Introduction	Chains	Mader Construction	Results	Related Problems

The Edge-Independent Spanning Tree Conjecture for k = 4

Alex Hoyer

Robin Thomas

School of Mathematics Georgia Institute of Technology

May 21, 2017

Introduction ●00	Chains 000	Mader Construction	Results 00	Related Problems
Edge-Inde	ependence			

Definition (Edge-Independence)

Two subtrees $T_1, T_2 \subset G$ are *edge-independent with root* r if $r \in V(T_1) \cap V(T_2)$, and for every other $v \in V(T_1) \cap V(T_2)$, the unique paths between r and v in T_1 and T_2 are edge-disjoint. This definition applies pairwise to larger sets of trees.

Introduction	Chains	Mader Construction	Results	Related Problems
○●○	000		00	00
The Edge (Coniecture			

Edge Conjecture (Itai and Rodeh, 1984)

If G is a k-edge-connected graph and $r \in V(G)$, then there exists a set of k edge-independent spanning trees of G rooted at r.

Known Cases:

- k = 1: Trivial
- *k* = 2: Itai and Rodeh, 1984
- k = 3: Gopalan and Ramasubramanian, 2011 (Alternate proof by Schlipf and Schmidt, 2016)
- k = 4: H. and Thomas, 2017+

Introduction 00●	Chains 000	Mader Construction	Results 00	Related Problems
Application				

Network Redundancy:

- Suppose G is a network, r is a server, and all other vertices are clients.
- k-edge-connectivity means that r can communicate with individual clients, while withstanding up to k - 1 edge failures.
- k edge-independent spanning trees mean that r can broadcast to all clients simultaneously, while withstanding up to k 1 edge failures.

Introduction	Chains	Mader Construction	Results	Related Problems
000	●00		00	00
Chain De	finitions			

Definition (Up Chain)

An *up chain* of *G* with respect to the pair of subgraphs (H, \overline{H}) is a subgraph which is either:

- A path such that every vertex is either r or has degree at least two in H, and the ends are either r or are in H, OR
- A cycle such that every vertex is either r or has degree at least two in H, and some vertex is either r or has degree at least two in H.

Introduction	Chains	Mader Construction	Results	Related Problems
000	0●0		00	00
Chain De	finitions			

Definition (Down Chain)

A down chain of G with respect to the pair of subgraphs (H, \overline{H}) is an up chain with respect to (\overline{H}, H) .

Definition (One-Way Chain)

A one-way chain of G with respect to the pair of subgraphs (H, \overline{H}) is a subgraph induced by an edge uv, such that u is either r or has degree at least two in H, and v is either r or has degree at least two in \overline{H} . We call u the *tail* of the chain and v the *head*.

Introduction	Chains	Mader Construction	Results	Related Problems
000	00●		00	00
The Chai	n Decomp	osition		

Definition (Chain Decomposition)

Let G₀, G₁,..., G_m be a sequence of subgraphs of G. Denote H_i = G₀ ∪ G₁ ∪ ··· ∪ G_{i-1} and H_i = G_{i+1} ∪ G_{i+2} ∪ ··· ∪ G_m, so that H₀ and H_m are the null graph. We say that the sequence G₀, G₁,..., G_m is a *chain decomposition* of G rooted at r if:
The sets E(G₀), E(G₁),..., E(G_m) partition E(G), AND
For i = 0,..., m, the subgraph G_i is either an up chain, a down chain, or a one-way chain with respect to the subgraphs (H_i, H_i).

The Chain Decomposition is analogous to the Planar Chain Decomposition of Curran, Lee, and Yu.

Introduction	Chains	Mader Construction	Results	Related Problems
000	000	●○	00	
Definitions				

Definition (Mader Operation)

A *Mader operation* is one of the following operations:

- Add an edge between two (not necessarily distinct) vertices.
- Consider two distinct edges, say e_1 with ends x, y and e_2 with ends z, w, and "pinch" them as follows:
 - Delete the edges e_1 and e_2 .
 - Add a new vertex v.
 - Add the new edges e_x, e_y, e_z, e_w with one end v and the other end x, y, z, w respectively.

Introduction	Chains	Mader Construction	Results	Related Problems
000	000	⊙●	00	
The Mader	Constructio	n		

Theorem (Special Case of Mader, 1978)

A graph G is 4-edge-connected if and only if, for any $r \in V(G)$, one can construct G from G^0 using Mader operations.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Mader's full result applies to all edge connectivities, but the general form of the Mader operations is more complex.

Introduction	Chains	Mader Construction	Results	Related Problems
000	000		●○	00
Finding a	Chain Deo	composition		

Theorem (H. and Thomas, 2017+)

Suppose G is a 4-edge-connected graph and $r \in V(G)$. Then G has a chain decomposition rooted at r.

Proof Idea:

- Consider a Mader construction of G.
- Show that the chain decomposition can be maintained through each step of the construction.

• Requires case analysis based on chain types.

			Turne	00
Introduction	Chains	Mader Construction	Results	Related Problems

Theorem (H. and Thomas, 2017+)

Suppose G is a 4-edge-connected graph, $r \in V(G)$, and G has a chain decomposition rooted at r. Then there is a set of four edge-independent spanning trees of G rooted at r.

Proof idea:

- Use the chain structure to define two edge numberings of G.
- For each vertex, assign an incident edge to each tree, using the numberings and chain index.
- Each tree is monotonic in chain index and strictly monotonic in one of the edge numberings, which gives independence.

Introduction	Chains	Mader Construction	Results	Related Problems
000	000		00	●○
The Verte	ex Conjecti	lire		

There is an analogous problem relating k-connectivity to independent trees, in which paths back to r are internally vertex-disjoint, rather than edge-disjoint.

Vertex Conjecture (Itai and Rodeh, 1984)

If G is a k-connected graph and $r \in V(G)$, then there exists a set of k independent spanning trees of G rooted at r.

Known Cases:

- k = 1: Trivial
- *k* = 2: Itai and Rodeh, 1984
- k = 3: Independently by Cheriyan and Maheshwari, 1988, and Zehavi and Itai, 1989

- G planar, any k: Huck, 1994
- k = 4: Curran, Lee, Yu, 2005-2006

Introduction	Chains	Mader Construction	Results	Related Problems
000	000		00	⊙●
Other Probl	ems			

Implication:

- Does the Vertex Conjecture imply the Edge Conjecture?
 - Attempted proof (Khuller and Schieber; 1992) replaced vertices with cliques to transform a *k*-edge-connected graph into a *k*-connected graph.
 - Proof was incorrect, but technique inspired a proof for k = 3 (Gopalan and Ramasubramanian; 2011) by replacing vertices with paths, rather than cliques.
 - General case still unknown.
- Does the Edge Conjecture imply the Vertex Conjecture?

Generalization:

Can we span a subset of V(G) with k (edge)-independent trees, if that subset is k-(edge)-connected to r?

• Vertex version is true for subsets of size at most 2.

Thank you

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで