order momentum balance equations, Eqs. 31a-h are combined to con-

struct the proposed spatial-temporal nonlocal homogenization model. The direct weighted

summation of Eqs. 31a-h results in a spatial nonlocal homogenization model with higher or-

der spatial gradient terms (D(4)(.∇x)6U and D(6)(.∇x)8U) in addition to the fourth order

spatial gradient term (D(2)(.∇x)4U). While it is interesting to probe the role of D(4)(.∇x)6U

and D(6)(.∇x)8U terms in capturing wave dispersion, we limit our scope to the fourth order

gradient nonlocal equation based on the observation that it captures wave dispersion and at-

tenuation beyond the long-wavelength regime [23]. In what follows, we transform the higher

order spatial gradient terms in Eqs. 31a-h to fourth order gradient terms (i.e., spatial nonlocal,

temporal nonlocal, and mixed spatial-temporal nonlocal). It is observed that Eqs. 31a, c, e, g

and Eqs. 31b, d, f, h, have identical equation form and coefficients. Therefore, all derivations

on the former equations directly applies to the latter ones. Only the derivations on the even

orders (i.e., Eqs. 31a, c, e, g) are presented in the remainder of this section.

Considering Remark 1 and without loss of generality, Eq. 31g is expressed as:

ρ0s
2U (6)(x, s)−D(0)

kl (s)U
(6)
,kl = D

(2)
(klmn)(s)U

(4)
,klmn +D

(4)
(klmnpq)(s)U

(2)
,klmnpq

+ ν(s)D
(6)
(klmnpqrs)(s)U

(0)
,klmnpqrs + (1− ν(s))D

(6)
(klmnpqrs)(s)U

(0)
,klmnpqrs

(33)

where, ν(s) is a scalar parameter. Sym(D(6)) in the third term on the right side of Eq. 33 is

approximated as:

D
(6)
(klmnpqrs)(s) ≈ A

(1)(s)Sym
(
D

(0)
kl (s)D

(4)
(mnpqrs)(s)

)
(34)
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where, A(1)(s) is a complex valued scalar that minimizes the discrepancy between the non-zero

independent components of Sym(D(6)) and Sym
(
D(0) ⊗ Sym(D(4))

)
in the Euclidean norm,

and it is computed by the Moore-Penrose pseudo-inverse. Substituting Eq. 34 and Eq. 31e

into the third term on the right side of Eq. 33 and considering Remark 1:

ν(s)D
(6)
(klmnpqrs)(s)U

(0)
,klmnpqrs ≈ ν(s)A(1)(s)Sym

(
D

(0)
kl (s)D

(4)
(mnpqrs)(s)

)
U

(0)
,klmnpqrs =

ν(s)A(1)(s)D
(0)
kl (s)D

(4)
(mnpqrs)(s)U

(0)
,klmnpqrs =

ν(s)A(1)(s)D
(0)
kl (s)

[
ρ0s

2U (4)(x, s)−D(0)
mn(s)U (4)

,mn −D
(2)
(mnpq)(s)U

(2)
,mnpq

]
,kl

(35)

Substituting Eq. 35 for the the third term on the right side of Eq. 33:

ρ0s
2U (6)(x, s)−D(0)

kl (s)U
(6)
,kl =

(
D

(2)
(klmn)(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)
U

(4)
,klmn+

ν(s)A(1)(s)ρ0s
2D

(0)
kl (s)U

(4)
,kl +

(
D

(4)
(klmnpq)(s)− ν(s)A(1)(s)D

(0)
kl (s)D

(2)
(mnpq)(s)

)
U

(2)
,klmnpq+

(1− ν(s))D
(6)
(klmnpqrs)(s)U

(0)
,klmnpqrs

(36)

Similar to Eq. 34, the non-zero independent components of Sym(D(4)) is approximated as:

D
(4)
(klmnpq)(s) ≈ A

(2)(s)Sym
(
D

(2)
(klmn)(s)D

(0)
pq (s)

)
(37)

where A(2)(s) is computed by the Moore-Penrose pseudo-inverse. Substituting Eq. 37 into

Eq. 36, considering Remark 1 and substituting Eq. 31c into the resulting equation forD
(0)
pq (s)U

(2)
,pq ,

we obtain:

ρ0s
2U (6)(x, s)−D(0)

kl (s)U
(6)
,kl =

(
D

(2)
(klmn)(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)
U

(4)
,klmn+

ν(s)A(1)(s)ρ0s
2D

(0)
kl (s)U

(4)
,kl +

(
A(2)(s)− ν(s)A(1)(s)

)
D

(2)
(klmn)ρ0s

2U
(2)
,klmn+[

(1− ν(s))D
(6)
(klmnpqrs)(s)−

(
A(2)(s)− ν(s)A(1)(s)

)
D

(2)
(klmn)D

(2)
(pqrs)

]
U

(0)
,klmnpqrs

(38)

By substituting Eq. 31e into Eq. 38 and considering Remark 1 and Eq. 31a, we arrive at the

macroscale momentum balance equation at O(ζ6):

ρ0s
2U (6)(x, s)−D(0)

kl (s)U
(6)
,kl =

(
D

(2)
(klmn)(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)
U

(4)
,klmn+(

2ν(s)A(1)(s)−A(2)(s)
)
ρ0s

2D
(0)
kl (s)U

(4)
,kl +

(
A(2)(s)− ν(s)A(1)(s)

)
ρ2

0s
4U (4)+

E(klmnpqrs)(ν(s), s)U
(0)
,klmnpqrs

(39)

13



where the last term is denoted as the error term and E is expressed as:

E(klmnpqrs)(ν(s), s) =
[
(1− ν(s))D

(6)
(klmnpqrs)(s)−(

A(2)(s)− ν(s)A(1)(s)
)

Sym
(
D

(2)
(klmn)(s)D

(2)
(pqrs)(s) +D

(4)
(klmnpq)(s)D

(0)
rs (s)

)] (40)

The momentum balance equations at O(ζ4) and O(ζ2) are obtained similarly and detailed

derivations are provided in Appendix A. The momentum balance equations at O(ζ7), O(ζ5),

O(ζ3) are derived by the same procedure as O(ζ6), O(ζ4), O(ζ2), respectively. The resulting

macroscale momentum balance equation at order O(ζk) are summarized as follows:

ρ0s
2U (k)(x, s)−D(0)

kl (s)U
(k)
,kl = 0; k = 0, 1 (41a)

ρ0s
2U (k)(x, s)−D(0)

kl (s)U
(k)
,kl =

(
D

(2)
(klmn)(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)
U

(k−2)
,klmn

+
(

2ν(s)A(1)(s)−A(2)(s)
)
ρ0s

2D
(0)
kl (s)U

(k−2)
,kl +

(
A(2)(s)− ν(s)A(1)(s)

)
ρ2

0s
4U (k−2);

k = 2, 3, 4, 5 (41b)

ρ0s
2U (k)(x, s)−D(0)

kl (s)U
(k)
,kl =

(
D

(2)
(klmn)(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)
U

(k−2)
,klmn

+
(

2ν(s)A(1)(s)−A(2)(s)
)
ρ0s

2D
(0)
kl (s)U

(k−2)
,kl +

(
A(2)(s)− ν(s)A(1)(s)

)
ρ2

0s
4U (k−2)

+ E(klmnpqrs)(ν(s), s)U
(k−6)
,klmnpqrs;

k = 6, 7 (41c)

Considering the definition for the homogenized displacement field (Eq. 32) and the summation

of momentum balance equation at order O(ζk) multiplied by ζk, result in the homogenized

momentum balance equation:

ρ0s
2U(x, s)−D(0)

kl (s)U,kl =
(
D

(2)
(klmn)(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)
U,klmn+(

2ν(s)A(1)(s)−A(2)(s)
)
ρ0s

2D
(0)
kl (s)U,kl +

(
A(2)(s)− ν(s)A(1)(s)

)
ρ2

0s
4U+

ζ6E(klmnpqrs)(ν(s), s)U
(0)
,klmnpqrs + ζ7E(klmnpqrs)(ν(s), s)U

(1)
,klmnpqrs +O(ζ8)

(42)

Equation 42 represents a one-parameter family of nonlocal homogenization models as a function

of ν(s). For arbitrarily chosen ν(s), these models achieve O(ζ6) asymptotic accuracy. The

detailed procedure for choosing ν(s) and obtaining a unique nonlocal model is provided in the

next section.

We note that Eq. 42 is formally similar to the gradient elasticity models [44, 5, 55, 16]

and the homogenization model [62], where spatial nonlocal, temporal nonlocal and mixed

spatial-temporal nonlocal terms are present, and the length-scale parameters associated with

these terms are calibrated. The proposed model is unique in that all the model parameters are
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consistently derived from the homogenization process and it applies to viscoelastic composites.

4.2 Identification of ν(s)

It is observed in Eq. 42 that the asymptotic error term depends on ν(s). We therefore

seek to set ν(s) such that the error term is minimized. This requires knowledge of U
(0)
,klmnpqrs

which is not available a-priori. As an alternative, we pursue ν(s) such that all the independent

components of the coefficient tensor of the error term (i.e., E) are minimized. To be explicit,

they are written in vector form: e = [E(1×8) E(1×62×2) E(1×42×4) E(1×22×6) E(2×8)]
T , where

the subscript (m×n) denotes index m repeated n times. In addition, the dynamic stability

of the general fourth order governing equation imposes constraints to the model parameters

associated with the nonlocal terms. This poses a constrained minimization problem for the

identification of ν(s).

