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Introduction

Definition

Let L2 = L2(∂D) and let H2 be the Hardy space on D. Given a symbol
function ϕ ∈ L∞(∂D), define the Toeplitz operator Tϕ and the Hankel
operator Hϕ as

Tϕ : H2 → H2, Tϕh = P(ϕh),

and
Hϕ : H2 → H2, Hϕh = V (I − P)(ϕh).

where P : L2 → H2 is the orthogonal projection,
Vf (z) = z̄ f (z̄) is a unitary operator on L2.
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Some results about the spectrum of Toeplitz operators

Definition

The spectrum of a linear operator:

sp(T ) = {λ ∈ C |T − λI is not invertible}.

If ϕ is real-valued, sp(Tϕ) = [essinfϕ, esssupϕ].

If ϕ is analytic, sp(Tϕ) = ϕ(D).

If ϕ is continuous, sp(Tϕ) = Ran(ϕ) ∪ {λ ∈ C|it(ϕ, λ) 6= 0}.
Here it(ϕ, λ) is the winding number of the curve determined by ϕ
with respect to λ.

Theorem (H. Widom, 1964)

For ϕ ∈ L∞, sp(Tϕ) is connected.
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Hyponormal Operators

Definition

For a bounded linear operator T on a Hilbert space, let [T ∗,T ] denote the
self-commutator of T , i.e.

[T ∗,T ] = T ∗T − TT ∗.

T is called hyponormal if [T ∗,T ] ≥ 0.

Putnam’s Inequality (1970)

If T is hyponormal , then

‖[T ∗,T ]‖ ≤ Area(sp(T ))

π
.
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Hyponormal Operators

Definition

[T ∗,T ] = T ∗T − TT ∗.

T is called hyponormal if [T ∗,T ] ≥ 0.

Proposition

Analytic Toeplitz operators are hyponormal.

Proof: For f ∈ H∞ and p ∈ H2,

〈[T ∗f ,Tf ]p, p〉 = 〈Tf p,Tf p〉 − 〈T ∗f p,T ∗f p〉
= ||fp||2 − ||Tf̄ p||

2

= ||f̄ p||2 − ||Tf̄ p||
2 ≥ 0
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Khavinson’s Theorem (Upper bound)

Putnam’s Inequality

If T is hyponormal , then

‖[T ∗,T ]‖ ≤ Area(sp(T ))

π
.

Theorem (Khavinson, 1984)

Suppose G is a finitely connected bounded domain in C with a
piecewise-smooth boundary, ϕ is analytic in a neighborhood of Ḡ . Then

‖[T ∗ϕ,Tϕ]‖ ≥ 4Area2(sp(Tϕ))

||ϕ′||2
L2(ds)

· Peri(G )
.

Combining the two inequalities together, we obtained

Area(sp(Tϕ)) ≤
||ϕ′||2L2(ds) · Peri(G )

4π
.
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Alexander’s Spectral Area Estimate (Lower bound)

For a uniform algebra A, let MA denote the maximal ideal space of A, the
space of nonzero multiplicative linear functionals of A.

For any m ∈ MA, there exists a representing measure µm on MA such that
m(f ) =

∫
fdµm, for all f ∈ A.

Let sp(f ) = {λ ∈ C | f − λ is not invertible inA}.

Theorem (H. Alexander, 1978)

Suppose A is a uniform algebra. Let m ∈ MA and µ be its representing
measure. Then

Area(sp(f )) ≥ π
∫
|f −m(f )|2dµ.
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Alexander’s Spectral Area Estimate (Lower bound)

Theorem (H. Alexander, 1978)

Suppose A is a uniform algebra. Let m ∈ MA and µ be its representing
measure. Then

Area(sp(f )) ≥ π
∫
|f −m(f )|2dµ.

Take A = H∞(D), we identify D in the usual way as a subset of M(H∞).

Let m = 0, then µ = dθ
2π .

And sp(f ) = sp(Tf ).

Corollary 1

Let f ∈ H∞. Then

Area(sp(Tf )) ≥ π||f − f (0)||22.
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Alexander’s Spectral Area Estimate (Lower bound)

Theorem (H. Alexander, 1978)

Suppose A is a uniform algebra. Let m ∈ MA and µ be its representing
measure. Then

Area(sp(f )) ≥ π
∫
|f −m(f )|2dµ.

Let m = z ∈ D, then µ = µz , the Poisson measure.

Corollary 2

Let f ∈ H∞. Then

Area(sp(Tf )) ≥ π sup
z∈D
{
∫
|f − f (z)|2dµz} ≈ ||f ||2BMO

Question: What about hyponormal Toeplitz operators?
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Hyponormal Toeplitz Operator

Definition

[T ∗,T ] = T ∗T − TT ∗.

T is called hyponormal if [T ∗,T ] ≥ 0.

Characterization of hyponormal Toeplitz operators.

