Sub-Bergman Hilbert Spaces

Cheng Chu

Vanderbilt University

Introduction

Range space

Let A be a bounded operator on a Hilbert space H. We define the range space $\mathcal{M}(A)=A H$, and endow it with the inner product

$$
\langle A f, A g\rangle_{\mathcal{M}(A)}=\langle f, g\rangle_{H}, \quad f, g \in H \ominus \operatorname{Ker} A
$$

$\mathcal{M}(A)$ has a Hilbert space structure that makes A a coisometry on H.

Introduction

Range space

Let A be a bounded operator on a Hilbert space H. We define the range space $\mathcal{M}(A)=A H$, and endow it with the inner product

$$
\langle A f, A g\rangle_{\mathcal{M}(A)}=\langle f, g\rangle_{H}, \quad f, g \in H \ominus \operatorname{Ker} A
$$

$\mathcal{M}(A)$ has a Hilbert space structure that makes A a coisometry on H.

Toeplitz operators on the Hardy space

Let H^{2} be the Hardy space on the unit disk \mathbb{D}. The Toeplitz operator on the Hardy space H^{2} with symbol f in $L^{\infty}(\partial \mathbb{D})$ is defined by

$$
T_{f}(h)=P(f h)
$$

for $h \in H^{2}$. Here P be the orthogonal projections from $L^{2}(\partial \mathbb{D})$ to H^{2}.

Sub-Hardy Hilbert Spaces

Let b be a nonconstant function in H_{1}^{∞}, the closed unit ball of $H^{\infty}(\mathbb{D})$.

Definition

The de Branges-Rovnyak space $\mathcal{H}(b)$ is defined to be the range space:

$$
\mathcal{H}(b)=\left(I-T_{b} T_{\bar{b}}\right)^{1 / 2} H^{2} .
$$

We also define the space $\mathcal{H}(\bar{b})$ in the same way as $\mathcal{H}(b)$, but with the roles of b and \bar{b} interchanged, i.e.

$$
\mathcal{H}(\bar{b})=\left(I-T_{\bar{b}} T_{b}\right)^{1 / 2} H^{2} .
$$

Sub-Hardy Hilbert Spaces

The spaces $\mathcal{H}(b)$ and $\mathcal{H}(\bar{b})$ are also called sub-Hardy Hilbert spaces (the terminology comes from the title of Sarason's book).

Sub-Hardy Hilbert Spaces

$$
\mathcal{H}(b)=\left(I-T_{b} T_{\bar{b}}\right)^{1 / 2} H^{2}, \mathcal{H}(\bar{b})=\left(I-T_{\bar{b}} T_{b}\right)^{1 / 2} H^{2} .
$$

Basic facts about $\mathcal{H}(b)$:
(1) If $\|b\|_{\infty}<1$, then $\mathcal{H}(b)=\mathcal{H}(\bar{b})=H^{2}$.
(2) If b is an inner function, then $\mathcal{H}(b)=H^{2} \ominus b H^{2}$ is a closed subspace of H^{2}.
(3) In general, $\mathcal{H}(b)$ and $\mathcal{H}(\bar{b})$ are contractively contained in H^{2}, but are not closed subspaces.
(9) For $\varphi \in H^{\infty}, \mathcal{H}(b)$ and $\mathcal{H}(\bar{b})$ are invariant under $T_{\bar{\varphi}}$.

Sub-Hardy Hilbert Spaces

The theory of $\mathcal{H}(b)$-spaces splits into two mutually exclusive cases: whether b is or is not an extreme point of the unit ball of the closed unit ball of H^{∞}.

Theorem

The following statements are equivalent.
(1) b is non-extreme.
(2) $\log \left(1-|b|^{2}\right) \in L^{1}(\partial \mathbb{D})$.
(3) $b \in \mathcal{H}(b)$.
(c) $\mathcal{H}(b)$ contains all the polynomials.

The Bergman space A^{2} is the space of analytic functions on \mathbb{D} that are square-integrable with respect to the Lebesgue area measure $d A$.

Toeplitz operators on the Bergman space

The Toeplitz operator on the Bergman space A^{2} with symbol f in $L^{\infty}(\mathbb{D})$ is defined by

$$
\tilde{T}_{f}(h)=\tilde{P}(f h)
$$

for $h \in A^{2}$. Here \tilde{P} be the orthogonal projections from $L^{2}(\mathbb{D})$ to $A^{2}(\mathbb{D})$.
Kehe Zhu introduced the sub-Bergman Hilbert spaces in 1996.