Neglecting the O(ζ6) and higher order error terms, Eq. 42 is rewritten as:

ρ0s
2U(x, s)−D(0)

kl (s)U,kl = α
(1)
(klmn)(s)U,klmn + ρ0s

2α
(2)
kl (s)U,kl + ρ2

0s
4α(3)(s)U (43)

where,

α
(1)
(klmn)(s) =Sym

(
D

(2)
klmn(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)

(44a)

α
(2)
kl (s) =

(
2ν(s)A(1)(s)−A(2)(s)

)
D

(0)
kl (s) (44b)

α(3)(s) =A(2)(s)− ν(s)A(1)(s) (44c)

For elastic composites, D(0), α(1), α(2) and α(3) are real-valued constant parameters. For vis-

coelastic composites, they are complex-valued and functions of the Laplace variable. Substitut-

ing a harmonic wave solution, U = U0(s)ei(k1x1+k2x2), into Eq. 43, the resulting equation is ex-

pressed in polar coordinate system for the wave vector, k1 = k(s, θ) cos θ and k2 = k(s, θ) sin θ.

In this study, the imaginary and real parts of the wave vector are assumed to be co-linear,

thus θ is taken as real-valued. The co-linearity assumption has been previously employed in

the dispersion analysis of viscoelastic materials [10, 2]. The dispersion relation in terms of the

Laplace variable is obtained as:

A(s, θ)k4 +B(s, θ)k2 + C(s, θ) = 0 (45)
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where,

A(s, θ) =α
(1)
(1111)(s) cos4 θ + α

(1)
(2222)(s) sin4 θ + 6α

(1)
(1122)(s) cos2 θ sin2 θ (46a)

B(s, θ) =−
(
α

(2)
11 (s)ρ0s

2 +D
(0)
11 (s)

)
cos2 θ −

(
α

(2)
22 (s)ρ0s

2 +D
(0)
22 (s)

)
sin2 θ (46b)

C(s, θ) =α(3)(s)ρ2
0s

4 − ρ0s
2 (46c)

The solution of Eq. 45, k(s, θ), relates the wavenumber, the Laplace variable and the direction

of wave vector as:

(
k{1,2}(s, θ)

)2
=
−B(s, θ)−

√
B2(s, θ)− 4A(s, θ)C(s, θ)

2A(s, θ)
(47a)(

k{3,4}(s, θ)
)2

=
−B(s, θ) +

√
B2(s, θ)− 4A(s, θ)C(s, θ)

2A(s, θ)
(47b)

For elastic composites, the dynamic stability of Eq. 43 in terms of the constant model

parameters is analyzed by the limit analysis in the frequency domain [44, 55]. Replacing s

in Eq. 45 with iω, the dispersion relation in terms of frequency is obtained. Consider the

limiting scenarios: 1) quasi-static (i.e., ω → 0); and 2) infinitely long wave (i.e., k → 0), which

respectively leads to the solutions:

k{1,2} = 0, k{3,4} = ±

√√√√(D(0)
11 cos2 θ +D

(0)
22 sin2 θ

)
A(θ)

(48a)

ω{1,2} = 0, ω{3,4} = ±

√
− 1

α(3)ρ0
(48b)

In view of the harmonic wave solution in the frequency domain, U = U0e
i(k1x1+k2x2−ωt), the

stability of wave propagation in the quasi-static limit requires that k is real; and infinitely long

wave limit requires that ω is real. These are achieved by the following constraints:

A(θ) > 0, α(3) < 0 (49)

In order to generalize these ideas to viscoelastic composites, the following constraints on

the model parameters are proposed:

Re
[
A(s, θ)

]
> 0 (50a)

Re
[
α(3)(s)

]
< 0, Im

[
α(3)(s)

]
= 0 (50b)

In the quasi-static limit, viscoelastic phases within the composites behave as elastic ones,

the parameters are independent of the Laplace variable s. Equation 50a therefore recovers
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the constraint for elastic composites. In the infinitely long wave limit, Eq. 50b is derived by

analyzing the response of governing equation (Eq. 43) under an impulse load and examining

the location of poles of the transfer function, as a common approach to analyze the system

stability in the Laplace domain [21]. The detailed derivation is provided in Appendix B.

Employing the stability constraints introduced above and using the Euclidean norm of e

as the objective function, the identification problem for ν(s) is stated in Box 2.

Given: Homogenized material properties, D(0)(s), D(2)(s), ρ0, and the approximation

parameters A(1)(s) and A(2)(s).

Find: ν(s), such that:

• Minimize:
∥∥e(ν, s)

∥∥
• Subject to constraints:

Re
[
A(s, θ)

]
> 0; Re

[
α(3)(s)

]
< 0, Im

[
α(3)(s)

]
= 0, θ ∈ [0, π/2]

Box 2: Summary of the constrained minimization problem for the identification of ν(s).

4.3 Reduced order nonlocal model

Straightforward implementation of the proposed fourth order PDE to simulate transient

wave propagation is problematic since the numerical solution contains both the physical and

non-physical wavenumber solutions. Furthermore, the evaluation of the fourth order governing

equation requires setting high order boundary conditions, which is usually not trivial to obtain.

In this section, we propose a reduced order (i.e., second order) spatial-temporal nonlocal

homogenization model to simulate the transient behavior of the composite. This is achieved

by identifying and retaining the physical wavenumber solutions of the original fourth order

PDE, while eliminating the non-physical branches.

The identification and selection of the physical wavenumber is critical in obtaining sta-

ble and physically meaningful dynamics [55, 23]. Considering the harmonic solution form,

U = U0(s)ei(k1x1+k2x2), negative imaginary part of the wavenumber results in exponentially

amplifying harmonic wave. The physically meaningful wavenumber is therefore identified as

the one that has non-negative imaginary part. Examining Eq. 47 indicates that the physically

meaningful wavenumber is:

k̄2(s, θ) =


(
k{1,2}

)2
, ω ≤ ωc(

k{3,4}
)2
, ω > ωc

(51)
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where the switch, ωc, between the two branches of the solutions is the imaginary part of the

critical Laplace variable, sc = σ + iωc. In order to ensure that the continuity of the physical

wavenumber at the switch,
(
k{1,2}(s, θ)

)2
=
(
k{3,4}(s, θ)

)2
is satisfied:

−
√
B2(s, θ)− 4A(s, θ)C(s, θ) =

√
B2(s, θ)− 4A(s, θ)C(s, θ) (52)

The complex-valued equation above is equivalent to the constrained system of equations:

Im
[
B2(s, θ)− 4A(s, θ)C(s, θ)

]
= 0 (53a)

Re
[
B2(s, θ)− 4A(s, θ)C(s, θ)

]
≤ 0 (53b)

Substituting Eq. 46 and sc into Eq. 53a results in an equation from which ωc is obtained.

ωc is evaluated analytically for elastic composites. For viscoelastic composites, ωc is solved

numerically, since the model parameters are dependent on the Laplace variable, resulting in a

nonlinear equation. The inequality condition in Eq. 53b provides the criterion to choose the

appropriate ωc among the multiple solutions of Eq. 53a.

Selecting only the physical wavenumber for the solution of Eq. 45 is captured by the

following dispersion equation:

k2 − k̄2(θ, s) = 0 (54)

multiplying Eq. 54 with −ρ0s
2/k̄2(θ, s), the dispersion relation becomes:

φ(s, θ)
(
D

(0)
11 (s) cos2 θ +D

(0)
22 (s) sin2 θ

)
k2 + ρ0s

2 = 0 (55)

where,

φ(s, θ) =
−ρ0s

2

k̄2(θ, s)
(
D

(0)
11 (s) cos2 θ +D

(0)
22 (s) sin2 θ

) (56)

Equation 55 resembles the dispersion relation of the classical homogenization model (Eq. 31a)

except for the factor φ(s, θ), which results from the nonlocal terms in the fourth order gov-

erning equation. Compared to the dispersion relation of the original fourth order equation

(Eq. 45), Eq. 55 is regularized in that the dispersion relation contains the physical branches

of the solution only and the non-physical branches are suppressed. The regularized nonlocal

momentum balance equation is then expressed as:

ρ0s
2U(x, s)−De

kl(s, θ)U,kl = 0 (57)

in which, De
kl(s, θ) = φ(s, θ)D

(0)
kl (s). The nonlocal factor, φ(s, θ), depends on the Laplace vari-

able and the direction of wave propagation. The direction-dependence reveals the anisotropic
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nature of wave dispersion, which is also observed by Phani et al. [54] and Wautier and Guzina

[62].

Equation 57 is a second order PDE that shares the same structure as the classical ho-

mogenization model but expressed in terms of nonlocal effective stiffness that is frequency-

and direction-dependent. In a transient dynamic analysis, computing the direction-dependent

nonlocal factor requires knowledge of the direction of local wave vector at each material point

which evolves as a function of time. Since the wave vector is normal to the wave front, φ(s, θ)

can be obtained by solving for the evolution of wave front for any given s. A comprehensive

study of techniques to track wave front can be found in [17]. In this manuscript, we use a

simplified approach that prescribes all the material points to have the same property that cap-

tures wave propagation of Eq. 57 exactly in θ = 0 and θ = π/2 directions only. Substituting

test harmonic wave U = U0(s)ei(k1x1) and U = U0(s)ei(k2x2) into Eq. 57, the effective stiffness

are obtained: De
11(s) = −ρ0s

2/k̄2(s, 0), De
22(s) = −ρ0s

2/k̄2(s, π/2). The resulting momentum

balance equation is:

ρ0s
2U(x, s)−De

kl(s)U,kl = 0 (58)

This operation in fact reduces the direction-dependent nonlocal effective stiffness to a direction-

independent one. As a result, the reduced dispersion relation matches that of Eq. 55 exactly

in θ = 0 and θ = π/2 directions, whereas the solutions for arbitrary wave direction θ are

approximated. The effect of this approximation is discussed in the Section 6.1. The resulting

boundary value problem to evaluate the macroscale displacement is summarized in Box 3.

