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Sampling Problems

Simple Exclusion Processes
1 + 1 + 4 + 5 = 11
Integer Partitions

Lozenge Tilings

Card Shuffling

0       

3-colorings

0   1   0   1    0

0   2   0   1    2      
2   0   2    0   1       

1    0   1   0   2               
0   2   0    2   1         



Lattice Paths

State space:  All monotonic lattice paths from (0,0) to (n,n).

Local dynamics:  Switch between “mountains” and “valleys”.



Lattice Paths

Simple Exclusion Processes

Card Shuffling with Nearest Neighbor Transpositions

2 7 1 5 6 4 3
0 1 0 0 0 0 0 
0 1 0 0 1 0 0 
0 1 0 1 1 0 0 
0 1 0 1 1 1 0 
0 1 0 1 1 1 1
1 1 0 1 1 1 1



Integer Partitions

An Integer Partition of n is a sum of positive integers 
where order doesn’t matter   (4 + 6  is the same as  6 + 4).

Ex:  1 + 1 + 4 + 5,  3 + 3 + 5,  and  11 are partitions of 11.



Integer Partitions

Ferrers (Young) Diagrams:  

Sampling integer partitions of n is the same as sampling
lattice paths bounding regions of area n.

Each piece of the partition
is represented as an 
ordered “stack” of squares.



v v

Multiple Nonintersecting Paths



Multiple Nonintersecting Paths



Vertex Disjoint Paths = Lozenge Tilings

Repeat:
§ Pick v in the lattice region;
§ Add / remove the “cube” at  v w.p. ½, if possible.

v v

There is a bijection between nonintersecting lattice paths
and lozenge tilings (or dimer coverings).



Or, If Edge Disjoint…

0    1    0   2    1
1    0    1   0    2
0   1    0    1    0

0    2    0    1    2
2   0    2    0   1

0 

Crossing path:
D, R: +1 (mod 3)
U, L:  -1 
No path:
D, R: -1
U, L: +1



3-Colorings (or Eulerian Orientations)

0    1    0   2    1
1    0    1   0    2
0   1    0    1    0

0    2    0    1    2
2   0    2    0   1

0 0    1    0   2    1
1    0    1   0    2
0   1    0    1    0

0    2    0    1    2
2   0    2    0   1

0    1    0   2    1
1    0    1   0    2

0    2    0   1    2
2    0    2    0   1

There is a bijection between edge disjoint lattice paths
and proper 3-colorings of Z2 (and the “6-vertex model”).

Repeat:
§ Pick a cell uniformly;
§ Recolor the cell  w.p. ½, if possible.

Crossing path:
D, R: +1 (mod 3)
U, L:  -1 
No path:
D, R: -1
U, L: +1

0   1    0    1    0



Q:  How do we sample lattice paths?

Simple Exclusion Processes
1 + 1 + 4 + 5 = 11
Integer Partitions

Lozenge Tilings

Card Shuffling

0       

3-colorings

0   1   0   1    0

0   2   0   1    2      
2   0   2    0   1       

0   2   0    2   1         



Outline

Simple Exclusion Processes
1 + 1 + 4 + 5 = 11
Integer Partitions

Lozenge Tilings

Card Shuffling

0       

3-colorings

0   1   0   1    0

0   2   0   1    2      
2   0   2    0   1       

0   2   0    2   1         

• Sampling paths uniformly

• Paths with uniform bias   

• Paths with non-uniform bias



Outline

Simple Exclusion Processes
1 + 1 + 4 + 5 = 11
Integer Partitions

Lozenge Tilings

0       

3-colorings

0   1   0   1    0

0   2   0   1    2      
2   0   2    0   1       

0   2   0    2   1         

• Sampling paths uniformly:   One path

• Paths with uniform bias   

• Paths with non-uniform bias

Card Shuffling



Lattice Paths in Z2

To sample, repeat:
§ Pick v on the path;
§ If v is a mountain/valley, invert w.p. ½  (if possible).

This Markov chain is reversible and ergodic, so it converges 
to the uniform distribution over lattice paths.

How long? Answer:   Q(n3 log n)     [Wilson]

n x n grid



The  mixing time
Def:    The total variation distance is 

||Pt, π|| =  max __     ∑   |Pt(x,y) - π(x)|.
xÎ Ω yÎ Ω2

1

A Markov chain is rapidly mixing if t(e)  is  poly(n, log(e-1)).
(or polynomially mixing)

Def: Given e, the mixing time is

t(e) = min {t: ||Pt’,π|| < e,     t’ ≥ t}.A

A Markov chain is slowly mixing if t(e)  is at least exp(n).



Definition:  A coupling is a MC on  Ω x Ω:
1) Each process  {Xt}, {Yt} is a faithful copy of the original MC;
2) If  Xt = Yt, then  Xt+1 = Yt+1.

Coupling

T =  max ( E [ Tx,y ] ),

where   Tx,y =  min {t:  Xt=Yt | X0=x, Y0=y}.

x,y

The coupling time T is:

Thm: t(e)  ≤  T e ln e-1.         [Aldous]



Consider a shortest path:
x = z0, z1,  z2,  . . .  , zr= y,

dist(zi,zi+1) = 1,
dist(x,y) = r.

Path Coupling

Coupling:   Show for all x,y Î W,    E[ D(dist(x,y)) ]  ≤ 0.

Path coupling:   Show for all u,v s.t. dist(u,v)=1, that
E [D(dist(u,v)) ]  ≤  0. [Bubley, Dyer, Greenhill]

ß



Coupling the Unbiased Chain

Coupling:
Choose same (v, d) in S x {+,-}.

The distance Ψt at time t is the unsigned 
area between the two configurations.

• E[∆(Ψt)] = p (- #G + #B) ≤ 0   

Then the paths couple quickly, so the MC is rapidly mixing.

• Var > 0  if  Ψt > 0;

• 0  ≤  Ψt ≤ n2;

• Ψt = 0  implies Ψt+1 = 0.



Outline

Simple Exclusion Processes
1 + 1 + 4 + 5 = 11
Integer Partitions

Lozenge Tilings

0       

3-colorings

0   1   0   1    0

0   2   0   1    2      
2   0   2    0   1       

0   2   0    2   1         

• Sampling paths uniformly:   Multiple paths

• Paths with uniform bias   

• Paths with non-uniform bias

Card Shuffling



Markov chain for Lozenge Tilings



“Tower chain” for Lozenge Tilings

The “tower chain”                     [Luby, R., Sinclair]

Also couples (and mixes) quickly for lozenge tilings
(and similarly for 3-colorings).



3-colorings of Zd:
d=2:     Yes    (simple coupling)
d=3:     Yes [LRS], [Martin, Goldberg, Patterson], [R., Tetali]
d=4:     ???

Higher Dimensions?

When does the MC converge in poly time on Zd?

Lattice paths, lozenge tilings and “space partitions” in Zd:
d=2:     Yes    (simple coupling)
d=3:     Yes [Luby, R., Sinclair], [Wilson], [R., Tetali]
d≥4:     ???



3-colorings of Zd:
d=2:     Yes    (simple coupling)
d=3:     Yes [LRS], [Martin, Goldberg, Patterson], [R., Tetali]
d=4:     ???
d>>1:   No! [Galvin, Kahn, R., Sorkin],  [Peled]

Higher Dimensions?

Lattice paths, lozenge tilings and “space partitions” in Zd:
d=2:     Yes    (simple coupling)
d=3:     Yes [Luby, R., Sinclair], [Wilson], [R., Tetali]
d≥4:     ???

When does the MC converge in poly time on Zd?



Outline

Simple Exclusion Processes
1 + 1 + 4 + 5 = 11
Integer Partitions

Lozenge Tilings

0       

3-colorings

0   1   0   1    0

0   2   0   1    2      
2   0   2    0   1       

0   2   0    2   1         

• Sampling paths uniformly   

• Paths with uniform bias   

• Paths with non-uniform bias

Card Shuffling



Lattice Paths with Uniform Bias

Tile-based self-assembly (a growth model):
A tile can attach if 2 neighbors are present and detach
if 2 neighbors are missing.

Attach rate is higher than the detach rate.



Repeat:
Choose (v,d) in S x {+,-}.
If a square can be added at v,

and d=+, add it;
If a square can be removed at v,

and d=-, remove it  w.p. λ-1;
Otherwise do nothing.

Given λ > 1:

Converges to the distribution:
π(S) = λarea(S) / Z.

Generating Biased Surfaces



Z2 Zd

How fast?

n

n

n

n

n

Generating Biased Surfaces

ASEPs: Asymmetric Simple Exclusion Process: 
p q



Biased Surfaces in Zd

[Benjamini, Berger, Hoffman, Mossel]

d = 2; λ > 1 const, O(n2)  mixing time (optimal).

Q:  How long does the biased MC take to converge?



Biased Surfaces in Zd

[Benjamini, Berger, Hoffman, Mossel]
d = 2; λ > 1 const, O(n2) mixing time (optimal). 

[Majumder, Sahu, Reif]

d = 2,3; λ = Θ(n), poly time.

Q:  How long does the biased MC take to converge?



Biased Surfaces in Zd

[Benjamini, Berger, Hoffman, Mossel]
d = 2; λ > 1 const, O(n2) mixing time (optimal). 

[Majumder, Sahu, Reif]

d = 2,3; λ = Θ(n), poly time.

[Greenberg, Pascoe, R.]
d = 2, λ > 1 const
d ≥ 3,     λ > d2

Q:  How long does the biased MC take to converge?