Definition

Let b be a function in H_{1}^{∞}. Define

$$
\mathcal{A}(b)=\left(I-\widetilde{T}_{b} \widetilde{T}_{\bar{b}}\right)^{1 / 2} A^{2}
$$

and

$$
\mathcal{A}(\bar{b})=\left(I-\widetilde{T}_{\bar{b}} \widetilde{T}_{b}\right)^{1 / 2} A^{2}
$$

Sub-Bergman Hilbert Spaces

$$
\begin{aligned}
& \mathcal{A}(b)=\left(I-\widetilde{T}_{b} \widetilde{T}_{\bar{b}}\right)^{1 / 2} A^{2} \\
& \mathcal{A}(\bar{b})=\left(I-\widetilde{T}_{\bar{b}} \widetilde{T}_{b}\right)^{1 / 2} A^{2}
\end{aligned}
$$

If $\|b\|_{\infty}<1$, then $\mathcal{A}(b)=\mathcal{A}(\bar{b})=A^{2}$.

Sub-Bergman Hilbert Spaces

$$
\begin{aligned}
& \mathcal{A}(b)=\left(I-\widetilde{T}_{b} \widetilde{T}_{\bar{b}}\right)^{1 / 2} A^{2} \\
& \mathcal{A}(\bar{b})=\left(I-\widetilde{T}_{\bar{b}} \widetilde{T}_{b}\right)^{1 / 2} A^{2}
\end{aligned}
$$

If $\|b\|_{\infty}<1$, then $\mathcal{A}(b)=\mathcal{A}(\bar{b})=A^{2}$.
Question: What is $\mathcal{A}(b)$ if b is an inner function?

Sub-Bergman Hilbert Spaces

$$
\begin{aligned}
& \mathcal{A}(b)=\left(I-\widetilde{T}_{b} \widetilde{T}_{\bar{b}}\right)^{1 / 2} A^{2}, \\
& \mathcal{A}(\bar{b})=\left(I-\widetilde{T}_{\bar{b}} \widetilde{T}_{b}\right)^{1 / 2} A^{2} .
\end{aligned}
$$

If $\|b\|_{\infty}<1$, then $\mathcal{A}(b)=\mathcal{A}(\bar{b})=A^{2}$.
Question: What is $\mathcal{A}(b)$ if b is an inner function?

Theorem (Zhu, 2002)

If b is a finite Blaschke product, then $\mathcal{A}(b)=H^{2}$.

Sub-Bergman Hilbert Spaces

$$
\mathcal{A}(b)=\left(I-\widetilde{T}_{b} \widetilde{T}_{\bar{b}}\right)^{1 / 2} A^{2} .
$$

Theorem (Zhu, 2002)
If b is a finite Blaschke product, then $\mathcal{A}(b)=H^{2}$.

Sub-Bergman Hilbert Spaces

$$
\mathcal{A}(b)=\left(I-\widetilde{T}_{b} \widetilde{T}_{\bar{b}}\right)^{1 / 2} A^{2} .
$$

Theorem (Zhu, 2002)

If b is a finite Blaschke product, then $\mathcal{A}(b)=H^{2}$.
We present a new proof using the theory of reproducing kernels and get a stronger result.

Theorem (C.)

Let $b \in H_{1}^{\infty}$. Then
(1) $H^{2} \subset \mathcal{A}(b)$.
(2) $\mathcal{A}(b)=H^{2}$ if and only if b is a finite Blaschke product.

Reproducing kernels

Definition

Let $X \subset \mathbb{C}^{d}$. We say a function $K: X \times X \rightarrow \mathbb{C}$ is positive semi-definite $(K \geq 0)$ if $K(x, y)=\overline{K(y, x)}$, and for all finite sets $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right\} \subset X$, the matrix $\left(K\left(\lambda_{i}, \lambda_{j}\right)\right)_{i, j=1}^{m} \geq 0$.

Definition (RKHS)

A reproducing kernel Hilbert space \mathcal{H} on X is a Hilbert space of complex valued functions such that for every $w \in X$, there exists $K_{w} \in \mathcal{H}$ satisfying

$$
\left\langle f, K_{w}\right\rangle_{\mathcal{H}}=f(w), \text { for every } f \in \mathcal{H}
$$

Let $K(z, w)=K_{w}(z)$. Then $K \geq 0$.