Given: Effective nonlocal stiffness, De
kl(s), and homogenized density, ρ0.

Find: Macroscale displacement U(x, s) : Ω× C→ C, such that:

• Momentum balance:

ρ0s
2U(x, s)−De

kl(s)U,kl = 0

• Boundary conditions:

U(x, s) = ũ(x, s), x ∈ Γu

De
klU,lnk = t̃(x, s), x ∈ Γt

Box 3: Boundary value problem for macroscale displacement U(x, s).

5 Numerical implementation

In this section, the numerical evaluation of the microscale influence functions, computation

of the homogenized shear moduli and model parameters, and the solution to the macroscale
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momentum balance equation are presented. The analyses are performed in the Laplace domain

using complex algebra. For a fixed but arbitrary Laplace variable, the microscale influence

functions are evaluated using the standard finite element method (FEM) with C0-continuous

shape functions. Isogeometric analysis (IGA) with C1-continuous NURBS (Non-Uniform Ra-

tional B-Splines) basis functions is employed to evaluate the macroscale momentum balance

equation. The time domain response is then obtained by numerical inverse Laplace transform.

5.1 Microscale problem

The numerical implementation of the first two influence functions, H(1) and H(2), have

been previously provided in Refs. [29, 30], and skipped herein for brevity. In what follows, we

provide a general procedure to compute the influence functions at higher orders. Considering

Eq. 24 for G(n)(y, s), the weak form of equilibrium equation for the (n+1)th influence function

(Box 1, n ≥ 1) is written as:∫
Θ
G(y, s)∇yw(y).∇yH

(n+1)(y, s)dy = −
∫

Θ
G(y, s)∇yw(y).

(
H(n)(y, s)⊗ I

)
dy

+

∫
Θ
w(y)G(n−1)(y, s)dy −

∫
Θ

w(y)

θ(y)
n−1∑
j=0

H(j)(y, s)⊗D(n−1−j)(s)

 dy (59)

where, w ∈ Wper ⊂ H1(Θ,R) is the weighting function; Wper is space of sufficiently smooth

functions that is periodic along the microstructure boundary, ΓΘ; and H1(Θ,R) is the Sobolev

space of scalar-valued functions with square integrable first derivative over the domain of

microstructure, Θ. Rewriting H(n+1)(y, s) = H
(n+1)
re + iH

(n+1)
im , where H

(n+1)
re and H

(n+1)
im

are real. The solutions are sought in the function space, Hper{re,im} ⊂ H1(Θ,Rn+2):

Hper{re,im} :=
{
H

(n+1)
{re,im}(y, s) | H

(n+1)
{re,im}(y, s) is periodic ∀y ∈ ΓΘ; 〈H(n+1)

{re,im}(y, s)〉 = 0
}

(60)

In the discrete approximation of H
(n+1)
{re,im}, periodicity is imposed by coupling the nodes

at the opposing edges as the master and slave nodes. The degrees of freedom associated

with the slave nodes are eliminated through static condensation. To implement this coupling,

the microstructure is discretized such that the nodal positions at the opposing boundaries

match exactly. In addition, the value of the influence function is set to zero at corner nodes

to eliminate rigid body modes. The normalization condition is imposed by subtracting the

microstructural average of the influence functions from each nodal value, which is done as a

post-processing step. The finite dimensional subspace for the trial solutions, Hhper ⊂ Hper, is
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constructed as:

Hhper{re,im} :=

H(n+1),h
{re,im} (y, s)

∣∣∣ H(n+1),h
{re,im} (y, s) =

M∑
A=1

N [A](y)H
(n+1)[A]
{re,im} (s);H

(n+1)[c]
{re,im} (s) = 0


(61)

where, N [A](y) is the shape function, M the number of nodes, superscript h indicates dis-

cretization, and H
(n+1)[A]
{re,im} (s) denotes the influence function matrix at node A. H

(n+1)[c]
{re,im} (s) is

the influence function at the corner nodes.

Substituting the discretization of the influence function and the weighting function into

the weak form and expressing the terms in matrix-vector form using the Voigt notation yields

the following discrete system:

Kd(n+1) = F(n+1) (62)

which is formed by assembling the element matrices:

K =
Ne
A
e=1

Ke; d(n+1) =
Ne
A
e=1

d(n+1)e; F(n+1) =
Ne
A
e=1

F(n+1)e (63)

A is the assembly operator, superscript e denotes the element index and Ne the number of

elements. The element stiffness matrix is expressed as:

Ke = G(y, s)

∫
Θe

Be (y)T Be (y) dy (64)

where Θe denotes the domain of element e, T the matrix transpose, and

Be =
[
Be[1] Be[2] . . . Be[Me]

]
(65a)

Be[A] =
[
N
e[A]
,y1 (y) N

e[A]
,y2 (y)

]T
(65b)

For the convenience and efficiency of numerical implementation, the same discretization of

microstructure and shape functions are used for all influence functions, therefore, the stiffness

matrix is only assembled and factorized (e.g., LU factorization) once. The right-hand-side

force matrices are assembled for each influence function. The components of the influence
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functions are listed as follows:

H(1),h(y, s) =
[
H

(1),h
1 (y, s) H

(1),h
2 (y, s)

]T
(66a)

H(2),h(y, s) =
[
H

(2),h
(11) (y, s) H

(2),h
(12) (y, s) H

(2),h
(22) (y, s)

]T
(66b)

...

H(7),h(y, s) =
[
H

(7),h
(1×7)(y, s) H

(7),h
(1×62)(y, s) H

(7),h
(1×52×2)(y, s) H

(7),h
(1×42×3)(y, s)

H
(7),h
(1×32×4)(y, s) H

(7),h
(1×22×5)(y, s) H

(7),h
(1×12×6)(y, s) H

(7),h
(2×7)(y, s)

]T
(66c)

The element matrix of influence function H(n+1),h(y, s) is written as:

d
(n+1)e
H =

[
H(n+1)e[1] H(n+1)e[2] . . . H(n+1)e[Me]

]T
(67)

where, Me is the number of nodes in the element. The force matrix for element e is written

as a summation of three components:

F
(n+1)e
H = F

(n+1)e
H,1 + F

(n+1)e
H,2 + F

(n+1)e
H,3 (68)

where,

F
(n+1)e
H,1 = −G(y, s)

∫
Θe

Be (y)T Sym
(
P(n)e (y, s)

)
dy (69a)

F
(n+1)e
H,2 =

∫
Θe

Ne (y)T Sym
(
G(n−1)e (y, s)

)
dy (69b)

F
(n+1)e
H,3 = −

∫
Θe

Ne (y)T Sym
(
Q(n−1)e (y, s)

)
dy (69c)

Sym
(
P(n)e (y, s)

)
, Sym

(
G(n−1)e (y, s)

)
and Sym

(
Q(n−1)e (y, s)

)
are defined in Eq. 75. As-

sembling the force matrix, imposing periodic boundary condition and setting the degree of

freedom at corner nodes to be 0, the boundary value problem is solved with standard finite

element method. Upon normalization, the components of influence function H(n+1),h(y, s) are

obtained:

H
(n+1),h
(·) (y, s) =

M∑
A=1

N [A](y)H
(n+1)[A]
(·) (s) (70)

where, the normalization is computed as:

H
(n+1)[A]
(·) (s) = H

(n+1)[A]
(·)0 (s)− 1

|Θ|

∫
Θ

M∑
A=1

N [A](y)H
(n+1)[A]
(·)0 (s)dy (71)
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in which, H
(n+1)[A]
(·)0 (s) are the nodal values obtained by solving Eq. 62 before normalization.

In view of Eq. 59, computation of element force matrices requires information from the

inferior orders, which results in a successive solution of the influence functions. The detailed

evaluation procedure is provided in what follows.

5.1.1 Evaluation of H(1)(y, s) and D(0)(s)

At n = 0, the expression for P(0)e (y, s) is:

P(0)e (y, s) =

 1 0

0 1

 (72)

whereas G(−1)e = 0 and Q(−1)e = 0. Substituting these expressions into Eq. 69, H
(1),h
k (y, s)

is obtained from the procedure described above. G
(0)
kl (y, s) is obtained by substituting Eq. 70

for H
(1)
k (y, s) into Eq. 24:

G
(0)
kl (y, s) = G(y, s)

δkl +

M∑
A=1

B
[A]
l (y)H

(1)[A]
k (s)

 (73)

where, B
[A]
l (y) = N

[A]
,l (y). According to Eq. 21, the symmetric part is computed as:

G
(0)
(kl)(y, s) =

1

2

(
G

(0)
kl (y, s) +G

(0)
lk (y, s)

)
(74)

and D
(0)
(kl)(s) is computed by Eq. 26 accordingly.

5.1.2 Evaluation of higher order influence functions and homogenized shear

moduli

The procedure to evaluate higher order influence functions, H(n+1)(y, s) and homogenized

shear moduli, D(n)(s), n = {1, 2, ..., 6}, is provided in a general form. Sym
(
P(n)e (y, s)

)
,
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Sym
(
G(n−1)e (y, s)

)
and Sym

(
Q(n−1)e (y, s)

)
are written as:

Sym
(
P(n)e (y, s)

)
=

1

(n+ 1)!

