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Introduction

Definition

Let L2 = L2(∂D) and let H2 be the Hardy space on D. Given a symbol
function f ∈ L∞, define the Toeplitz operator Tf and the Hankel operator
Hf as:

Tf : H2 → H2,Tf h = P(fh),

and
Hf : H2 → (H2)⊥,Hf h = (I − P)(fh),

where P : L2 → H2 is the orthogonal projection.
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Introduction

Hf : H2 → (H2)⊥,Hf h = (I − P)(fh).

For convenience, we will use an alternative definition for Hankel operators.

Definition

Let Vf (z) = z̄ f (z̄). Then V is unitary on L2. Define:

Hf : H2 → H2,Hf h = PV (fh).

Then
Hf = VHf .
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Introduction

Question

When is Hf Tg compact?

It is known that:

1 Tf is compact iff f = 0.

2 Hf = 0 iff f ∈ H∞.

3 (Hartman’s Criterion) Hf is compact iff f ∈ H∞ + C ,
where C denotes the space of continuous functions ∂D.
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Relations between Toeplitz and Hankel operators

Consider the multiplication operator Mf on L2 for f ∈ L∞, defined by
Mf h = fh. Mf can be expressed as an operator matrix with respect to the
decomposition L2 = H2 ⊕ (H2)⊥ as the following:

Mf =

(
Tf Hf̃ V
VHf VTf̃ V

)
For f , g ∈ L∞, Mfg = MfMg , so multiplying the matrices and comparing
the entries, we get:

1 Tfg = Tf Tg + Hf̃Hg .

2 Hfg = Hf Tg + Tf̃Hg .

Here f̃ (z) = f (z̄),Vf (z) = z̄ f (z̄).
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A theorem of Axler, Chang, Sarason and Volberg

Problem

When is Tfg − Tf Tg = Hf̃Hg compact?

Theorem (Brown, Halmos, 1963)

Hf̃Hg = 0 if and only if f̄ ∈ H∞ or g ∈ H∞.

Theorem (Axler, Chang, Sararson, 1978; Volberg, 1982)

Hf̃Hg is compact if and only if

H∞[f̄ ] ∩ H∞[g ] ⊂ H∞ + C . (Algebraic Condition)

Here H∞[f ] denotes the closed subalgebra of L∞ generated by H∞ and f .
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A theorem of Axler, Chang, Sarason and Volberg

For a uniform algebra B, let M(B) denote the maximal ideal space of B,
the space of nonzero multiplicative linear functionals of B. We identify D
in the usual way as a subset of M(H∞).

By Carleson’s Corona Theorem, D is dense in M(H∞). Moreover,
M(H∞ + C ) = M(H∞)\D.

For any m in M(H∞), there exists a representing measure µm such that
m(f ) =

∫
fdµm, for all f ∈ H∞.

Definition

A subset S of M(H∞) is called a support set if it is the support of a
representing measure for a functional in M(H∞ + C ).
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A theorem of Axler, Chang, Sarason and Volberg

Definition

A subset S of M(H∞) is called a support set if it is the support of a
representing measure for a functional in M(H∞ + C ).

Theorem (Another Version)

Hf̃Hg is compact if and only if for each support set S ,
either f̄ |S ∈ H∞|S or g |S ∈ H∞|S . (Local Condition)

This condition localized the condition when Hf̃Hg = 0.

Theorem (Brown, Halmos, 1963)

Hf̃Hg = 0 if and only if f̄ ∈ H∞ or g ∈ H∞.
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An Elementary Condition for the Compactness of Hf̃Hg

Theorem (Zheng, 1996)

Hf̃Hg is compact if and only if

lim
|z|→1−

||Hf̄ kz ||2 · ||Hgkz ||2 = 0. (Elementary Condition)

Here kz denotes the normalized reproducing kernel at z:

kz(w) =

√
1− |z |2

1− z̄w
.
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An Elementary Condition for the Compactness of Hf̃Hg

By the Corona Theorem, the elementary condition

lim
|z|→1−

||Hf̄ kz || · ||Hgkz || = 0

can be rephrased as:
For all m ∈ M(H∞ + C ),

lim
z→m
||Hf̄ kz || · ||Hgkz || = 0.
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An Elementary Condition for the Compactness of Hf̃Hg

The next theorem links the elementary condition and the local condition.

Theorem (Gorkin, Zheng)

Let m ∈ M(H∞ + C ), and let S be the support set of m. Then the
following are equivalent:

1 f |S ∈ H∞|S .
2 lim

z→m
||Hf kz || = 0.