Reproducing kernels

Moore's Theorem

Let $X \subset \mathbb{C}^{d}$ and let $K: X \times X \rightarrow \mathbb{C}$ be positive semi-definite. Then there exists a unique reproducing kernel Hilbert space with reproducing kernel K.

Spaces and kernel functions

- $H^{2}: K^{S}(z, w)=\frac{1}{1-\bar{w} z}$
- $\mathcal{H}(b): K_{\mathcal{H}(b)}(z, w)=\frac{1-\overline{b(w)} b(z)}{1-\bar{w} z}$
- $A^{2}: K_{A^{2}}(z, w)=\frac{1}{(1-\bar{w} z)^{2}}$
- $\mathcal{A}(b): K_{\mathcal{A}(b)}(z, w)=\frac{1-\overline{b(w)} b(z)}{(1-\bar{w} z)^{2}}$

Reproducing kernels

Proposition

Let K_{1}, K_{2} be positive semi-definite. Then
(1) $K_{1}+K_{2} \geq 0$.
(2) $K_{1} \cdot K_{2} \geq 0$.

Multiplier Criterion

Let \mathcal{H} be a RKHS with kernel K. Then f is a multiplier of \mathcal{H} with multiplier norm at most δ if and only if

$$
\left(\delta^{2}-f(z) \overline{f(w)}\right) \cdot K(z, w) \geq 0
$$

Multiplier Criterion

Let \mathcal{H} be a RKHS with kernel K. Then f is a multiplier of \mathcal{H} with multiplier norm at most δ if and only if

$$
\left(\delta^{2}-f(z) \overline{f(w)}\right) \cdot K(z, w) \geq 0
$$

Theorem (Zhu)

Let $b \in H_{1}^{\infty}$. Every function in H^{∞} is a multipliers of $\mathcal{A}(b)$.
Proof. A function f is a contractive multiplier of $\mathcal{A}(b)$ if and only if

$$
(1-\overline{f(w)} f(z)) \cdot \frac{1-\overline{b(w)} b(z)}{(1-\bar{w} z)^{2}} \geq 0
$$

And

$$
(1-\overline{f(w)} f(z)) \cdot \frac{1-\overline{b(w)} b(z)}{(1-\bar{w} z)^{2}}=\frac{1-\overline{f(w)} f(z)}{1-\bar{w} z} \cdot \frac{1-\overline{b(w)} b(z)}{1-\bar{w} z} \geq 0
$$

Sub-Bergman Hilbert Spaces

Theorem (Zhu)

Let $b \in H_{1}^{\infty}$. Every function in H^{∞} is a multipliers of $\mathcal{A}(b)$.
Using the identity

$$
\|f\|_{\mathcal{A}(\bar{b})}^{2}=\|f\|_{A_{2}}^{2}+\left\|\widetilde{T}_{\bar{b}} f\right\|_{\mathcal{A}(b)}^{2},
$$

one can get

Corollary

Norm equivalence: $\mathcal{A}(b)=\mathcal{A}(\bar{b})$.

Sub-Bergman Hilbert Spaces

Theorem (Zhu, 2002)

If b is a finite Blaschke product, then $\mathcal{A}(b)=H^{2}$.
Zhu's proof uses an integral representation formula for $\mathcal{A}(\bar{b})$ and shows that $\mathcal{A}(\bar{b})=H^{2}$.

Sub-Bergman Hilbert Spaces

Theorem (Zhu, 2002)

If b is a finite Blaschke product, then $\mathcal{A}(b)=H^{2}$.
Zhu's proof uses an integral representation formula for $\mathcal{A}(\bar{b})$ and shows that $\mathcal{A}(\bar{b})=H^{2}$.

Another proof is found by S. Sultanic in 2006.
First show $\mathcal{A}(b)=H^{2}$ if b is a single Blaschke product by comparing the reproducing kernels of $\mathcal{A}(b)$ and H^{2}.

Then use an induction argument to prove the theorem holds for any finite Blaschke product.

Sub-Bergman Hilbert Spaces

Theorem (C.)

Let $b \in H_{1}^{\infty}$. Then
(1) $H^{2} \subset \mathcal{A}(b)$.
(2) $\mathcal{A}(b)=H^{2}$ if and only if b is a finite Blaschke product.

