Compact Product of Hankel and Toeplitz Operators on the Hardy space

Cheng Chu

Washington University in Saint Louis

March 7, 2014

Definition

Let $L^2 = L^2(\partial \mathbb{D})$ and let H^2 be the Hardy space on \mathbb{D} . Given a symbol function $f \in L^{\infty}$, define the Toeplitz operator T_f and the Hankel operator \mathcal{H}_f as:

$$T_f: H^2 \to H^2, T_f h = P(fh),$$

and

$$\mathcal{H}_f: H^2 \to (H^2)^{\perp}, \mathcal{H}_f h = (I - P)(fh),$$

where $P: L^2 \rightarrow H^2$ is the orthogonal projection.

$$\mathcal{H}_f: H^2 \to (H^2)^{\perp}, \mathcal{H}_f h = (I - P)(fh).$$

For convenience, we will use an alternative definition for Hankel operators.

Definition

Let $Vf(z) = \overline{z}f(\overline{z})$. Then V is unitary on L^2 . Define:

$$H_f: H^2 \rightarrow H^2, H_f h = PV(fh).$$

Then

$$H_f = V \mathcal{H}_f.$$

Question

When is $H_f T_g$ compact?

It is known that:

- T_f is compact iff f = 0.
- $H_f = 0 \text{ iff } f \in H^{\infty}.$
- (Hartman's Criterion) H_f is compact iff f ∈ H[∞] + C, where C denotes the space of continuous functions $\partial \mathbb{D}$.

Consider the multiplication operator M_f on L^2 for $f \in L^{\infty}$, defined by $M_f h = fh$. M_f can be expressed as an operator matrix with respect to the decomposition $L^2 = H^2 \oplus (H^2)^{\perp}$ as the following:

$$M_f = \begin{pmatrix} T_f & H_{\tilde{f}}V \\ VH_f & VT_{\tilde{f}}V \end{pmatrix}$$

For $f, g \in L^{\infty}$, $M_{fg} = M_f M_g$, so multiplying the matrices and comparing the entries, we get:

T_{fg} = T_f T_g + H_f H_g.
H_{fg} = H_f T_g + T_f H_g.
Here *f*(z) = f(*z*), Vf(z) = *z*f(*z*).

Problem

When is
$$T_{fg} - T_f T_g = H_{\tilde{f}} H_g$$
 compact?

Theorem (Brown, Halmos, 1963)

$$H_{\widetilde{f}}H_g=0$$
 if and only if $\overline{f}\in H^\infty$ or $g\in H^\infty.$

Theorem (Axler, Chang, Sararson, 1978; Volberg, 1982)

 $H_{\tilde{f}}H_g$ is compact if and only if

 $H^{\infty}[\overline{f}] \cap H^{\infty}[g] \subset H^{\infty} + C.$ (Algebraic Condition)

Here $H^{\infty}[f]$ denotes the closed subalgebra of L^{∞} generated by H^{∞} and f.

For a uniform algebra B, let M(B) denote the maximal ideal space of B, the space of nonzero multiplicative linear functionals of B. We identify \mathbb{D} in the usual way as a subset of $M(H^{\infty})$.

By Carleson's Corona Theorem, \mathbb{D} is dense in $M(H^{\infty})$. Moreover, $M(H^{\infty} + C) = M(H^{\infty}) \setminus \mathbb{D}$.

For any *m* in $M(H^{\infty})$, there exists a representing measure μ_m such that $m(f) = \int f d\mu_m$, for all $f \in H^{\infty}$.

Definition

A subset S of $M(H^{\infty})$ is called a **support set** if it is the support of a representing measure for a functional in $M(H^{\infty} + C)$.

Definition

A subset S of $M(H^{\infty})$ is called a **support set** if it is the support of a representing measure for a functional in $M(H^{\infty} + C)$.

Theorem (Another Version)

 $H_{\tilde{f}}H_g$ is compact if and only if for each support set S, either $\bar{f}|_S \in H^{\infty}|_S$ or $g|_S \in H^{\infty}|_S$. (Local Condition)

This condition localized the condition when $H_{\tilde{f}}H_g = 0$.

Theorem (Brown, Halmos, 1963)

 $H_{\tilde{f}}H_g = 0$ if and only if $\bar{f} \in H^{\infty}$ or $g \in H^{\infty}$.

Theorem (Zheng, 1996)

 $H_{\tilde{f}}H_g$ is compact if and only if

 $\lim_{|z| \to 1^{-}} ||H_{\overline{f}}k_{z}||_{2} \cdot ||H_{g}k_{z}||_{2} = 0. \quad (\text{Elementary Condition})$

Here k_z denotes the normalized reproducing kernel at z:

$$k_z(w) = \frac{\sqrt{1-|z|^2}}{1-\bar{z}w}.$$

By the Corona Theorem, the elementary condition

$$\lim_{|z| \to 1^{-}} ||H_{\bar{f}}k_{z}|| \cdot ||H_{g}k_{z}|| = 0$$

can be rephrased as: For all $m \in M(H^{\infty} + C)$,

$$\lim_{z\to m} ||H_{\overline{f}}k_z|| \cdot ||H_gk_z|| = 0.$$

The next theorem links the elementary condition and the local condition.

