Bounded Composition Operators on the Bidisk

Cheng Chu

Vanderbilt University

Mar 18, 2017

Introduction

Definition

For a bounded convex domain $\Omega \subset \mathbb{C}^{d}\left(\Omega=\mathbb{D}\right.$ or $\left.\mathbb{D}^{2}\right)$, the composition operator C_{φ} is defined by $C_{\varphi} f=f \circ \varphi$, for an analytic self-map φ of Ω.

Let $H^{2}(\mathbb{D})$ and $H^{2}\left(\mathbb{D}^{2}\right)$ be the Hardy spaces.

Littlewood's Subordination Principle

Every composition operator is bounded on $H^{2}(\mathbb{D})$.

Question: What about composition operators on $H^{2}\left(\mathbb{D}^{2}\right)$?

Introduction

For a point $z \in \mathbb{D}^{2}$, we use $z=\left(z_{1}, z_{2}\right)$ to denote the coordinates of z.

Example

If $B\left(z_{1}, z_{2}\right)=\left(z_{1}, z_{1}\right)$, then C_{B} is not bounded on $H^{2}\left(\mathbb{D}^{2}\right)$.
Jury reproved the boundedness of composition operators on $H^{2}(\mathbb{D})$ using only reproducing kernels. We adapt this approach to study the two-variable case and find nontrivial bounded composition operators on $H^{2}\left(\mathbb{D}^{2}\right)$.

Reproducing kernels

Definition

Let $X \subset \mathbb{C}^{d}$. We say a function $K: X \times X \rightarrow \mathbb{C}$ is a positive semi-definite $(K \geq 0)$ if $K(x, y)=\overline{K(y, x)}$, and for all finite sets $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right\} \subset X$, the matrix $\left(K\left(\lambda_{i}, \lambda_{j}\right)\right)_{i, j=1}^{m} \geq 0$.

Definition (RKHS)

A reproducing kernel Hilbert space \mathcal{H} on X is a Hilbert space of complex valued functions such that for every $w \in X$, there exists $K_{w} \in \mathcal{H}$ satisfying

$$
\left\langle f, K_{w}\right\rangle_{\mathcal{H}}=f(w), \text { for every } f \in \mathcal{H}
$$

Let $K(z, w)=K_{w}(z)$. Then $K \geq 0$.

Reproducing kernels

Moore's Theorem

Let $X \subset \mathbb{C}^{d}$ and let $K: X \times X \rightarrow \mathbb{C}$ be positive semi-definite. Then there exists a unique reproducing kernel Hilbert space with reproducing kernel K.

Example

- $K_{L_{a}^{2}(\mathbb{D})}(z, w)=\frac{1}{(1-\bar{w} z)^{2}}$
- $K_{H^{2}(\mathbb{D})}(z, w)=\frac{1}{1-\bar{w} z}$
- $K_{H^{2}\left(\mathbb{D}^{2}\right)}(z, w)=\frac{1}{\left(1-\bar{w}_{1} z_{1}\right)\left(1-\bar{w}_{2} z_{2}\right)}$

Reproducing kernels

Proposition

Let K_{1}, K_{2} be positive semi-definite. Then
(1) $K_{1}+K_{2} \geq 0$.
(2) $K_{1} \cdot K_{2} \geq 0$.

Multiplier Criterion

Let \mathcal{H} be a RKHS with kernel K. Then f is a multiplier of \mathcal{H} with multiplier norm at most δ if and only if

$$
\left(\delta^{2}-f(z) \overline{f(w)}\right) \cdot K(z, w) \geq 0
$$

If $\delta \leq 1$, then f is called a contractive multiplier of \mathcal{H}.

Reproducing kernels

Multiplier Criterion

Let \mathcal{H} be a RKHS with kernel K. Then f is a contractive multiplier of \mathcal{H} if and only if

$$
(1-f(z) \overline{f(w)}) \cdot K(z, w) \geq 0
$$

de Branges-Rovnyak space

Let $b \in H^{\infty}(\mathbb{D})$ and $\|b\|_{\infty} \leq 1$.
$\mathcal{H}(b)$ is the Hilbert space with reproducing kernel:

$$
\frac{1-\overline{b(w)} b(z)}{1-\bar{w} z}
$$

It is invariant under S^{*}, the backward shift operator.

Composition operators on $\left.H^{2}(\mathbb{D})^{2}\right)$

We use the following theorem to find bounded composition operators.

