A Spectral Area Estimate of Some Toeplitz Operators

Cheng Chu

Washington University in St. Louis (Joint work with Dmitry Khavinson)

Jan 6, 2016

Introduction

Definition

Let $L^2=L^2(\partial\mathbb{D})$ and let H^2 be the Hardy space on \mathbb{D} . Given a symbol function $\varphi\in L^\infty(\partial\mathbb{D})$, define the Toeplitz operator T_φ and the Hankel operator H_φ as

$$T_{\varphi}: H^2 \to H^2, \quad T_{\varphi}h = P(\varphi h),$$

and

$$H_{\varphi}: H^2 \to H^2, \quad H_{\varphi}h = V(I-P)(\varphi h).$$

where $P: L^2 \to H^2$ is the orthogonal projection,

$$Vf(z) = \bar{z}f(\bar{z})$$
 is a unitary operator on L^2 .

Definition

The spectrum of a linear operator:

$$sp(T) = \{\lambda \in \mathbb{C} \mid T - \lambda I \text{ is not invertible}\}.$$

Definition

The spectrum of a linear operator:

$$sp(T) = \{\lambda \in \mathbb{C} \mid T - \lambda I \text{ is not invertible}\}.$$

• If φ is real-valued, $sp(T_{\varphi}) = [essinf \varphi, esssup \varphi].$

Definition

The spectrum of a linear operator:

$$sp(T) = \{\lambda \in \mathbb{C} \mid T - \lambda I \text{ is not invertible}\}.$$

- If φ is real-valued, $sp(T_{\varphi}) = [essinf \varphi, esssup \varphi].$
- If φ is analytic, $sp(T_{\varphi}) = \overline{\varphi(\mathbb{D})}$.

Definition

The spectrum of a linear operator:

$$sp(T) = \{\lambda \in \mathbb{C} \mid T - \lambda I \text{ is not invertible}\}.$$

- If φ is real-valued, $sp(T_{\varphi}) = [essinf \varphi, esssup \varphi].$
- If φ is analytic, $sp(T_{\varphi}) = \overline{\varphi}(\mathbb{D})$.
- If φ is continuous, $sp(T_{\varphi}) = Ran(\varphi) \cup \{\lambda \in \mathbb{C} | i_t(\varphi, \lambda) \neq 0\}$. Here $i_t(\varphi, \lambda)$ is the winding number of the curve determined by φ with respect to λ .

Definition

The spectrum of a linear operator:

$$sp(T) = \{\lambda \in \mathbb{C} \mid T - \lambda I \text{ is not invertible}\}.$$

- If φ is real-valued, $sp(T_{\varphi}) = [essinf \varphi, esssup \varphi].$
- If φ is analytic, $sp(T_{\varphi}) = \varphi(\mathbb{D})$.
- If φ is continuous, $sp(T_{\varphi}) = Ran(\varphi) \cup \{\lambda \in \mathbb{C} | i_t(\varphi, \lambda) \neq 0\}$. Here $i_t(\varphi, \lambda)$ is the winding number of the curve determined by φ with respect to λ .

Theorem (H. Widom, 1964)

For $\varphi \in L^{\infty}$, $sp(T_{\varphi})$ is connected.

Definition

For a bounded linear operator T on a Hilbert space, let $[T^*, T]$ denote the self-commutator of T, i.e.

$$[T^*, T] = T^*T - TT^*.$$

T is called hyponormal if $[T^*, T] \ge 0$.

Definition

For a bounded linear operator T on a Hilbert space, let $[T^*, T]$ denote the self-commutator of T, i.e.

$$[T^*, T] = T^*T - TT^*.$$

T is called hyponormal if $[T^*, T] \ge 0$.

Putnam's Inequality (1970)

If T is hyponormal, then

$$\|[T^*,T]\| \leq \frac{Area(sp(T))}{\pi}.$$

Definition

$$[T^*, T] = T^*T - TT^*.$$

T is called hyponormal if $[T^*, T] \ge 0$.

Proposition

Analytic Toeplitz operators are hyponormal.

Definition

$$[T^*, T] = T^*T - TT^*.$$

T is called hyponormal if $[T^*, T] \ge 0$.

Proposition

Analytic Toeplitz operators are hyponormal.