 (n+ 1)!H
(n)e
(1×n) n(n!)H

(n)e
(1×(n−1)2) · · · n!H

(n)e
(2×n) 0

0 n!H
(n)e
(1×n) · · · n(n!)H

(n)e
(12×(n−1))

(n+ 1)!H
(n)e
(2×n)

 (75a)

Sym
(
G(n−1)e (y, s)

)
=[

G
(n−1)e
(1×n) (y, s) G

(n−1)e
(1×(n−1)2)(y, s) · · · G

(n−1)e
(12×(n−1))

(y, s) G
(n−1)e
(2×n) (y, s)

]
(75b)

Sym
(
Q(n−1)e (y, s)

)
=

θ(y)
[
Q

(n−1)e
(1×n) (y, s) Q

(n−1)e
(1×(n−1)2)(y, s) · · · Q

(n−1)e
(12×(n−1))

(y, s) Q
(n−1)e
(2×n) (y, s)

]
(75c)

where, the expressions for G
(n−1)e
(·) (y, s) and Q

(n−1)e
(·) (y, s) are provided in Appendix C. Sub-

stituting Eq. 75 into Eq. 69, H
(n+1),h
(·) (y, s) is obtained using the same procedure as for

H
(1),h
k (y, s). The homogenized moduli D

(n)
(·) (s) is obtained from Eq. 29. The expressions

for D
(2)
(klmn)(s), D

(4)
(klmnpq)(s) and D

(6)
(klmnpqrs)(s) are obtained as follows:

D
(2)
(klmn)(s) = Ḡ

(2)
(klmn)(y, s)− Sym

(
ρ(y)H

(2)
(kl)(y, s)D

(0)
(mn)(s)

)
(76a)

D
(4)
(klmnpq)(s) = Ḡ

(4)
(klmnpq)(y, s)− Sym

(
ρ(y)H

(2)
(kl)(y, s)D

(2)
(mnpq)(s)

)
− Sym

(
ρ(y)H

(4)
(klmn)(y, s)D

(0)
(pq)(s)

)
(76b)

D
(6)
(klmnpqrs)(s) = Ḡ

(6)
(klmnpqrs)(y, s)− Sym

(
ρ(y)H

(2)
(kl)(y, s)D

(4)
(mnpqrs)(s)

)
− Sym

(
ρ(y)H

(4)
(klmn)(y, s)D

(4)
(pqrs)(s)

)
− Sym

(
ρ(y)H

(6)
(klmnpq)(y, s)D

(0)
(rs)(s)

)
(76c)

5.2 Macroscale problem

The weak form of the boundary value problem defined in Box 3 is written as:∫
Ω
w(x),xkD

e
kl(s)U,xl(x, s)dx +

∫
Ω
w(x)ρ0s

2U(x, s)dx =

∫
Γt
w(x)t̃(x, s)dx (77)

The macroscale displacement is rewritten as: U(x, s) = Ure + iUim, where Ure and Uim are

respectively the real and imaginary parts. Using Galerkin’s approximation, the finite dimen-

sional solution space for the macroscale displacement is written as:

Uh{re,im} :=

Uh{re,im}(x, s) ∈ H1(Θ,R)
∣∣∣ Uh{re,im}(x, s) = ũ{re,im}(s) ∀x ∈ Γu

 (78)
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Equation 77 is evaluated by Isogeometric Analysis (IGA) with NURBS basis functions.

Among the various desirable characteristics, e.g., exact geometric representation [25], its appli-

cation in wave propagation problems [27, 26, 63, 15] has demonstrated high rate of convergence

due to the so-called k-refinement, by which Cp−1-continuity (p is the polynomial order of the

basis functions) could be achieved. It is noted that standard FEM with C0-continuous shape

functions can also be employed to numerically evaluate Eq. 77, provided that a sufficiently fine

mesh is used to avoid numerical dispersion.

In the context of IGA, the basis functions that approximate the solution field are ones

representing the geometry of the physical domain. In two-dimensions, the physical domain is

represented by the NURBS basis functions through the mapping:

x(ξ) =

Mbf∑
A=1

N [A],p(ξ)P[A] (79)

where, {P[A]}Mbf

A=1 ∈ R2 is a set of control points in the physical domain, N [A],p is the Ath

NURBS basis function that is constructed from B-spline basis functions of polynomial order p.

C1-continuous basis functions are used for all the numerical examples in Section 6, therefore

p = 2. The basis function is parameterized by knot vectors that are defined in the parametric

domain Ω̂ ∈ R2. The parametric domain is partitioned into elements by knots, which forms

the elements in physical domain through mapping Eq. 79. A detailed discussion of the NURBS

basis functions and IGA are provided in Ref. [12]. By virtue of the isogeometric concept, the

macroscale displacement in the parametric domain is approximated by:

Ûh(ξ, s) =

Mbf∑
A=1

N [A],p(ξ)U [A](s) (80)

The macroscale displacement in the physical domain is obtained by considering the inverse of

the geometric mapping (Eq. 79):

Uh(ξ, s) = Ûh(ξ, s) ◦ x−1 (81)

5.3 Uncoupled multiscale solution strategy

In this section, we present the solution strategy to the multiscale system. The micro-

and macroscale problems are uncoupled because the microscale boundary value problems are

independent of the macroscale solution. The microscale boundary value problems are suc-

cessively evaluated in the Laplace domain to compute the homogenized shear moduli, after

which the nonlocal effective stiffness is computed. The macroscale boundary value problem
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Given the convergence region of the inverse Laplace transform integration
Provide inputs: Laplace variable samples

(𝑠" where 𝛼 = 1, 2, … , 𝑁*) and for each 𝑠":

H(1)(y, s↵) and D(0)(s↵)

Microscale

H(2)(y, s↵)

H(3)(y, s↵) and D(2)(s↵)

H(4)(y, s↵)

H(5)(y, s↵) and D(4)(s↵)

H(6)(y, s↵)

H(7)(y, s↵) and D(6)(s↵)

D(0)(s↵), D(2)(s↵)

D(4)(s↵), D(6)(s↵)

Provide inputs: 𝑈(𝒙, 𝑠") for all Laplace variable samples

Numerical inverse Laplace transformation

𝑈(𝒙, 𝑡0) Given a simulation time period

Provide inputs: discrete time 
steps, 𝑡0, 𝛽 = 1, 2, … , 𝑁2.

Parallelization

Approximation parameters:

U(x, s↵)

Macroscale

Parameter: ⌫(s↵)

A(1)(s↵) and A(2)(s↵)

Nonlocal effective stiffness:

Macroscale displacement:

De(s↵)

Figure 1: Computational flowchart.

is then solved to obtain the macroscale displacement in the Laplace domain. Numerical in-

verse Laplace transform is applied to obtain the solution in time domain. The computational

flowchart is shown in Fig. 1.

A numerical inverse Laplace transform algorithm [13, 8] based on the Fast Fourier Trans-

form is used to transform the solution from the Laplace domain to the time domain. In this

algorithm, the accuracy of the numerical inverse transformation is controlled by an algorithm

parameter. It is set to provide sufficient numerical accuracy in all simulations. Fast conver-

gence is achieved by employing the ε-algorithm [40]. A comprehensive study of this algorithm

compared to others can be found in Ref. [14]. With this transformation, the key steps towards

obtaining the macroscale displacement, U(x, t) are described as follows:

1. Given an observation time period, discrete time steps (i.e., tβ where β = 1, 2, · · · , Nt and

Nt is the number of time steps) are generated. The Laplace variable, s, is sampled by sα

where α = 1, 2, · · · , Ns and Ns is the number of samples, within the convergence region
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of the inverse Laplace transform integration, along a vertical line (i.e., of the same real

part) in the complex plane.

2. For each sample, sα, influence functions, H(n+1)(y, sα), and homogenized shear moduli,

D(n)(sα), n = 1, 2, ..., 6, are successively evaluated through the procedure in Section 5.1.

3. Provided with D(0)(sα), D(2)(sα), D(4)(sα) and D(6)(sα), the approximation parameters

are computed by the Moore-Penrose pseudo-inverse: A(1)(sα) = d(6)(sα)
(
d(0,4)(sα)

)(−m)

andA(2)(sα) = d(4)(sα)
(
d(2,0)(sα)

)(−m)
, where d(6)(sα), d(0,4)(sα), d(4)(sα) and d(2,0)(sα)

are vectors of the non-zero independent components of Sym(D(6)), Sym
(
D(0) ⊗ Sym(D(4))

)
,

Sym(D(4)) and Sym
(

Sym(D(2))⊗D(0)
)

. The parameter, ν(sα), is obtained by the con-

strained minimization problem defined in Box 2.

4. With all the homogenized moduli and model parameters computed in the higher order

gradient nonlocal formulation, the nonlocal effective stiffness, De(sα), for the reduced

order model is obtained as detailed in Section 4.3.

5. The macroscale displacement, U(x, sα), is obtained by evaluating the macroscale bound-

ary value problem in Section 5.2.

6. Steps 2-5 are repeated Ns times to compute the macroscale displacements for all sampled

Laplace variables. The complex valued macroscale displacements, U(x, sα) are provided

to the numerical inverse Laplace transform algorithm and the macroscale displacements

for all the time steps in the time domain are obtained.

The uncoupled solution strategy allows an off-line computation of the required nonlocal

effective stiffness for the solution of macroscale displacement for a given microstructure. In

particular, microscale problems are evaluated once in the case of composites with elastic con-

stituents, since they are independent of the Laplace variable. For viscoelastic composites,

the repeated evaluation of Steps 2-5 are implemented in a parallel environment since all the

Laplace variable samples are independent of each other. They are evaluated once for a given

period of simulation time.

6 Model verification

In this section, we assess the capability of the proposed spatial-temporal nonlocal homog-

enization model (STNHM) in capturing wave dispersion and attenuation in both elastic and

viscoelastic composites. Two numerical examples are presented to evaluate the proposed model

for elastic layered composites and viscoelastic composites with circular inclusions. The disper-

sion relation and transient wave propagation in elastic layered composite are investigated in
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Figure 2: (a) Aluminum-steel layered microstructure. (b) Sketch of irreducible Brillouin
zone (shaded square) and the probed domain of wave vector (square OACD). (c)

Macrostructure and boundary conditions.

the first example. The second example focuses on transient wave propagation in the viscoelas-

tic composite. Time domain response and wave transmission characteristics are examined and

compared with the direct numerical simulations. In all numerical examples, the number of

Laplace variable samples are chosen large enough such that further increase of the resolution

does not significantly alter the simulation results.

6.1 Elastic layered composite

6.1.1 Low material property contrast

We consider a two-dimensional bi-material layered microstructure composed of aluminum

and steel, as shown in Fig. 2(a). The size of the microstructure is 0.02 m ×0.02 m and the

volume fraction of steel is 0.5. The shear modulus and density are 26.2 GPa and 2700 kg/m3

for aluminum, and 80.8 GPa and 7900 kg/m3 for steel, respectively.

The steady-state wave propagation characteristics of the proposed model is evaluated by

comparing the dispersion curves with those obtained from the Bloch wave expansion [32],

where an eigenvalue problem of frequency ω is formulated by discretizing the unit cell with

finite element method and sampling the wave vector k within the irreducible Brillouin zone. As

shown in Fig. 2(b), this approach samples the wave vector within the domain [0, π/l]× [0, π/l].

The dispersion relation for wave vectors outside of the irreducible Brillouin zone but within

[0, 2π/l]× [0, 2π/l] is obtained by shifting the corresponding branch obtained in the irreducible

Brillouin zone by π/l. The dispersion curves of the proposed model (STNHM) is computed
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Figure 3: Dispersion curves of aluminum-steel layered composite.

by sampling the wave vector in [0, 2π/l]× [0, 2π/l] and solving for the frequency ω by Eq. 54

(s is replaced with iω).

Figure 3 shows the dispersion curves of wave vectors sampled in four directions, i.e., OA,

OB, OC, OD. The dispersion relations of the spatial nonlocal homogenization model (SNHM)

proposed in Refs. [29, 19], STNHM with ν = 0 and STNHM, which respectively correspond

to the nonlocal homogenization models employing asymptotic expansions of up to the 4th, 6th

and 8th order, are plotted for comparison. STNHM accurately captures the dispersion in the

first pass band, and the initiation and size of the first stop band in all directions. In Fig. 3(a)

and (b), SNHM behaves as a low-pass filter which prohibits any wave of frequency higher than

the cut-off frequency from propagating. In addition, it does not predict the onset of the stop

band. By setting ν = 0, STNHM recovers the homogenization model that is derived based on

Eqs. 31a-f. This model predicts the optical branch due to the presence of temporal nonlocal

term, but it is less accurate at the end of the first stop band compared to STNHM.

Figure 4 shows the effect of reducing the direction-dependent nonlocal effective stiffness to

a direction-independent one as employed in the reduced order approximation. The wavenum-

ber as a function of direction computed by the regularized STNHM (Eq. 57), kreg, and reduced

order STNHM (Eq. 58), kred, are compared with that from Bloch wave expansion in Fig. 4(a).
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Figure 4: (a) Polar plots of the wavenumber kl/(2π) as a function of direction θ. Dotted
line, ’· ·’, Bloch wave expansion; Solid line, ’—’, regularized STNHM; Dashed line, ’- -’,

reduced order STNHM. (b) Polar plots of the error caused by model reduction. From the
center outward, the diagrams are computed for ω = 2π{10, 20, 30, 40, 50} kHz.

Results obtained at frequencies, ω = 2π{10, 20, 30, 40, 50} kHz, are plotted. At low frequen-

cies, both STNHM models predict the wavenumber in all directions accurately. As frequency

increases, where significant wave dispersion occurs, the reduced order model captures the dis-

persion in 0◦ and 90◦, and introduces a slight discrepancy in other directions. The error induced

by approximating the direction-dependent nonlocal effective stiffness with one obtained from

θ = 0 and θ = π/2 is shown in Fig. 4(b). The error, kerr = |kreg − kred|/kreg, measures the

normalized absolute difference between wavenumber computed from the regularized STNHM

and reduced order STNHM, as a function of frequency and wave propagation direction. The

maximum error is about 0.05 around 30◦, 150◦, 210◦, 330◦ and when the frequency is near

the onset of the stop band. The regularized STNHM predicts the anisotropic wave dispersion

characteristics because of the direction-dependent nonlocal effective stiffness. As a result of

the model reduction, this feature is captured but with a slightly increased error.

Transient wave propagation is investigated by considering a macrostructure that is com-

posed of 20 microstructures as shown in Fig. 2(a). The macrostructure and boundary con-

ditions are shown in Fig. 2(c). Sinusoidal out-of-plane displacement load with amplitude M ,

ũ3(t) = M sin(2πft), is applied at the left boundary of the structure and the right boundary

is fixed. Periodic displacement boundary condition is applied to the top and bottom edges. In

Fig. 5, the normalized displacement (U/M) along the bottom edge of the structure computed

from STNHM is examined against the reference solution at two time instances, i.e., t=0.5T
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Figure 5: Displacement snapshots along the measurement line.

and t=T. The reference solution is obtained from direct numerical simulations with all the het-

erogeneities fully resolved by IGA and Newmark-beta method for time integration. It is noted

that pointwise comparison of displacement between the homogenization model and direct nu-

merical simulations is only one-to-one at the corner points of the microstructure, where the

microscale influence functions are zero (see Section 5.1). Because the heterogeneous displace-

ment is equal to the homogenized displacement at these points according to Eqs. 14, 19, 20.

Therefore, only the displacements at corner points of each microstructure from the direct

numerical simulations are plotted as the reference solution. As is shown in Fig. 5, STNHM

predicts the non-dispersive wave propagation (Fig. 5(a)) and wave dispersion (Fig. 5(b)) in the

first pass band. Further increasing the loading frequency, wave is significantly attenuated in

the first stop band (Fig. 5(c)). The proposed model captures the attenuated wave reasonably

well. Wave propagation in the second pass band is shown in Fig. 5(d). At f = 120 kHz, a

phase shift between STNHM and direct numerical simulations is observed. The cause of this

error is linked to the fundamental assumption of separation of scales. Although higher order

terms in the asymptotic expansion contributes to a more accurate approximation of the het-

erogeneous displacement field and allows STNHM to predict wave dispersion in the first pass

band and attenuation in the first stop band, the accuracy of the proposed model deteriorates
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Figure 6: Dispersion curves of elastic layered composite with different material
property contrasts. (a) Low stiffness contrast with rρ = 3, (b) High stiffness contrast

with rρ = 3, (c) High density contrast with rG = 200.

as the wavelength decreases. When the wavelength approaches the size of the microstructure,

the microscale and macroscale responses are inseparable, and the homogenization model is no

longer accurate.

6.1.2 The effect of material property contrast

A parametric study examining the accuracy of STNHM for different material property

contrasts is performed for the layered microstructure. The volume fraction of each phase is set

to be 0.5. The dispersion curves for wave propagation in the k1 direction are shown in Fig. 6

for various stiffness contrasts, rG = G(1)/G(2), and density contrasts, rρ = ρ(1)/ρ(2), where

G(1), G(2) and ρ(1), ρ(2) are the shear moduli and densities of the two phases, respectively.

ωl/(2πc1) is the normalized frequency and c1 =

√
D

(0)
11 /ρ0 is the homogenized wave velocity

in the k1 direction.

For low material property contrast (Fig. 6(a)), STNHM accurately captures the acoustic

branch. The accuracy in prediction of the end of the stop band decreases as the stiffness

contrast increases. Figure 6(b) shows the dispersion curves of composites with high stiffness

contrast which is typical of the contrast between polymers and metals. In these cases, STNHM

accurately predicts wave dispersion in the acoustic regime and the initiation of the stop band.

The end of the stop band is over predicted and the optical branch is shifted to higher frequency

compared to the Bloch wave solutions. The effect of density contrast is shown in Fig. 6(c).

As the density contrast increases, the accuracy of STNHM in the short wavelength regime of

the acoustic branch decreases. STNHM predicts the trend that the width of the stop band

increases as the density contrast increases. However, similar to the behavior when high stiffness

contrast is present, the predicted end of the stop band and the optical branch occur at higher

frequency.
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6.2 Viscoelastic matrix-fiber composite

In this section, we investigate wave propagation in viscoelastic composite with the mi-

crostructure that has elastic circular inclusion embedded in viscoelastic matrix and size of 0.02

m ×0.02 m. The elastic phase has volume fraction of 0.2. The constitutive relation of the

viscoelastic phase is given by Eq. 4, where the shear modulus is represented with Prony series

in time domain. After Laplace transformation, the modulus function is expressed as:

G(2)(s) = G0s

1−
n∑
i=1

pi

(
1− s

s+ 1/qi

) (82)

where, G0 is the instantaneous shear modulus describing the elastic behavior, and pi and qi are

parameters that define the Prony series expansion representing the effect of damping. G0 and

the density are taken as 1.48 GPa and 1142 kg/m3, according to the experimentally fabricated

two-dimensional elastic phononic crystal [61]. Damping effect is introduced by considering the

Prony series provided in Table 1 [1].

