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Lattice Paths
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State space: All monotonic lattice paths from (0,0) to (n,n).

Local dynamics: Switch between “mountains” and “valleys”.
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Integer Partitions

An Integer Partition of n is a sum of positive integers
where order doesn’t matter (4 + 6 is the same as 6 +4).

Ex: 1+1+4+5, 3+3+5 and 11 are partitions of 11.
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Integer Partitions

Ferrers (Young) Diagrams:

Each piece of the partition
IS represented as an
ordered “stack” of squares.

Sampling integer partitions of n is the same as sampling
lattice paths bounding regions of area n.



Multiple Nonintersecting Paths
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Vertex Disjoint Paths = Lozenge Tilings

: Repeat: A
* Pick v in the lattice region;

= Add / remove the “cube” at v w.p. %, if possible.
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There is a bijection between nonintersecting lattice paths
and lozenge tilings (or dimer coverings).



Or, If Edge Disjoint...

Crossing path:

D, R:+1 (mod 3)
U, L: -1

No path:

D, R: -1
U, L: +1



3-Colorings (or Eulerian Orientations)

Crossing path:
D, R: +1 (mod 3)
U, L: -1

No path:

D, R: -1

U, L: +1

nere is a bijection between edge disjoint lattice paths
and proper 3-colorings of Z2 (and the “6-vertex model”).

" Repeat: )
* Pick a cell uniformly;
= Recolor the cell w.p. %, if possible.
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Q: How do we sample lattice paths?
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Outline

« Sampling paths uniformly
» Paths with uniform bias

 Paths with non-uniform bias

N

1+1+4+5=11

Simple Exclusion Processes Integer Partitions
0/ 20 ]1 |2
2/ 0[2]|0 |1
0|1]0(1 10
L3 . 1 0 1 0 2
Card Shuffling 0/2]0]2 |1
3-colorings

Lozenge Tilings



Outline

« Sampling paths uniformly: One path

 Paths with uniform bias

 Paths with non-uniform bias
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Lattice Paths in Z2

n x n grid l

To sample, repeat:
* Pick v on the path;

= If v is a mountain/valley, invert w.p. /2 (if possible).

This Markov chain is reversible and ergodic, so it converges
to the uniform distribution over lattice paths.

How long? Answer: ©O(n3logn) [Wilson]



The mixing time

Def: The total variation distance is
1Pt = max 15 |PYxy) - (x)].
xe Q 2 ye (@)
4 )
Def: Given g, the mixing time is
’C(S)= min {t: |IPY, || <€, V t 2 t}.
\ %

A Markov chain is rapidly mixing if t(g) is poly(n, log(e)).

A Markov chain is slowly mixing if t(g) is at least exp(n).

(or polynomially mixing)



Coupling

Definition: A couplingisa MC on Q x Q:
1) Each process {X}, {Y,} is a faithful copy of the original MC;

2) If Xi=Y,then X.,;=Y,.,.

The coupling time T Is:

T=max(E[T*]),
X,y

where T*Y = min {t: X=Y, | Xg=X, Yo=Y}

Thm: T(€) < Teln g, [Aldous]



Path Coupling

Coupling: Show for all c Q, E[A( )] <0.
Path coupling: Show for all u,v s.t. dist(u,v)=1, that
E [A(dist(u,v))] < 0. [Bubley, Dyer, Greenhill]
)
S
Consider a shortest path:
= ZO, Z']a 225 ’ Zr= ’

= // dist(z,z.,1) = 1,

—  E[A( )1 < X E[A (dist(z;Zi)) ]
< 0.



Coupling the Unbiased Chain

Coupling:
® Choose same (v, d) in S x {+,-}.

The distance Y+ at time t is the unsigned
area between the two configurations.

* E[AW)]=p(-#C +#B) < 0
e Var>0 if Y+>0;
e 0 < VY: <n?

e Y:=0 implies Y+1=0.
Then the paths couple quickly, so the MC is rapidly mixing.



Outline

« Sampling paths uniformly: Multiple paths

 Paths with uniform bias

 Paths with non-uniform bias
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Markov chain for Lozenge Tilings
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“Tower chain” for Lozenge Tilings

/\/\ - AN
The “tower chain” [Luby, R., Sinclair]

Also couples (and mixes) quickly for lozenge tilings
(and similarly for 3-colorings).



Higher Dimensions?
When does the MC converge in poly time on Z9?

Lattice paths, lozenge tilings and “space partitions” in Z¢:
d=2: Yes (simple coupling)

d=3: Yes [Luby, R, Sinclair], [Wilson], [R., Tetali]
d=4: 77?7

3-colorings of Z¢:

d=2: Yes (simple coupling)

d=3: Yes [LRS], [Martin, Goldberg, Patterson], [R., Tetali]
d=4: 7?7?7?



Higher Dimensions?

When does the MC converge in poly time on Z9?