Proof: For $f \in H^{\infty}$ and $p \in H^2$,

$$\langle [T_f^*, T_f] p, p \rangle = \langle T_f p, T_f p \rangle - \langle T_f^* p, T_f^* p \rangle$$
$$= ||fp||^2 - ||T_{\bar{f}} p||^2$$
$$= ||\bar{f} p||^2 - ||T_{\bar{f}} p||^2 \ge 0$$

Khavinson's Theorem (Upper bound)

Putnam's Inequality

If T is hyponormal, then

$$\|[T^*,T]\| \leq \frac{Area(sp(T))}{\pi}.$$

Khavinson's Theorem (Upper bound)

Putnam's Inequality

If T is hyponormal, then

$$||[T^*,T]|| \leq \frac{Area(sp(T))}{\pi}.$$

Theorem (Khavinson, 1984)

Suppose G is a finitely connected bounded domain in $\mathbb C$ with a piecewise-smooth boundary, φ is analytic in a neighborhood of $\bar G$. Then

$$\|[T_{\varphi}^*, T_{\varphi}]\| \geq \frac{4 \operatorname{Area}^2(\operatorname{sp}(T_{\varphi}))}{||\varphi'||^2_{L^2(ds)} \cdot \operatorname{Peri}(G)}.$$

Khavinson's Theorem (Upper bound)

Putnam's Inequality

If T is hyponormal, then

$$||[T^*,T]|| \leq \frac{Area(sp(T))}{\pi}.$$

Theorem (Khavinson, 1984)

Suppose G is a finitely connected bounded domain in $\mathbb C$ with a piecewise-smooth boundary, φ is analytic in a neighborhood of $\bar G$. Then

$$\|[T_{\varphi}^*, T_{\varphi}]\| \geq \frac{4 \operatorname{Area}^2(\operatorname{sp}(T_{\varphi}))}{\||\varphi'||_{L^2(ds)}^2 \cdot \operatorname{Peri}(G)}.$$

Combining the two inequalities together, we obtained

$$Area(sp(T_{\varphi})) \leq \frac{||\varphi'||_{L^{2}(ds)}^{2} \cdot Peri(G)}{4\pi}.$$

For a uniform algebra A, let M_A denote the maximal ideal space of A, the space of nonzero multiplicative linear functionals of A.

For any $m \in M_A$, there exists a representing measure μ_m on M_A such that $m(f) = \int f d\mu_m$, for all $f \in A$.

Let $sp(f) = \{\lambda \in \mathbb{C} \mid f - \lambda \text{ is not invertible in } A\}.$

Theorem (H. Alexander, 1978)

Suppose A is a uniform algebra. Let $m \in M_A$ and μ be its representing measure. Then

$$Area(sp(f)) \geq \pi \int |f - m(f)|^2 d\mu.$$

Theorem (H. Alexander, 1978)

Suppose A is a uniform algebra. Let $m \in M_A$ and μ be its representing measure. Then

$$Area(sp(f)) \geq \pi \int |f - m(f)|^2 d\mu.$$

Take $A = H^{\infty}(\mathbb{D})$, we identify \mathbb{D} in the usual way as a subset of $M(H^{\infty})$.

Let m=0, then $\mu=\frac{d\theta}{2\pi}$.

And $sp(f) = sp(T_f)$.

Corollary 1

Let $f \in H^{\infty}$. Then

$$Area(sp(T_f)) \ge \pi ||f - f(0)||_2^2$$
.

Theorem (H. Alexander, 1978)

Suppose A is a uniform algebra. Let $m \in M_A$ and μ be its representing measure. Then

$$Area(sp(f)) \geq \pi \int |f - m(f)|^2 d\mu.$$

Let $m = z \in \mathbb{D}$, then $\mu = \mu_z$, the Poisson measure.

Corollary 2

Let $f \in H^{\infty}$. Then

$$Area(sp(T_f)) \ge \pi \sup_{z \in \mathbb{D}} \{ \int |f - f(z)|^2 d\mu_z \} \approx ||f||_{BMO}^2$$

Theorem (H. Alexander, 1978)

Suppose A is a uniform algebra. Let $m \in M_A$ and μ be its representing measure. Then

$$Area(sp(f)) \geq \pi \int |f - m(f)|^2 d\mu.$$

Let $m = z \in \mathbb{D}$, then $\mu = \mu_z$, the Poisson measure.

Corollary 2

Let $f \in H^{\infty}$. Then

$$Area(sp(T_f)) \geq \pi \sup_{z \in \mathbb{D}} \{ \int |f - f(z)|^2 d\mu_z \} \approx ||f||_{BMO}^2$$

Question: What about hyponormal Toeplitz operators?

Hyponormal Toeplitz Operator

Definition

$$[T^*, T] = T^*T - TT^*.$$

T is called hyponormal if $[T^*, T] \ge 0$.