Table 1: Prony series of the viscoelastic phase.

p1 p2 p3 p4

0.074 0.147 0.313 0.379

q1 [ms] q2 [ms] q3 [ms] q4 [ms]
463.4 0.06407 1.163× 10−4 7.321× 10−7

6.2.1 Dispersion analysis

In this section, we perform dispersion analysis of viscoelastic composites and examine the

characteristics of STNHM in capturing wave dispersion and attenuation. The dispersion rela-

tion of the proposed model is compared to the Bloch expansion approach [2]. The dispersion

curves of both STNHM and the reference are obtained in the frequency domain (replacing

s with iω) by sampling the frequency and solving for the wavenumber. The analysis is per-

formed for microstructures with different elastic phase properties, while the viscoelastic phase

properties are fixed.

Figure 7 shows the dispersion curves (in the k1 direction) of viscoelastic composites with

various property contrasts. The shear modulus of the viscoelastic phase at the frequency,

f = 15 kHz, is used to evaluate the stiffness contrast, rG. Both real and imaginary parts of the

wavenumber are shown, and they represent the spatial variation of wavefield and attenuation,

respectively. Due to the presence of viscoelastic dissipation, wave attenuation increases mono-

tonically as frequency increases in the pass bands. The stop band is featured by the elevated
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Figure 7: Dispersion curves of viscoelastic matrix-fiber composite with different
material property contrasts. (a) Low stiffness contrast with rρ = 1.5, (b) High

contrast.
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Figure 8: Dispersion curves of viscoelastic composite with aluminum inclusion.

attenuation within certain frequency ranges. In Fig. 7(a), STNHM predicts both real and

imaginary parts of wavenumber in the acoustic branch. Similar to the elastic case (Fig. 6(a))

the error in the prediction of the end of the stop band increases as the stiffness contrast in-

creases. Figure 7(b) shows the dispersion curves of the acoustic branch and a part of the stop

band for viscoelastic composite with high material property contrast. STNHM predicts wave

dispersion and attenuation in the acoustic regime and the initiation of the stop band for high

stiffness contrast. The accuracy decreases as the density contrast increases. This observation

is consistent with the example of elastic composite in Fig. 6(b)(c).

Figure 8 shows the dispersion curves for viscoelastic composite in two wave vector (k =

k1ê1 + k2ê2) directions, k2 = 0 and k2 = 0.5k1. The elastic phase is taken as aluminum.

SNHM, STNHM with ν = 0 and STNHM are compared to demonstrate the effect of high

order asymptotic expansions. While both SNHM and STNHM capture wave dispersion in

the acoustic regime, SNHM does not capture the initiation of the stop band accurately. By

incorporation of the temporal nonlocal term, STNHM with ν = 0 improves the prediction of
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Figure 9: Multiscale system of the viscoelastic composite.

the initiation of the stop band with respect to the frequency compared to SNHM, however, it

has significant error in predicting wave dispersion within the first pass band. This manifests

the importance of appropriate computation of the parameter ν proposed in Section 4.2.

6.2.2 Transient wave propagation in viscoelastic composite

A numerical example of transient wave propagation in a viscoelastic composite is provided

in this section. A macroscopic structure composed of 20× 20 microstructures is considered as

shown in Fig. 9. The material properties are identical to those used in Fig. 8. Out-of-plane

sinusoidal displacement load is applied at the center of left boundary within 10l range and the

right boundary is fixed.

Figure 10 shows the normalized displacement along the measurement line at the end of

the simulation, t=T, for four loading frequencies. The results of STNHM are compared to the

classical homogenization model (CHM) and direct numerical simulation (reference). The clas-

sical homogenization model, which does not capture the dispersion caused by heterogeneities,

is provided to distinguish the dispersion caused by material heterogeneity from material damp-

ing. At low frequencies, the wavelength is significantly larger than the microstructure and the

dispersion caused by material heterogeneity is negligible. Both STNHM and CHM predict

wave propagation with progressively reduced amplitude due to wave spreading and viscoelas-
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Figure 10: Displacement snapshots along the measurement line at t=T.

tic dissipation in Fig. 10(a). Increasing the loading frequency leads to shorter deformation

wavelength, and dispersion occurs due to interactions between macroscopic wave and the mi-

crostructure. As a consequence, the macroscopic wave speed and amplitude decrease. It is

shown in Fig. 10(b) that STNHM predicts wave speed and the displacement along the mea-

surement line. The first stop band occurs when the macroscopic wavelength is about twice of

the size of microstructure. As shown in Fig. 10(c), the wave is significantly attenuated as a

result of stop band formation combined with viscoelastic dissipation. When the frequency is

further increased to 24 kHz (Fig. 10(d)), the result of direct simulation is within the second

pass band. STNHM deviates from the reference result.

Figure 11 shows the contours of wave propagation in viscoelastic composite compared

to the elastic counterpart at fixed loading frequency, f = 12 kHz, at two time instances,

t=0.5T and t=T. The elastic composite is modeled by replacing the modulus function of

the viscoelastic phase, G(2)(s), with the instantaneous shear modulus, G0. As a result, the

matrix material is stiffer than the viscoelastic matrix. Wave propagates at lower speed in the

viscoelastic composite compared to the elastic one, leading to reduced wavelength at given

frequency, which results in stronger interaction with the microstructure thus more significant

dispersion. At t=T, the shear wave propagating in the viscoelastic composite just reaches the
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Figure 11: Displacement contours of STNHM compared to the reference at frequency
f = 12 kHz. (a), (b), (c), (d) are for viscoelastic composite, and (e), (f), (g), (h) are for

elastic composite. (a), (c), (e), (g) are at t=0.5T, and (b), (d), (f), (h) are at t=T.

right boundary of the domain, whereas in the elastic composite, the reflected and incoming

wave superimpose, creating an intensified wave field near the boundary. Within the stop

band, the traveling shear wave is subject to significant attenuation. Figure 12 shows the

displacement contour of viscoelastic and elastic composites, at loading frequencies f = 18 kHz

and f = 35 kHz, respectively, within the stop band. Compared to wave propagating in the

elastic composite, more significant attenuation is observed in viscoelastic composite, featured

by the almost complete attenuation after two wavelength distance from the left boundary.

In Fig. 11 and 12, the overall wave pattern predicted by STNHM matches with the direct

simulation for both viscoelastic and elastic composites.

The wave transmission spectrum provides a more intuitive way to identify and understand

wave propagation characteristics in viscoelastic composites in terms of loading frequency. We

consider wave propagation in a viscoelastic composite composed of a row of 20 microstruc-

tures, as sketched in Fig. 2(c). Sinusoidal load is applied to the left boundary with a range of

frequencies, f ∈ [1, 36] kHz, and the displacement is measured 5 unit cells away from the left

boundary, i.e., x1 = 0.1 m. Two viscoelastic microstructures are investigated, i.e., matrix-fiber

and bi-material layered. The bi-material layered microstructure is shown in Fig. 2(a) with steel

phase replaced by the viscoelastic phase for which, the material properties are provided earlier

in this section. Figure 13 shows the normalized maximum transmitted wave amplitude, Ut/M ,

at the measurement point for the considered two microstructures. As CHM does not capture

wave dispersion due to microstructures, it characterizes the viscoelastic dissipation, which
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Figure 12: Displacement contours of viscoelastic and elastic composites at t=T for
loading frequencies within the stop band. (a), (c) are the reference, and (b), (d) are

results of STNHM.

monotonically increases as a function of loading frequency. At low frequency, only viscoelas-

tic dissipation causes wave attenuation, therefore, STNHM and CHM predict identical wave

transmission. As frequency increases, dispersion induced by material heterogeneity enhances

wave attenuation. Formation of the stop band is featured by the dip around f = 13 kHz, con-

tributing significant wave attenuation. STNHM predicts the transmitted wave amplitude up to

f = 22 kHz and f = 31 kHz respectively for matrix-fiber and layered viscoelastic composites,

where the wavelength is about 1.5 times of the size of microstructure. The second pass band

starts to form at these frequencies featured by the bump that covers about 5 kHz frequency

range. Frequencies higher than 36 kHz are not plotted, because the wavelength is smaller than

the size of microstructure within the matrix-fiber composite and asymptotic homogenization is

no longer applicable. Comparing Figs. 13(a) and (b), the stop band of viscoelastic composite

with bi-material layered microstructure covers a much wider frequency range than the one

with matrix-fiber microstructure. Moreover, more pronounced wave attenuation is observed

within the stop band.

7 Conclusion

This manuscript presented a spatial-temporal nonlocal homogenization model for transient

anti-plane shear wave propagation in viscoelastic composite. The proposed model is derived

based on asymptotic expansions of up to the eighth order. The homogenized momentum bal-

ance equation has higher order gradient terms, i.e., fourth order spatial, fourth order temporal

and mixed spatial-temporal derivatives. Transient shear wave propagation is evaluated by a

reduced order homogenization model that shares the same equation structure as the classical

homogenization model, while the nonlocal characteristics are retained through the nonlocal

effective stiffness. The major conclusions are summarized as follows:
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Figure 13: Maximum transmitted wave amplitude after 5 unit cells. (a)
Matrix-fiber viscoelastic composite. (b) Bi-material layered viscoelastic composite.

(1) The spatial-temporal nonlocal homogenization model captures wave dispersion within

the first pass band, the initiation of the first stop band and wave attenuation within it for

both elastic and viscoelastic composites.