3 lim
z→m
||Hf kz || = 0.
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Compactness of Hf̃Hg

Theorem

The following are equivalent:

1 Hf̃Hg is compact.

2

H∞[f̄ ] ∩ H∞[g ] ⊂ H∞ + C . (Algebraic Condition)

3 For each support set S,

either f̄ |S ∈ H∞|S or g |S ∈ H∞|S . (Local Condition)

4

lim
|z|→1−

||Hf̄ kz || · ||Hgkz || = 0. (Elementary Condition)
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The compactness of HfTg

Turning to the operator Hf Tg . It is not hard to obtain the zero condition.

Lemma

Hf Tg = 0 if and only if one of the following holds:

1 f ∈ H∞.

2 g ∈ H∞ and fg ∈ H∞.

Localize these conditions, we want to prove:

Theorem (C.)

Let f , g ∈ L∞. The Hf Tg is compact if and only if for each support set S ,
one of the following holds:

1 f |S ∈ H∞|S .
2 g |S ∈ H∞|S and (fg)|S ∈ H∞|S .
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The compactness of HfTg

Theorem (C.)

Let f , g ∈ L∞. The Hf Tg is compact if and only if for each support set S ,
one of the following holds:

1 f |S ∈ H∞|S .
2 g |S ∈ H∞|S and (fg)|S ∈ H∞|S .

Proof: ”=⇒”. Suppose Hf Tg is compact. Apply the lemma:

Lemma (Zheng)

If K : H2 → H2 is a compact operator, then

lim
|z|→1−

||K − T ∗φz
KTφ̄z

|| = 0,

where

φz(w) =
z − w

1− z̄w
.

Cheng Chu (WUSTL) Product of Hankel and Toeplitz Operators March 7, 2014 14 / 21



The compactness of HfTg

We get:
lim
z→m
||Hf kz || · ||Hgkz || = 0,

for every m ∈ M(H∞ + C ).

Translate to the local conditions, we have:
either f |S ∈ H∞|S , or g |S ∈ H∞|S , where S is the support set of m.

For the second case, use the identity:

Hfg = Hf Tg + Tf̃Hg ,

then:
Hfgkz = Hf Tgkz + Tf̃Hgkz .
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The compactness of HfTg

Hfgkz = Hf Tgkz + Tf̃Hgkz ,

and
lim
z→m
||Hgkz || = 0.

Notice that: Hf Tg is compact and kz → 0 weakly. Thus

lim
z→m
||Hf Tgkz || = 0.

So
lim
z→m
||Hfgkz || = 0.

This means (fg)|S ∈ H∞|S .
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The compactness of HfTg

Theorem

Let f , g ∈ L∞. The Hf Tg is compact if and only if for each support set S ,
one of the following holds:

1 f |S ∈ H∞|S .
2 g |S ∈ H∞|S and (fg)|S ∈ H∞|S .

”⇐=.” Is the converse of

Lemma

If K : H2 → H2 is a compact operator, then

lim
|z|→1−

||K − T ∗φz
KTφ̄z

|| = 0.

still true?
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The compactness of HfTg

Theorem (Guo, Zheng, 2001)

If K is a finite sum of finite products of Toeplitz operators, and if

lim
|z|→1−

||K − T ∗φz
KTφz || = 0.

Then K = Toeplitz operator + Compact operator.

Hf Tg is not necessarily a finite sum of finite products of Toeplitz
operators, but

(Hf Tg )∗(Hf Tg ) = Tḡ (Tf̄ g − Tf̄ Tg )Tg .
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The compactness of HfTg

Consider the symbol map σ : Tφ → φ.

The symbol map is a ∗-homomorphism on the C ∗-algebra generated by
Toeplitz operators.

Theorem (Barŕıa, Halmos, 1982)

σ can be extended to a ∗-homomorphism on the C ∗-algebra generated by
both Toeplitz and Hankel operators s.t.
σ(Hankel) = 0 and σ(Compact) = 0.

Notice that
σ((Hf Tg )∗(Hf Tg )) = 0.

Then
(Hf Tg )∗(Hf Tg ) = Toeplitz operator + Compact operator
if and only if (Hf Tg )∗(Hf Tg ) is compact.
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The compactness of HfTg

Thus we have the following corollary:

Corollary

K = Hf Tg is compact if and only if

lim
|z|→1−

||K ∗K − T ∗φz
K ∗KTφz || = 0.

Theorem (C.)

Let f , g ∈ L∞. The Hf Tg is compact if and only if for each support set S ,
one of the following holds:

1 f |S ∈ H∞|S .
2 g |S ∈ H∞|S and (fg)|S ∈ H∞|S .

Now we can verify that each of the two conditions implies the
compactness of Hf Tg .
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The End
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