Characterization of hyponormal Toeplitz operators.

Theorem (C.Cowen, 1988)

Let $\varphi \in L^{\infty}$, where $\varphi = f + \bar{g}$ for f and g in H^2 . Then T_{φ} is hyponormal if and only if

$$g = c + T_{\bar{h}}f$$

for some constant c and $h \in H^{\infty}$ with $||h||_{\infty} \leq 1$.

Main Result

Theorem (C.Cowen, 1988)

Let $\varphi \in L^{\infty}$, where $\varphi = f + \bar{g}$ for f and g in H^2 . Then T_{φ} is hyponormal if and only if

$$g=c+T_{\bar{h}}f,$$

for some constant c and $h \in H^{\infty}$ with $||h||_{\infty} \leq 1$.

Theorem (Khavinson, C.)

Suppose $\varphi \in L^{\infty}$ and

$$\varphi = f + \overline{T_{\bar{h}}f},$$

for $f,h \in H^{\infty}$, $||h||_{\infty} \leq 1$ and h(0) = 0. Then

$$\|[T_{\varphi}^*, T_{\varphi}]\| \geq \int |f - f(0)|^2 \frac{d\theta}{2\pi} = \|P(\varphi) - \varphi(0)\|_2^2.$$

Suppose $\varphi \in \mathit{L}^{\infty}$ and

$$\varphi = f + \overline{T_{\bar{h}}f},$$

for $f, h \in H^{\infty}$, $||h||_{\infty} \le 1$ and h(0) = 0. Then

$$\|[T_{\varphi}^*, T_{\varphi}]\| \geq \int |f - f(0)|^2 \frac{d\theta}{2\pi} = \|P(\varphi) - \varphi(0)\|_2^2.$$

Suppose $\varphi \in L^{\infty}$ and

$$\varphi = f + \overline{T_{\bar{h}}f},$$

for $f,h\in H^{\infty}$, $\|h\|_{\infty}\leq 1$ and h(0)=0. Then

$$||[T_{\varphi}^*, T_{\varphi}]|| \ge \int |f - f(0)|^2 \frac{d\theta}{2\pi} = ||P(\varphi) - \varphi(0)||_2^2.$$

Proof:

$$||[T_{\varphi}^*, T_{\varphi}]|| = \sup_{\substack{||p||=1\\ p \in H^2}} |\langle [T_{\varphi}^*, T_{\varphi}]p, p \rangle|.$$

We can compute that

$$\langle [T_{\varphi}^*, T_{\varphi}]p, p \rangle = ||H_{\bar{f}}p||^2 - ||T_{\bar{h}}H_{\bar{f}}p||^2.$$

Suppose $\varphi \in L^{\infty}$ and

$$\varphi = f + \overline{T_{\bar{h}}f},$$

for $f, h \in H^{\infty}$, $||h||_{\infty} \leq 1$ and h(0) = 0. Then

$$||[T_{\varphi}^*, T_{\varphi}]|| \geq \int |f - f(0)|^2 \frac{d\theta}{2\pi} = ||P(\varphi) - \varphi(0)||_2^2.$$

Proof:

$$||[T_{\varphi}^*, T_{\varphi}]|| = \sup_{\substack{||p||=1\\ p \in H^2}} |\langle [T_{\varphi}^*, T_{\varphi}]p, p \rangle|.$$

We can compute that

$$\langle [T_{\varphi}^*, T_{\varphi}]p, p \rangle = ||H_{\bar{f}}p||^2 - ||T_{\bar{h}}H_{\bar{f}}p||^2.$$

 T_{φ} is normal if and only if h is a unimodular constant.

We added the assumption that h(0) = 0 to avoid these trivial cases.

Approximate h by inner functions

$$||[T_{\varphi}^*, T_{\varphi}]|| = \sup_{\substack{||p||=1\\ p \in H^2}} |\langle [T_{\varphi}^*, T_{\varphi}]p, p \rangle|.$$

$$\langle [T_{\varphi}^*, T_{\varphi}]p, p \rangle = ||H_{\bar{f}}p||^2 - ||T_{\bar{h}}H_{\bar{f}}p||^2,$$

where $h \in H^{\infty}$, $||h||_{\infty} \le 1$ and h(0) = 0.