(2) A major contribution of the proposed model is that all model parameters are computed

uniquely from the microstructural equilibrium and dependent on the material properties and

microstructural geometry only. The computation of model parameters is performed as an

off-line process uncoupled from the macroscale solution.

(3) Higher order asymptotic expansions and the derived temporal nonlocal term is critical

in extending the applicability of the asymptotic homogenization to shorter wavelength regime,

nevertheless, it cannot go beyond the limit of separation of scales.

For future work, the following challenges will be addressed. First, this framework will be

extended to model in-plane wave propagation in viscoelastic composites, where the vector field

displacement needs to be investigated, instead of the scalar field as in the current work. Second,

as viscoelastic dissipation naturally introduces temperature rise when the material is subject

to high frequency excitation, incorporation of heating effect in the viscoelastic constitutive

model [31, 24] is important towards a better understanding of wave dispersion and attenuation

in viscoelastic composites. Third, moderate material property contrast is assumed in the

current work, the generalization of the proposed model to consider high property contrast

would extend its capability to acoustic metamaterials, where local resonance plays a major

role in wave dispersion and attenuation. Extending the proposed model beyond the limit of

separation of scales is challenging if not impossible. In that regime, multiscale methods without

assuming separation of scales, e.g., variational multiscale enrichment method [51, 67, 68], could

be more appropriate for modeling the transient dynamics of phononic crystals and acoustic

metamaterials.
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Appendix A Momentum balance equations at O(ζ4)

and O(ζ2)

The derivation of macroscale momentum balance equations atO(ζ4) andO(ζ2) are provided

in this appendix.

Equation 31e is rewritten as:

ρ0s
2U (4)(x, s)−D(0)

kl (s)U
(4)
,kl =

(
D

(2)
(klmn)(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)
U

(2)
,klmn

+ ν(s)A(1)(s)ρ0s
2D

(0)
kl (s)U

(2)
,kl + ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)U
(2)
,klmn

− ν(s)A(1)(s)ρ0s
2D

(0)
kl (s)U

(2)
,kl +D

(4)
(klmnpq)(s)U

(0)
,klmnpq

(A.1)

Multiplying Eq. 31c with ρ0s
2 and considering Eq. 31a:

ρ2
0s

4U (2)(x, s)− ρ0s
2D

(0)
kl (s)U

(2)
,kl = ρ0s

2D
(2)
(klmn)(s)U

(0)
,klmn = D

(2)
(klmn)(s)D

(0)
pq (s)U

(0)
,klmnpq (A.2)

we recall Eq. 37 and plug Eq. A.2 into Eq. A.1:

ρ0s
2U (4)(x, s)−D(0)

kl (s)U
(4)
,kl =

(
D

(2)
(klmn)(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)
U

(2)
,klmn

+ ν(s)A(1)(s)ρ0s
2D

(0)
kl (s)U

(2)
,kl +A(2)(s)

(
ρ2

0s
4U (2) − ρ0s

2D
(0)
kl (s)U

(2)
,kl

)
− ν(s)A(1)(s)ρ0s

2D
(0)
kl (s)U

(2)
,kl + ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)U
(2)
,klmn

(A.3)

Taking two spatial derivatives of Eq. 31c and substituting the resulting expression for the last

two terms of Eq. A.3 and collecting terms:

ρ0s
2U (4)(x, s)−D(0)

kl (s)U
(4)
,kl =

(
D

(2)
(klmn)(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)
U

(2)
,klmn

+
(
ν(s)A(1)(s)−A(2)(s)

)
ρ0s

2D
(0)
kl (s)U

(2)
,kl +A(2)(s)ρ2

0s
4U (2)

− ν(s)A(1)(s)D
(0)
kl D

(2)
mnpq(s)U

(0)
,klmnpq

(A.4)

Substituting Eq. 31a into the last term of Eq. A.4 and plugging Eq. 31c into the resulting

expression, we obtain the momentum balance equation at O(ζ4):

ρ0s
2U (4)(x, s)−D(0)

kl (s)U
(4)
,kl =

(
D

(2)
(klmn)(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)
U

(2)
,klmn

+
(

2ν(s)A(1)(s)−A(2)(s)
)
ρ0s

2D
(0)
kl (s)U

(2)
,kl +

(
A(2)(s)− ν(s)A(1)(s)

)
ρ2

0s
4U (2)

(A.5)
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In view of Eq. 31a, the momentum balance equation at O(ζ2) is obtained by rewriting Eq. 31c:

ρ0s
2U (2)(x, s)−D(0)

kl (s)U
(2)
,kl =

(
D

(2)
(klmn)(s)− ν(s)A(1)(s)D

(0)
kl (s)D(0)

mn(s)
)
U

(0)
,klmn

+
(

2ν(s)A(1)(s)−A(2)(s)
)
ρ0s

2D
(0)
kl (s)U

(0)
,kl +

(
A(2)(s)− ν(s)A(1)(s)

)
ρ2

0s
4U (0)

(A.6)

Appendix B Laplace domain stability analysis for

infinitely long wave

The stability of Eq. 43 is analyzed by moving the nonlocal terms to the left hand side

and applying a spatial-harmonic-time-impulse load at the right hand side, which is expressed

as Fei(k1x1+k2x2) in the Laplace domain. Assuming the spatial response is harmonic, U(s) =

U0(s)ei(k1x1+k2x2), substituting the impulse load expression and spatial-harmonic displacement

into Eq. 43 and using the polar representation of the wave vector, the transfer function is

written as:

T (s) =
U0(s)

F
=

−1

A(s, θ)k4 +B(s, θ)k2 + C(s, θ)
(B.1)

where, A(s, θ), B(s, θ), C(s, θ) are given in Eq. 46a-c. Taking the infinitely long wave limit,

i.e., k → 0, the poles of the rational transfer function are found by C(s, θ) = 0:

s{1,2} = 0, s{3,4} = ±

√
1

α(3)(s)ρ0
(B.2)

In the complex plane, any pole of the transfer function that has a positive real part results in

exponentially unstable response [21]. Therefore, in order to avoid exponential instability, s{3,4}

must have real part to be zero. According to the rule of computing square root of complex

number [48], Eq. 50b has to be satisfied.

Appendix C Expressions for G
(n−1)e
(·) (y, s) and Q

(n−1)e
(·) (y, s)

The expression for G
(1)e
klm(y, s) is:

G
(1)e
klm(y, s) = G(y, s)

 Me∑
B=1

N [B](y)H
(1)[B]
k (s)δlm +

Me∑
B=1

B[B]
m (y)H

(2)[B]
(kl) (s)

 (C.1)
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According to Eq. 21, the symmetric part is computed as summation of components of all

permutations divided by the total number of permutations:

G
(1)e
(klm)(y, s) =

1

6

(
G

(1)e
klm(y, s) +G

(1)e
lkm(y, s) +G

(1)e
lmk(y, s)

+G
(1)e
mlk(y, s) +G

(1)e
kml(y, s) +G

(1)e
mkl(y, s)

) (C.2)

The expression for Q
(1)e
klm(y, s) is:

Q
(1)e
klm(y, s) =

Me∑
B=1

N [B](y)H
(1)e[B]
k (s)D

(0)
(lm)(s) (C.3)

The symmetric part of Q
(1)e
klm(y, s) is computed by replacing G

(1)e
(·) (y, s) with Q

(1)e
(·) (y, s) in

Eq. C.2. We provide the expressions for G
(n−1)e
(·) (y, s) and Q

(n−1)e
(·) (y, s) in what follows, and

the symmetric part is computed by Eq. 21 .

G
(2)e
klmn(y, s) = G(y, s)

 Me∑
B=1

N [B](y)H
(2)[B]
(kl) (s)δmn +

Me∑
B=1

B[B]
n (y)H

(3)[B]
(klm) (s)

 (C.4)

Q
(2)e
klmn(y, s) =

Me∑
B=1

N [B](y)H
(2)e[B]
(kl) (s)D

(0)
(mn)(s) +D

(2)
(klmn)(s) (C.5)

G
(3)e
klmnp(y, s) = G(y, s)

 Me∑
B=1

N [B](y)H
(3)[B]
(klm) (s)δnp +

Me∑
B=1

B[B]
p (y)H

(4)[B]
(klmn)(s)

 (C.6)
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(klm) (s)D

(0)
(nq)(s) +

Me∑
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N [B](y)H
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k (s)D

(2)
(lmnp)(s) (C.7)

G
(4)e
klmnpq(y, s) = G(y, s)

 Me∑
B=1

N [B](y)H
(4)[B]
(klmn)(s)δpq +

Me∑
B=1

B[B]
q (y)H

(5)[B]
(klmnp)(s)

 (C.8)

Q
(4)e
klmnpq(y, s) =

Me∑
B=1

N [B](y)H
(4)e[B]
(klmn)(s)D

(0)
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Me∑
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N [B](y)H
(2)e[B]
(kl) (s)D

(2)
(mnpq)(s) +D

(4)
(klmnpq)(s) (C.9)

G
(5)e
klmnpqr(y, s) = G(y, s)

 Me∑
B=1

N [B](y)H
(5)[B]
(klmnp)(s)δqr +

Me∑
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B[B]
r (y)H
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 (C.10)
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Q
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klmnpqr(y, s) =

Me∑
B=1

N [B](y)H
(5)e[B]
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Me∑
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(1)e[B]
k (s)D

(4)
(lmnpqr)(s) (C.11)

44



References

[1] A. V. Amirkhizi, J. Isaacs, J. McGee, and S. Nemat-Nasser. An experimentally-based

viscoelastic constitutive model for polyurea, including pressure and temperature effects.

Philos. Mag., 86:5847–5866, 2006.