Theorem

Let $B=(\phi, \psi)$ be an analytic map from \mathbb{D}^{2} to \mathbb{D}^{2}. Define a function R as

$$
R(z, w)=\frac{1-\overline{\phi(w)} \phi(z)}{1-\overline{w_{1} z_{1}}} \cdot \frac{1-\overline{\psi(w)} \psi(z)}{1-\overline{w_{2} z_{2}}}
$$

If $R \geq 0$, then C_{B} is a bounded composition operator on $H^{2}\left(\mathbb{D}^{2}\right)$ and

$$
\left\|C_{B}\right\| \leq\left(\frac{1+|\phi(0)|}{1-|\phi(0)|}\right)^{\frac{1}{2}} \cdot\left(\frac{1+|\psi(0)|}{1-|\psi(0)|}\right)^{\frac{1}{2}}
$$

Sub-Hardy Hilbert Space of the Bidisk

$$
R(z, w)=(1-\overline{\psi(w)} \psi(z)) \cdot \frac{1-\overline{\phi(w)} \phi(z)}{\left(1-\bar{w}_{1} z_{1}\right)\left(1-\bar{w}_{2} z_{2}\right)} .
$$

Multiplier Criterion

Let \mathcal{H} be a RKHS with kernel K. Then f is a contractive multiplier of \mathcal{H} if and only if

$$
(1-f(z) \overline{f(w)}) \cdot K(z, w) \geq 0
$$

$$
\frac{1-\overline{\phi(w)} \phi(z)}{\left(1-\overline{w_{1} z_{1}}\right)\left(1-\bar{w}_{2} z_{2}\right)} \geq 0 .
$$

The Hilbert space with the above reproducing kernel, denoted by $\mathcal{H}^{2}(\phi)$, is called a sub-Hardy Hilbert space of the bidisk.
It is invariant under the two backward shift operators S_{1}^{*}, S_{2}^{*} on $H^{2}\left(\mathbb{D}^{2}\right)$.

Composition operators on $H^{2}\left(\mathbb{D}^{2}\right)$

$$
\phi, \psi: \mathbb{D}^{2} \rightarrow \mathbb{D}, R(z, w)=(1-\overline{\psi(w)} \psi(z)) \cdot \frac{1-\overline{\phi(w)} \phi(z)}{\left(1-\overline{w_{1}} z_{1}\right)\left(1-\overline{w_{2}} z_{2}\right)} .
$$

Proposition

$R \geq 0$ if and only if ψ is a contractive multiplier of $\mathcal{H}^{2}(\phi)$.
We can easily show that $R \geq 0$ for some special cases.
(1) If one of ϕ, ψ is a constant.
(2) If ϕ, ψ are one-variable functions in z_{1} and z_{2}, respectively
$\left(\phi=\phi\left(z_{1}\right), \psi=\psi\left(z_{2}\right)\right)$, then $\frac{\left.1-\overline{\phi\left(w_{1}\right)}\right) \phi\left(z_{1}\right)}{1-\overline{w_{1}} z_{1}} \geq 0$ and $\frac{1-\overline{\psi\left(w_{2}\right)} \psi\left(z_{2}\right)}{1-\bar{w}_{2} z_{2}} \geq 0$,
so the product R is positive semi-definite.

Multipliers of $\mathcal{H}^{2}(\phi)$

Theorem

If ψ is a contractive multiplier of $\mathcal{H}^{2}(\phi)$, then C_{B} is bounded on $H^{2}\left(\mathbb{D}^{2}\right)$, with $B=(\phi, \psi)$.

Multipliers of $\mathcal{H}^{2}(\phi)$

Theorem

If ψ is a contractive multiplier of $\mathcal{H}^{2}(\phi)$, then C_{B} is bounded on $H^{2}\left(\mathbb{D}^{2}\right)$, with $B=(\phi, \psi)$.

If B maps \mathbb{D}^{2} into a compact subset of \mathbb{D}^{2}, then C_{B} is bounded on $H^{2}\left(\mathbb{D}^{2}\right)$. So we assume $\|\phi\|_{\infty}=1$.

If ϕ is inner, then we get no nontrivial bounded composition operators.

Theorem

If ϕ is a nonconstant inner function, ψ is a nonconstant multiplier of $\mathcal{H}^{2}(\phi)$. Then one of the functions ϕ, ψ is a one-variable function in z_{1} and the other is a one-variable function in z_{2}.