Theorem (C.Cowen, 1988)

Let ϕ ∈ L∞, where ϕ = f + ḡ for f and g in H2. Then Tϕ is hyponormal
if and only if

g = c + Th̄f ,

for some constant c and h ∈ H∞ with ‖h‖∞ ≤ 1.
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Main Result

Theorem (C.Cowen, 1988)

Let ϕ ∈ L∞, where ϕ = f + ḡ for f and g in H2. Then Tϕ is hyponormal
if and only if

g = c + Th̄f ,

for some constant c and h ∈ H∞ with ‖h‖∞ ≤ 1.

Theorem (Khavinson, C.)

Suppose ϕ ∈ L∞ and
ϕ = f + Th̄f ,

for f , h ∈ H∞, ‖h‖∞ ≤ 1 and h(0) = 0. Then

‖[T ∗ϕ,Tϕ]‖ ≥
∫
|f − f (0)|2 dθ

2π
= ||P(ϕ)− ϕ(0)||22.
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Theorem (Khavinson, C.)

Suppose ϕ ∈ L∞ and
ϕ = f + Th̄f ,

for f , h ∈ H∞, ‖h‖∞ ≤ 1 and h(0) = 0. Then

‖[T ∗ϕ,Tϕ]‖ ≥
∫
|f − f (0)|2 dθ

2π
= ||P(ϕ)− ϕ(0)||22.

Proof:
||[T ∗ϕ,Tϕ]|| = sup

||p||=1
p∈H2

|〈[T ∗ϕ,Tϕ]p, p〉|.

We can compute that

〈[T ∗ϕ,Tϕ]p, p〉 = ||Hf̄ p||
2 − ||Th̄Hf̄ p||

2.

Tϕ is normal if and only if h is a unimodular constant.
We added the assumption that h(0) = 0 to avoid these trivial cases.
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Approximate h by inner functions

||[T ∗ϕ,Tϕ]|| = sup
||p||=1
p∈H2

|〈[T ∗ϕ,Tϕ]p, p〉|.

〈[T ∗ϕ,Tϕ]p, p〉 = ||Hf̄ p||
2 − ||Th̄Hf̄ p||

2,

where h ∈ H∞, ‖h‖∞ ≤ 1 and h(0) = 0.

If h is inner, it is easy to show that

〈[T ∗ϕ,Tϕ]p, p〉 ≥ |Hf̄ p(0)|2.

Approximate h by convex linear combinations of inner functions.
The above estimate remains valid for all h ∈ H∞, ‖h‖∞ ≤ 1.
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Main Result

〈[T ∗ϕ,Tϕ]p, p〉 ≥ |Hf̄ p(0)|2.
Hϕh = V (I − P)(ϕh), Vf (z) = z̄ f (z̄).

A duality argument shows that

sup
||p||=1
p∈H2

|Hf̄ p(0)| = sup
||p||=1
p∈H2

|〈pf̄ , z̄〉| = dist(f̄ ,H2) = ||f − f (0)||2.

Theorem (Khavinson, C.)

Suppose ϕ ∈ L∞ and
ϕ = f + Th̄f ,

for f , h ∈ H∞, ‖h‖∞ ≤ 1 and h(0) = 0. Then

‖[T ∗ϕ,Tϕ]‖ ≥
∫
|f − f (0)|2 dθ

2π
= ||P(ϕ)− ϕ(0)||22.
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Putnam’s Inequality

If T is hyponormal , then

‖[T ∗,T ]‖ ≤ Area(sp(T ))

π
.

We have the spectral area estimate

Theorem (Khavinson, C.)

Suppose ϕ ∈ L∞ and
ϕ = f + Th̄f ,

for f , h ∈ H∞, ‖h‖∞ ≤ 1 and h(0) = 0. Then

Area(sp(Tϕ)) ≥ π||P(ϕ)− ϕ(0)||22.
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Remark

Corollary 1 of Alexander’s Spectral Area Estimate

Let f ∈ H∞. Then

Area(sp(Tf )) ≥ π||f − f (0)||22.

Theorem (Khavinson, C.)

Suppose ϕ ∈ L∞ and
ϕ = f + Th̄f ,

for f , h ∈ H∞, ‖h‖∞ ≤ 1 and h(0) = 0. Then

Area(sp(Tϕ)) ≥ π||P(ϕ)− ϕ(0)||22.
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Theorem (Khavinson, C.)

Suppose ϕ ∈ L∞ and
ϕ = f + Th̄f ,

for f , h ∈ H∞, ‖h‖∞ ≤ 1 and h(0) = 0. Then

Area(sp(Tϕ)) ≥ π||P(ϕ)− ϕ(0)||22.

Corollary 2 of Alexander’s Spectral Area Estimate

Let f ∈ H∞. Then

Area(sp(Tf )) ≥ π sup
z∈D
{
∫
|f − f (z)|2dµz} ≈ ||f ||2BMO

Open question: What can we say about the BMO norm?
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The End
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