Lattice paths, lozenge tilings and “space partitions” in Z¢:
d=2: Yes (simple coupling)

d=3: Yes [Luby, R, Sinclair], [Wilson], [R., Tetali]
d=4: 77?7

3-colorings of Z¢:
d=2: Yes (simple coupling)

d=3: Yes [LRS], [Martin, Goldberg, Patterson], [R., Tetali]
d=4: 7?7?7?

d>>1: No! [Galvin, Kahn, R., Sorkin], [Peled]



Outline

« Sampling paths uniformly
» Paths with uniform bias

 Paths with non-uniform bias
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Lattice Paths with Uniform Bias

Tile-based self-assembly (a growth model):
A tile can attach if 2 neighbors are present and detach
If 2 neighbors are missing.

Attach rate is higher than the detach rate.




Generating Biased Surfaces

Given A > 1:

ﬂ?epeat:

Choose (v,d) in S x {+,-}.

and d=+, add it;

\Otherwise do nothing.

~

If a square can be added at v,

If a square can be removed at v,
and d=-, remove it w.p. A" !;

/

Converges to the distribution:
T1(S) = Aareals) | Z.



Generating Biased Surfaces

Z° A

n

n

ASEPs: Asymmetric Simple Exclusion Process:
p q

N N
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How fast?




Biased Surfaces in Z

Q: How long does the biased MC take to converge?
[Benjamini, Berger, Hoffman, Mossel]

d=2; A>1const, O(n?) mixing time (optimal).



Biased Surfaces in Z

Q: How long does the biased MC take to converge?

[Benjamini, Berger, Hoffman, Mossel]
d=2; A>1const, O(n?) mixingtime (optimal).

[Majumder, Sahu, Reif]
d=2,3; A=0(n), poly time.



Biased Surfaces in Z

Q: How long does the biased MC take to converge?
[Benjamini, Berger, Hoffman, Mossel]

d=2; A>1const, O(n?) mixingtime (optimal).
[Majumder, Sahu, Reif]

d=2,3; A=0(n), poly time.
[Greenberg, Pascoe, R.]

d=2, A>1const

} O(n9) mixing time.
d=23, A>d?



Biased Surfaces in Z

Q: How long does the biased MC take to converge?
[Benjamini, Berger, Hoffman, Mossel]

d=2; A>1const, O(n?) mixingtime (optimal).
[Majumder, Sahu, Reif]

d=2,3; A=0(n), poly time.

[Greenberg, Pascoe, R.]

d=2, A>1const } O(n9) mixing time.
d=3, A>d?

[Caputo, Martinelli, Toninelli]
d=3, A>1 O(n?®) mixing time.



Coupling the Biased Chain

Coupling:
Choose same (v,d) in S x {+,-}.

(case 1):
* E[aA(Y)] = p (- wH(C) + wt(B) )
=p ( +1+11)

<0



Coupling the Biased Chain

Coupling:
Choose same (v,d) in S x {+,-}.

(case 2):
* E[A(YH)] =p (- wt(G) + wi(B) )

=p ( +1+1)
>0

Introduce a different metric.



Introduce a New Metric

Geometric distance function:

W (0,7) = 2 (VA)diag(x)

X in t®@0

%\ > diag(x):

* E[A(MW)] =p (- wi(C) + wi(B) )
=p )\(k—l—l)/2 (_1 AL+ }\-1/2 + }\-1/2 )

(case 2):



Introduce a New Metric

Geometric distance function:

W(o,r) = 2 (VA)diag

XN t®eo

diag(x): k+1 k k k-2
(case 1): )
* E[A(Y)] =p (- wt(C) + wt(B) )

=p A(c+1)/2 (_1 A+ N2 4 ()\-1))\1/2 )

The distance W'+ is always nonincreasing (in expectation),
and by path coupling the chain is rapidly mixing.



Outline

« Sampling paths uniformly
» Paths with uniform bias

 Paths with non-uniform bias
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Integer Partitions

Ferrers Diagrams:

Let the partition number p(n)
be the number of partitions of
size n:

o(i): 1,2,3,5,7, 11, 15, 20,...

Asymptotic Estimate: p(n) ~ 4%/% ™/ 2n/3

[Hardy, Ramanujan 1918]



Sampling Integer Partitions

Dynamic Programming:
Restricted Partition Number p(n,k):
number of ways to partition n into at most k pieces.

Simple recurrence relation:  p(n,k) = p(n-k, k) + p(n, k-1).

Thus we can exactly sample partitions of n using dynamic
programming and self-reducibility.

However, space requirements are very large:
partition numbers grow as =~ eP(vn)

Almost a petabyte for n ~ 1000000.



Markov Chains?

Many chains with simple rules converge to the uniform dist'n,
but the mixing time remains open for all of them.

EX:
Chain 1: move a square Chain 2: pick a sub-square and flip

[Aldous 1999], [Berestycki, Pitman 2007]

And many others....



Approaches

Try 1: Try 2:
n
Q. ()= _U1 Q).
|=
Need: 1. The chain is rapidly mixing.

2. Rejection sampling is efficient.

Try 3:

T
e

Q, A<



Boltzmann Sampling

[Bhakta, Cousins, Fahrbach, R.]