Multipliers of de Branges-Rovnyak spaces

The study of $\mathcal{H}(b)$ bifurcates into two cases:
(1) b is nonextreme: $\log \left(1-|b|^{2}\right) \in L^{1}(\mathbb{T})$
(b is not an extreme point of the closed unit ball of H^{∞})
(2) b is extreme: $\log \left(1-|b|^{2}\right) \notin L^{1}(\mathbb{T})$

Multipliers of de Branges-Rovnyak spaces

The study of $\mathcal{H}(b)$ bifurcates into two cases:
(1) b is nonextreme: $\log \left(1-|b|^{2}\right) \in L^{1}(\mathbb{T})$
(b is not an extreme point of the closed unit ball of H^{∞})
(2) b is extreme: $\log \left(1-|b|^{2}\right) \notin L^{1}(\mathbb{T})$

When b is nonextreme, there exists an outer function $a(a(0) \neq 0)$ s.t. $|a|^{2}+|b|^{2}=1$, a.e. on \mathbb{T}.

$$
|a|^{2}+|b|^{2}=1 \Rightarrow T_{\bar{a}} T_{a}=I-T_{\bar{b}} T_{b}
$$

Here T_{b} is the Toeplitz operator defined by $T_{b}(f)=P(b f)$.

"Nonextreme" case in $\mathbb{D}{ }^{2}$

For $\mathcal{H}^{2}(\phi)$, we assume there is a nonconstant function $a \in H^{\infty}\left(\mathbb{D}^{2}\right)$ such that

$$
|a|^{2}+|\phi|^{2}=1
$$

a.e. on \mathbb{T}^{2}. We call a the Pythagorean mate for ϕ.

However, the condition $\log \left(1-|\phi|^{2}\right) \in L^{1}\left(\mathbb{T}^{2}\right)$ is only necessary for ϕ to have a Pythagorean mate.
Also ϕ may have a Pythagorean mate vanishing at 0 .

"Nonextreme" case in $\mathbb{D})^{2}$

For $\mathcal{H}^{2}(\phi)$, we assume there is a nonconstant function $a \in H^{\infty}\left(\mathbb{D}^{2}\right)$ such that

$$
|a|^{2}+|\phi|^{2}=1
$$

a.e. on \mathbb{T}^{2}. We call a the Pythagorean mate for ϕ.

However, the condition $\log \left(1-|\phi|^{2}\right) \in L^{1}\left(\mathbb{T}^{2}\right)$ is only necessary for ϕ to have a Pythagorean mate.
Also ϕ may have a Pythagorean mate vanishing at 0 .

Example

(1) $\phi(z)=\frac{1+z_{1}}{2}, a(z)=\frac{1-z_{1}}{2}$.
(2) $\phi(z)=\frac{z_{1}+z_{2}}{2}, a(z)=\frac{z_{1}-z_{2}}{2}$.

Back to $\mathcal{H}(b)$

Theorem (Lotto, Sarason)

If b is nonextreme, then every function that is continues on $\overline{\mathbb{D}}$ is a multiplier of $\mathcal{H}(b)$.

The proof relies on the following
(1) $b \in \mathcal{H}(b)$
(2) For any $h \in \mathcal{H}(b), X^{*} h=S h-\left\langle h, S^{*} b\right\rangle_{\mathcal{H}(b)} b$, where $X=\left.S^{*}\right|_{\mathcal{H}(b)}$.

Then $\left.S\right|_{\mathcal{H}(b)}=$ Contraction + Compact operator, by Fredholm theory, $\sigma\left(\left.S\right|_{\mathcal{H}(b)}\right) \subset \overline{\mathbb{D}}$. If f is continuous on $\overline{\mathbb{D}}$, then $f\left(\left.S\right|_{\mathcal{H}(b)}\right)$ is defined and coincides with the multiplication operator M_{f}.

Multipliers of $\mathcal{H}^{2}(\phi)$

Let $X=\left.S^{*}\right|_{\mathcal{H}(b)}$

$$
X^{*} h=S h-\left\langle h, S^{*} b\right\rangle_{\mathcal{H}(b)} b,
$$

for any $h \in \mathcal{H}(b)$.
Suppose ϕ and has a Pythagorean mate a.
For $\mathcal{H}^{2}(\phi)$, let $X_{1}=\left.S_{1}^{*}\right|_{\mathcal{H}^{2}(\phi)}$.
Then we still have $\phi \in \mathcal{H}^{2}(\phi)$, but for every $h \in \mathcal{H}^{2}(\phi)$

$$
X_{1}^{*} h(w)=w_{1} h(w)-\left\langle h(z), \frac{1}{1-\bar{w}_{2} z_{2}}\left(S_{1}^{*} \phi\right)(z)\right\rangle_{\mathcal{H}^{2}(\phi)} \phi(w) .
$$

Multipliers of $\mathcal{H}^{2}(\phi)$

Theorem

Suppose ϕ and has a Pythagorean mate a. Then every polynomial is a multiplier of $\mathcal{H}^{2}(\phi)$.

Question

(1) If ψ is continuous on $\overline{\mathbb{D}^{2}}$, is ψ a multiplier of $\mathcal{H}^{2}(\phi)$
(2) What about the "extreme case" in \mathbb{D}^{2} ?

The End