Approximate h by inner functions

$$||[T_{\varphi}^*, T_{\varphi}]|| = \sup_{\substack{||\rho||=1\\ \rho \in H^2}} |\langle [T_{\varphi}^*, T_{\varphi}] \rho, \rho \rangle|.$$

$$\langle [T_{\varphi}^*, T_{\varphi}]p, p \rangle = ||H_{\bar{f}}p||^2 - ||T_{\bar{h}}H_{\bar{f}}p||^2,$$

where $h \in H^{\infty}$, $||h||_{\infty} \leq 1$ and h(0) = 0.

If h is inner, it is easy to show that

$$\langle [T_{\varphi}^*, T_{\varphi}]p, p \rangle \geq |H_{\bar{f}}p(0)|^2.$$

Approximate h by inner functions

$$||[T_{\varphi}^*, T_{\varphi}]|| = \sup_{\substack{||\rho||=1\\ \rho \in H^2}} |\langle [T_{\varphi}^*, T_{\varphi}]\rho, \rho \rangle|.$$

$$\langle [T_{\varphi}^*, T_{\varphi}]p, p \rangle = ||H_{\bar{f}}p||^2 - ||T_{\bar{h}}H_{\bar{f}}p||^2,$$

where $h \in H^{\infty}$, $||h||_{\infty} \leq 1$ and h(0) = 0.

If h is inner, it is easy to show that

$$\langle [T_{\varphi}^*, T_{\varphi}]p, p \rangle \geq |H_{\bar{f}}p(0)|^2.$$

• Approximate h by convex linear combinations of inner functions. The above estimate remains valid for all $h \in H^{\infty}$, $||h||_{\infty} \leq 1$.

Main Result

$$\langle [T_{\varphi}^*, T_{\varphi}]p, p \rangle \ge |H_{\bar{f}}p(0)|^2.$$

$$H_{\varphi}h = V(I - P)(\varphi h), \quad Vf(z) = \bar{z}f(\bar{z}).$$

A duality argument shows that

$$\sup_{\substack{||\rho||=1\\ \rho\in H^2}} |H_{\bar{f}}p(0)| = \sup_{\substack{||\rho||=1\\ \rho\in H^2}} |\langle \rho\bar{f},\bar{z}\rangle| = \operatorname{dist}(\bar{f},H^2) = ||f-f(0)||_2.$$

Theorem (Khavinson, C.)

Suppose $\varphi \in L^{\infty}$ and

$$\varphi = f + \overline{T_{\bar{h}}f},$$

for $f, h \in H^{\infty}$, $||h||_{\infty} \le 1$ and h(0) = 0. Then

$$\|[T_{\varphi}^*, T_{\varphi}]\| \geq \int |f - f(0)|^2 \frac{d\theta}{2\pi} = \|P(\varphi) - \varphi(0)\|_2^2.$$

Putnam's Inequality

If T is hyponormal, then

$$\|[T^*,T]\|\leq \frac{Area(sp(T))}{\pi}.$$

We have the spectral area estimate

Theorem (Khavinson, C.)

Suppose $\varphi \in L^{\infty}$ and

$$\varphi = f + \overline{T_{\bar{h}}f},$$

for $f, h \in H^{\infty}$, $||h||_{\infty} \le 1$ and h(0) = 0. Then

$$Area(sp(T_{\varphi})) \geq \pi ||P(\varphi) - \varphi(0)||_2^2$$
.

Remark

Corollary 1 of Alexander's Spectral Area Estimate

Let $f \in H^{\infty}$. Then

$$Area(sp(T_f)) \ge \pi ||f - f(0)||_2^2$$
.

Theorem (Khavinson, C.)

Suppose $\varphi \in L^{\infty}$ and

$$\varphi = f + \overline{T_{\bar{h}}f},$$

for $f, h \in H^{\infty}$, $||h||_{\infty} \leq 1$ and h(0) = 0. Then

$$Area(sp(T_{\varphi})) \geq \pi ||P(\varphi) - \varphi(0)||_2^2$$
.

Suppose $\varphi \in L^{\infty}$ and

$$\varphi = f + \overline{T_{\bar{h}}f},$$

for $f, h \in H^{\infty}$, $||h||_{\infty} \leq 1$ and h(0) = 0. Then

$$Area(sp(T_{\varphi})) \geq \pi ||P(\varphi) - \varphi(0)||_2^2.$$

Corollary 2 of Alexander's Spectral Area Estimate

Let $f \in H^{\infty}$. Then

$$Area(sp(T_f)) \ge \pi \sup_{z \in \mathbb{D}} \{ \int |f - f(z)|^2 d\mu_z \} \approx ||f||_{BMO}^2$$

Open question: What can we say about the BMO norm?

The End