[2] E. Andreassen and J. S. Jensen. Analysis of phononic bandgap structures with dissipation.

J. Vib. Acoust., 135:041015, 2013.

[3] I. V. Andrianov, V. I. Bolshakov, V. V. Danishevs’ kyy, and D. Weichert. Higher order

asymptotic homogenization and wave propagation in periodic composite materials. Proc.

R. Soc. London, Ser. A, 464:1181–1201, 2008.

[4] H. Askes and E. C. Aifantis. Gradient elasticity in statics and dynamics: an overview of

formulations, length scale identification procedures, finite element implementations and

new results. Int. J. Solids Struct., 48:1962–1990, 2011.

[5] H. Askes, A. V. Metrikine, A. V. Pichugin, and T. Bennett. Four simplified gradient

elasticity models for the simulation of dispersive wave propagation. Philos. Mag., 88:3415–

3443, 2008.

[6] J. L. Auriault and C. Boutin. Long wavelength inner-resonance cut-off frequencies in

elastic composite materials. Int. J. Solids Struct., 49:3269–3281, 2012.

[7] C. Boutin and J. L. Auriault. Rayleigh scattering in elastic composite materials. Int. J.

Eng. Sci., 31:1669–1689, 1993.

[8] L. Brancik. Programs for fast numerical inversion of laplace transforms in matlab language

environment. In Konference MATLAB ‘99-Praha. MATLAB ‘99, Praha: Konference

MATLAB ‘99, Praha, pages 27–39. 1999.

[9] H. Chen and C. T. Chan. Acoustic cloaking in three dimensions using acoustic metama-

terials. Appl. Phys. Lett., 91:183518, 2007.

[10] M. Collet, M. Ouisse, M. Ruzzene, and M. N. Ichchou. Floquet–bloch decomposition for

the computation of dispersion of two-dimensional periodic, damped mechanical systems.

Int. J. Solids Struct., 48:2837–2848, 2011.

[11] P. Comon, G. Golub, L. Lim, and B. Mourrain. Symmetric tensors and symmetric tensor

rank. SIAM J. Matrix Anal. Appl., 30:1254–1279, 2008.

[12] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric analysis: toward integration

of CAD and FEA. John Wiley & Sons, 2009.

45



[13] K. S. Crump. Numerical inversion of laplace transforms using a fourier series approxima-

tion. J. ACM, 23:89–96, 1976.

[14] B. Davies and B. Martin. Numerical inversion of the laplace transform: a survey and

comparison of methods. J. Comput. Phys., 33:1–32, 1979.

[15] L. Dedè, C. Jäggli, and A. Quarteroni. Isogeometric numerical dispersion analysis for two-

dimensional elastic wave propagation. Comput. Methods Appl. Mech. Eng., 284:320–348,

2015.

[16] E. V. Dontsov, R. D. Tokmashev, and B. B. Guzina. A physical perspective of the length

scales in gradient elasticity through the prism of wave dispersion. Int. J. Solids Struct.,

50:3674–3684, 2013.

[17] B. Engquist and O. Runborg. Computational high frequency wave propagation. Acta

numerica, 12:181–266, 2003.

[18] N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang. Ultrasonic

metamaterials with negative modulus. Nat. Mater., 5:452–456, 2006.

[19] J. Fish, W. Chen, and G. Nagai. Non-local dispersive model for wave propagation in

heterogeneous media: multi-dimensional case. Int. J. Numer. Methods Eng., 54:347–363,

2002.

[20] J. Fish, W. Chen, and G. Nagai. Non-local dispersive model for wave propagation in

heterogeneous media: one-dimensional case. Int. J. Numer. Methods Eng., 54:331–346,

2002.

[21] T. H. Glisson Jr. Introduction to Circuit Analysis and Design. Springer, 2011.

[22] Z. V. I. Hashin. Complex moduli of viscoelastic composites i. general theory and appli-

cation to particulate composites. Int. J. Solids Struct., 6:539–552, 1970.

[23] R. Hu and C. Oskay. Nonlocal homogenization model for wave dispersion and attenuation

in elastic and viscoelastic periodic layered media. J. Appl. Mech., 84:031003, 2017.

[24] R. Hu, C. Prakash, V. Tomar, M. Harr, I. E. Gunduz, and C. Oskay. Experimentally-

validated mesoscale modeling of the coupled mechanical–thermal response of ap-htpb

energetic material under dynamic loading. Int. J. Fract., 203:277–298, 2017.

[25] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: Cad, finite

elements, nurbs, exact geometry and mesh refinement. Comput. Methods Appl. Mech.

Eng., 194:4135–4195, 2005.

46



[26] T. J. R. Hughes, J. A. Evans, and A. Reali. Finite element and nurbs approximations

of eigenvalue, boundary-value, and initial-value problems. Comput. Methods Appl. Mech.

Eng., 272:290–320, 2014.

[27] T. J. R. Hughes, A. Reali, and G. Sangalli. Duality and unified analysis of discrete

approximations in structural dynamics and wave propagation: comparison of p-method

finite elements with k-method nurbs. Comput. Methods Appl. Mech. Eng., 197:4104–4124,

2008.

[28] T. Hui and C. Oskay. A nonlocal homogenization model for wave dispersion in dissipative

composite materials. Int. J. Solids Struct., 50:38 – 48, 2013.

[29] T. Hui and C. Oskay. A high order homogenization model for transient dynamics of

heterogeneous media including micro-inertia effects. Comput. Methods Appl. Mech. Eng.,

273:181–203, 2014.

[30] T. Hui and C. Oskay. Laplace-domain, high-order homogenization for transient dynamic

response of viscoelastic composites. Int. J. Numer. Methods Eng., 103:937–957, 2015.

[31] T. Hui and C. Oskay. Computational modeling of polyurea-coated composites subjected

to blast loads. J. Compos. Mater., 46:2167–2178, 2012.

[32] M. I. Hussein. Reduced bloch mode expansion for periodic media band structure calcu-

lations. Proc. R. Soc. London, Ser. A, 465:2825–2848, 2009.

[33] M. I. Hussein. Theory of damped bloch waves in elastic media. Phys. Rev. B, 80:212301,

2009.

[34] W. M. Lai, D. H. Rubin, E. Krempl, and D. Rubin. Introduction to continuum mechanics.

Butterworth-Heinemann, 2009.

[35] X. Li, X. Ni, L. Feng, M. Lu, C. He, and Y. Chen. Tunable unidirectional sound propa-

gation through a sonic-crystal-based acoustic diode. Phys. Rev. Lett., 106:084301, 2011.

[36] B. Liang, X. Guo, J. Tu, D. Zhang, and J. Cheng. An acoustic rectifier. Nat. Mater.,

9:989–992, 2010.

[37] C. Liu and C. Reina. Variational coarse-graining procedure for dynamic homogenization.

J. Mech. Phys. Solids, 104:187 – 206, 2017.

[38] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng. Locally

resonant sonic materials. Science, 289:1734–1736, 2000.

47



[39] G. Ma and P. Sheng. Acoustic metamaterials: From local resonances to broad horizons.

Sci. Adv., 2:e1501595, 2016.

[40] J. R. Macdonald. Accelerated convergence, divergence, iteration, extrapolation, and curve

fitting. J. Appl. Phys., 35:3034–3041, 1964.

[41] M. Maldovan. Sound and heat revolutions in phononics. Nature, 503:209, 2013.

[42] B. Merheb, P. A. Deymier, M. Jain, M. Aloshyna-Lesuffleur, S. Mohanty, A. Berker, and

R. W. Greger. Elastic and viscoelastic effects in rubber/air acoustic band gap structures:

A theoretical and experimental study. J. Appl. Phys., 104:064913, 2008.

[43] B. Merheb, P. A. Deymier, K. Muralidharan, J. Bucay, M. Jain, M. Aloshyna-Lesuffleur,

R. W. Greger, S. Mohanty, and A. Berker. Viscoelastic effect on acoustic band gaps in

polymer-fluid composites. Modell. Simul. Mater. Sci. Eng., 17:075013, 2009.

[44] A. V. Metrikine. On causality of the gradient elasticity models. J. Sound Vib., 297:727–

742, 2006.

[45] G. W. Milton and J. R. Willis. On modifications of newton’s second law and linear

continuum elastodynamics. Proc. R. Soc. London, Ser. A, 463:855–880, 2007.

[46] R. D. Mindlin. Micro-structure in linear elasticity. Arch. Ration. Mech. Anal., 16:51–78,

1964.

[47] S. J. Mitchell, A. Pandolfi, and M. Ortiz. Metaconcrete: designed aggregates to enhance

dynamic performance. J. Mech. Phys. Solids, 65:69–81, 2014.

[48] A. Mostowski and M. Stark. Introduction to Higher Algebra. Pergamon Press, 1964.

[49] H. Nassar, Q.-C. He, and N. Auffray. Willis elastodynamic homogenization theory revis-

ited for periodic media. J. Mech. Phys. Solids, 77:158–178, 2015.

[50] S. Nemat-Nasser, J. R. Willis, A. Srivastava, and A. V. Amirkhizi. Homogenization of

periodic elastic composites and locally resonant sonic materials. Phys. Rev. B: Condens.

Matter, 83:104103, 2011.

[51] C. Oskay. Variational multiscale enrichment method with mixed boundary conditions

for modeling diffusion and deformation problems. Comput. Methods Appl. Mech. Eng.,

264:178–190, 2013.

48



[52] Y. Pennec, J. O. Vasseur, B. Djafari-Rouhani, L. Dobrzyński, and P. A. Deymier. Two-
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