Theorem (Gorkin, Zheng)

Let $m \in M(H^{\infty} + C)$, and let S be the support set of m. Then the following are equivalent:

- $\bullet f|_{\mathcal{S}} \in H^{\infty}|_{\mathcal{S}}.$
- $2 \quad \lim_{z \to m} ||H_f k_z|| = 0.$
- $\lim_{z\to m}||H_fk_z||=0.$

Theorem

The following are equivalent:
a)
$$H_{\tilde{f}}H_g$$
 is compact.
b) $H^{\infty}[\bar{f}] \cap H^{\infty}[g] \subset H^{\infty} + C.$ (Algebraic Condition)
c) For each support set S ,
either $\bar{f}|_S \in H^{\infty}|_S$ or $g|_S \in H^{\infty}|_S.$ (Local Condition)
c) $\lim_{|z|\to 1^-} ||H_{\tilde{f}}k_z|| \cdot ||H_gk_z|| = 0.$ (Elementary Condition)

Turning to the operator $H_f T_g$. It is not hard to obtain the zero condition.

Lemma

$$H_f T_g = 0$$
 if and only if one of the following holds:
(a) $f \in H^{\infty}$.
(b) $g \in H^{\infty}$ and $fg \in H^{\infty}$.

Localize these conditions, we want to prove:

Theorem (C.)

Let $f, g \in L^{\infty}$. The $H_f T_g$ is compact if and only if for each support set S, one of the following holds:

$$f|_{S} \in H^{\infty}|_{S}.$$

2 $g|_{S} \in H^{\infty}|_{S}$ and $(fg)|_{S} \in H^{\infty}|_{S}$.

The compactness of $H_f T_g$

Theorem (C.)

Let $f, g \in L^{\infty}$. The $H_f T_g$ is compact if and only if for each support set S, one of the following holds:

- $@ g|_{S} \in H^{\infty}|_{S} \text{ and } (fg)|_{S} \in H^{\infty}|_{S}.$

Proof: " \Longrightarrow ". Suppose $H_f T_g$ is compact. Apply the lemma:

Lemma (Zheng)

If $K: H^2 \to H^2$ is a compact operator, then

$$\lim_{|z|\to 1^-}||K-T^*_{\phi_z}KT_{\bar{\phi}_z}||=0,$$

where

$$\phi_z(w)=\frac{z-w}{1-\bar{z}w}.$$

We get:

$$\lim_{z\to m} ||H_f k_z|| \cdot ||H_g k_z|| = 0,$$

for every $m \in M(H^{\infty} + C)$.

Translate to the local conditions, we have: either $f|_S \in H^{\infty}|_S$, or $g|_S \in H^{\infty}|_S$, where S is the support set of m.

For the second case, use the identity:

$$H_{fg} = H_f T_g + T_{\tilde{f}} H_g,$$

then:

$$H_{fg}k_z = H_f T_g k_z + T_{\tilde{f}} H_g k_z.$$

$$H_{\rm fg}k_z = H_{\rm f}T_gk_z + T_{\tilde{f}}H_gk_z,$$

and

$$\lim_{z\to m}||H_gk_z||=0.$$

Notice that: $H_f T_g$ is compact and $k_z \rightarrow 0$ weakly. Thus

 $\lim_{z\to m}||H_f T_g k_z||=0.$

So

$$\lim_{z\to m}||H_{fg}k_z||=0.$$

This means $(fg)|_{S} \in H^{\infty}|_{S}$.

Theorem

Let $f, g \in L^{\infty}$. The $H_f T_g$ is compact if and only if for each support set S, one of the following holds:

2)
$$g|_S \in H^\infty|_S$$
 and $(fg)|_S \in H^\infty|_S$

" \Leftarrow ." Is the converse of

Lemma

If $K: H^2 \to H^2$ is a compact operator, then

$$\lim_{|z|\to 1^-}||K-T^*_{\phi_z}KT_{\bar{\phi}_z}||=0.$$

still true?

Theorem (Guo, Zheng, 2001)

If K is a finite sum of finite products of Toeplitz operators, and if

$$\lim_{|z|\to 1^-}||K-T^*_{\phi_z}KT_{\phi_z}||=0.$$

Then K = Toeplitz operator + Compact operator.

 $H_f T_g$ is not necessarily a finite sum of finite products of Toeplitz operators, but

$$(H_f T_g)^* (H_f T_g) = T_{\overline{g}} (T_{\overline{f}g} - T_{\overline{f}} T_g) T_g.$$

Consider the symbol map σ : $T_{\phi} \rightarrow \phi$.

The symbol map is a *-homomorphism on the C^* -algebra generated by Toeplitz operators.

Theorem (Barría, Halmos, 1982)

 σ can be extended to a *-homomorphism on the C*-algebra generated by both Toeplitz and Hankel operators s.t. $\sigma(Hankel) = 0$ and $\sigma(Compact) = 0$.

Notice that

$$\sigma((H_f T_g)^*(H_f T_g)) = 0.$$

Then $(H_f T_g)^*(H_f T_g) = \text{Toeplitz operator} + \text{Compact operator}$ if and only if $(H_f T_g)^*(H_f T_g)$ is compact.

The compactness of $H_f T_g$

Thus we have the following corollary:

Corollary

 $K = H_f T_g$ is compact if and only if

$$\lim_{|z|\to 1^{-}} ||K^*K - T^*_{\phi_z}K^*KT_{\phi_z}|| = 0.$$

Theorem (C.)

Let $f, g \in L^{\infty}$. The $H_f T_g$ is compact if and only if for each support set S, one of the following holds:

• $f|_{S} \in H^{\infty}|_{S}$. • $g|_{S} \in H^{\infty}|_{S}$ and $(fg)|_{S} \in H^{\infty}|_{S}$.

Now we can verify that each of the two conditions implies the compactness of $H_f T_g$.

The End