We use the following result

Theorem (Aronszajn)

Let $\mathcal{H}\left(K_{1}\right), \mathcal{H}\left(K_{2}\right)$ be two RKHS on X with kernel functions $\mathcal{H}\left(K_{1}\right), \mathcal{H}\left(K_{2}\right)$, respectively. Then

$$
\mathcal{H}\left(K_{1}\right) \subset \mathcal{H}\left(K_{2}\right)
$$

if and only if

$$
K_{1} \leq c K_{2}, \quad \text { i.e. } \quad c K_{2}-K_{1} \geq 0
$$

for some constant $c>0$.

$H^{2} \subset \mathcal{A}(b)$

Theorem (Aronszajn)

$\mathcal{H}\left(K_{1}\right) \subset \mathcal{H}\left(K_{2}\right)$ if and only if $K_{1} \leq c K_{2}$.
To show $H^{2} \subset \mathcal{A}(b)$, we need to find c so that

$$
\frac{1}{1-\bar{w} z} \leq c \cdot \frac{1-\overline{b(w)} b(z)}{(1-\bar{w} z)^{2}}=c \cdot \frac{1-\overline{b(w)} b(z)}{1-\bar{w} z} \cdot \frac{1}{1-\bar{w} z} .
$$

We can find a function f s.t.

$$
\overline{f(w)} f(z) \leq c_{1} \cdot \frac{1-\overline{b(w)} b(z)}{1-\bar{w} z}
$$

and

$$
\overline{f(w)} f(z) \frac{1}{1-\bar{w} Z} \geq c_{2} \cdot \frac{1}{1-\bar{w} Z} .
$$

$\mathcal{A}(b)=H^{2} \Longleftrightarrow b$ is a finite Blaschke product

If b is a finite Blaschke product, then $\mathcal{H}(b)$ has finite dimension N. Let $\left\{f_{n}\right\}_{n=0}^{N-1}$ be an orthonormal basis for $\mathcal{H}(b)$. Then

$$
\frac{1-\overline{b(w)} b(z)}{1-\bar{w} z}=\sum_{n=0}^{N-1} \overline{f_{n}(w)} f_{n}(z)
$$

And for each n,

$$
\overline{f_{n}(w)} f_{n}(z) \frac{1}{1-\bar{w} z} \leq C \cdot \frac{1}{1-\bar{w} z}
$$

Then

$$
\frac{1-\overline{b(w)} b(z)}{(1-\bar{w} z)^{2}} \leq C N \cdot \frac{1}{1-\bar{w} z}
$$

Density of polynomials in $\mathcal{A}(b)$

Theorem

$\mathcal{H}(b)$ contains all the polynomials if and only if b is non-extreme. In the non-extreme case, the polynomials are dense in $\mathcal{H}(b)$.

If b is non-extreme, then there is a unique outer function a such that $a(0)>0$ and $|a|^{2}+|b|^{2}=1$ a.e. on $\partial \mathbb{D}$.
This function is a basic tool in the theory of $\mathcal{H}(b)$ in the non-extreme case.

Density of polynomials in $\mathcal{A}(b)$

Theorem

$\mathcal{H}(b)$ contains all the polynomials if and only if b is non-extreme. In the non-extreme case, the polynomials are dense in $\mathcal{H}(b)$.

If b is non-extreme, then there is a unique outer function a such that $a(0)>0$ and $|a|^{2}+|b|^{2}=1$ a.e. on $\partial \mathbb{D}$.
This function is a basic tool in the theory of $\mathcal{H}(b)$ in the non-extreme case.

Since $H^{2} \subset \mathcal{A}(b), \mathcal{A}(b)$ contains all the polynomials.
Question: Are the polynomials dense in $\mathcal{A}(b)$?

Density of polynomials in $\mathcal{A}(b)$

Theorem (C.)
Let $b \in H_{1}^{\infty}$. Then the polynomials are dense in $\mathcal{A}(b)$.

Density of polynomials in $\mathcal{A}(b)$

Theorem (C.)

Let $b \in H_{1}^{\infty}$. Then the polynomials are dense in $\mathcal{A}(b)$.

Lemma

Let L_{b}^{2} denote the space $L^{2}\left(\mathbb{D},\left(1-|b|^{2}\right) d A\right)$. Let A_{b}^{2} be the closure of polynomials in L_{b}^{2}. Define the operator S_{b} by

$$
S_{b} g=\widetilde{P}\left(\left(1-|b|^{2}\right) g\right)
$$

Then S_{b} is an isometry from A_{b}^{2} onto $\mathcal{A}(\bar{b})$.

The End