Let Q be the set of all lattice paths in an n x n region;

and Q the set of lattice paths with area n.

@)

Q

ni,

WIN

Thm: p, =|Q,| is logconcave
(n>25). [DeSalvo, PakK]

n2/2

» Generate samples o of Q with prob. proportional to A2area(),

Q

Qn

h

I

Q, n?/2

So q, = p; Al is also logconcave
(and therefore unimodal).

Settlng 7\“: pn / pn+1 giVGS qn = CIn+1 -
S0 n and n+1 must be the modes of the dist'n.



Boltzmann Sampling
[Bhakta, Cousins, Fahrbach, R.]

What about partition classes where we do
not know if the sequence is logconcave?
(e.qg., partitions with at most k pieces,...)

TC»] ’?

T

Need: 1. The chain is rapidly mixing.
2. Rejection sampling is efficient.

Thm: If the Markov chain is rapidly mixing for all A,

then rejection sampling is also efficient for some A !



Boltzmann Sampling
[Bhakta, Cousins, Fahrbach, R.]

Define A4,...,A,, and let it is the distribution with bias A s.t.:
* ||m., m.q|| small, for alli;
* 1, iS concentrated on configurations of size < n;
* 1., IS concentrated on configurations of size > n;
* MC is rapidly mixing, for all A..

Tl ?

AN

Then there exists a A, s.t.
Pr(m; outputs a sample of size n) > poly(n).




Outline

« Sampling paths uniformly
» Paths with uniform bias

 Paths with non-uniform bias
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Biased Card Shuffling

- Pick a pair of adjacent cards uniformly at random
- Put j ahead of 1 with probability pji = 1- pi,

S51In |1 1([7]|]...]]|1

]

. | In-1

\

Converges to: 7 (o) =11

i<j: 0 (i)> o (§)

Dij
Pii

This 1s related to “Move-Ahead-One” for self-organizing lists.

Fill]



Biased Permutations

Question: If the {pij} are positively biased (pPij=1/2 V 1<),
is M always rapidly mixing?

Recall, with constant bias:
If pi=p Vi<j, p>1/2, then M mixes in 8(n?) time. [BBHM]

Linear extensions of a partial order: Ifpij=1/2o0r1 V i<j,
then M mixes in O(n3log n) time. [Bubley and Dyer]

Fast for two classes: “Choose your weapon” and “league
hierarchies” (if weakly regular). [Bhakta, Miracle, R., Streib]



Biased Permutations

Question: If the {pij} are positively biased (pij=1/2 VvV 1<)),
iIs M always rapidly mixing?

No !!! [BMRS]




Biased Permutations

Question: If the {p;} are positively biased (p;=1/2 VvV i<)),
iIs M always rapidly mixing?

No Il

The state space has a “bad cut” so M requires exponential time.

However, most cases do seem fast....



“Choose your weapon’

Given ry r.4 r21/2. [BMRS]

Thm 1: Let pij=r VvV i<j. Then M, is rapidly mixing.




“Choose your weapon”

Givenry, r,4 1,>21/2. [BMRS]

Thm 1: Let pij=ri VvV i<j. Then M, is rapidly mixing.




“League Hierarchies”

Let | be a binary tree with leaves labeled
Given q, 2 1/2 for each internal vertex v.

Thm 2: Let q for all Then IS rapidly mixing.




League Hierarchies

Let | be a binary tree with leaves labeled
Given q, 2 1/2 for each internal vertex v.

Thm 2: Let q for all Then IS rapidly mixing.




League Hierarchies

Let | be a binary tree with leaves labeled
Let be assigned to each internal vertex v.

Thm 2: Suppose for all for some labeled binary tree.
Then IS rapidly mixing.




Thm 2:

Thm 2: Proof sketch

_et | be a binary tree with leaves labeled
_et q, = 2 be assigned to each internal vertex v.

_et i for all . Then IS rapidly mixing.

(519386742)
010100011



Thm 2:

Thm 2: Proof sketch

_et | be a binary tree with leaves labeled
_et q, = 2 be assigned to each internal vertex v.

_et q; for all . Then IS rapidly mixing.

(519386742)
010100011



Thm 2:

Thm 2: Proof sketch

_et | be a binary tree with leaves labeled
_et q, = 2 be assigned to each internal vertex v.

_et q; for all . Then IS rapidly mixing.

(519386742)
010100011



Thm 2: Proof sketch

Markov chain [Vi" allows a transposition if it corresponds to
an ASEP move on one of the internal vertices.

Each ASEP is rapidly mixing = V" is rapidly mixing.

(519386742)
% 010100011 %

Is also rapidly mixing if IS
l.e., foralli, p;;<pj if j>1I (by comparison)



Open Problems

1. Fill’s conjecture: is My, always rapidly mixing when {pij}

are positively biased and regular?

4 N
(e, p; > %2 and p;is monotoniciniand )

1’. What about the special case:

Given a,,...,a, "strengths”, with a,> 0, let p;=a,/(a + a).

2. When does bias speed up or slow down a chain?