O(nd)  mixing time.



Biased Surfaces in Zd

[Benjamini, Berger, Hoffman, Mossel]
d = 2; λ > 1 const, O(n2)  mixing time (optimal). 

[Majumder, Sahu, Reif]

d = 2,3; λ = Θ(n), poly time.

[Greenberg, Pascoe, R.]
d = 2, λ > 1 const
d ≥ 3,     λ > d2

[Caputo, Martinelli, Toninelli]
d = 3,    λ > 1 O(n3) mixing time.

Q:  How long does the biased MC take to converge?

O(nd)  mixing time.



Coupling the Biased Chain

• E[∆(Ψt)] = p (- wt(G) + wt(B) ) 

= p (-1 - λ-1 + 1 + λ-1) 

≤ 0 

1

(case 1):

1

λ-1

λ-1
Coupling:
Choose same (v,d) in S x {+,-}.



= p (-1 - λ-1 + 1 +1) 

• E[∆(ΨH)] = p (- wt(G) + wt(B) )  
(case 2):

1

1
λ-1

1

> 0

Introduce a different metric.

Coupling:
Choose same (v,d) in S x {+,-}.

Coupling the Biased Chain



(case 2):

Introduce a New Metric

k-2

1

1
λ-1

1

k k-1k+1 diag(x):

• E[∆(Ψ)] = p (- wt(G) + wt(B) ) 

= p λ(k+1)/2 (-1 - λ-1 + λ-1/2 + λ-1/2 ) <  0

x in τ⊕σ

Geometric distance function:
Ψ’(σ,τ) = Σ (√λ)diag(x)



(case 1):

• E[∆(Ψ’)] = p (- wt(G) + wt(B) ) 

= p λ(k+1)/2 (-1 - λ-1 + λ-1/2 + (λ-1) λ1/2 ) < 0

Introduce a New Metric

x in τ⊕σ

Geometric distance function:
Ψ’(σ,τ) = Σ (√λ)diag(x)

k k
-
1

k-2k+1diag(x):

The distance Ψ’t is always nonincreasing (in expectation),   
and by path coupling the chain is rapidly mixing.



Outline

Simple Exclusion Processes
1 + 1 + 4 + 5 = 11
Integer Partitions

Lozenge Tilings

0       

3-colorings

0   1   0   1    0

0   2   0   1    2      
2   0   2    0   1       

0   2   0    2   1         

• Sampling paths uniformly   

• Paths with uniform bias   

• Paths with non-uniform bias

Card Shuffling



Integer Partitions

Ferrers Diagrams:  

Let the partition number p(n) 
be the number of partitions of 
size n:
p(i): 1, 2, 3, 5, 7, 11, 15, 20,…

Asymptotic Estimate:
[Hardy, Ramanujan 1918]



Sampling Integer Partitions

However, space requirements are very large:
partition numbers grow as 

Dynamic Programming:
Restricted Partition Number p(n,k):   

number of ways to partition n into at most k pieces.

Simple recurrence relation:     p(n,k) = p(n-k, k) + p(n, k-1).

Thus we can exactly sample partitions of n using dynamic  
programming and self-reducibility. 



Markov Chains?

Many chains with simple rules converge to the uniform dist’n, 
but the mixing time remains open for all of them.

[Aldous 1999], [Berestycki, Pitman 2007]

Chain 2:  pick a sub-square and flipChain 1: move a square
Ex:

And many others….



Approaches

Wn

Try 1:

Need:  1. The chain is rapidly mixing.
2. Rejection sampling is efficient.

W= U  Wi

Try 2:

i=1

n

Try 3:

W= U Wi,  l<1
i=1

n



Boltzmann Sampling

Let  W be the set of all lattice paths in an n x n region;
and Wn the set of lattice paths with area n.

[Bhakta, Cousins, Fahrbach, R.]

n2/2

W

Wn
Wn

Thm: pi = |Wi|	is	logconcave
(n	>	25).				 [DeSalvo, Pak]

• Generate samples s of W with prob. proportional to  larea(s).

n2/2Wn

W

Wn

So qi = pi		li is	also	logconcave
(and	therefore	unimodal).	

• Setting l = pn / pn+1	 gives qn =		qn+1 .
• So n	 and n+1 must	be	the	modes	of	the	dist’n.



Boltzmann Sampling

What about partition classes where we do 
not know if the sequence is logconcave?

(e.g., partitions with at most k pieces,…)

? pi
pm

p1

[Bhakta, Cousins, Fahrbach, R.]

Need:  1. The chain is rapidly mixing.
2. Rejection sampling is efficient.

Thm: If the Markov chain is rapidly mixing for all l, 

then rejection sampling is also efficient for some l !



Boltzmann Sampling

Define l1,…,lm and  let pi is the distribution with bias li s.t.:
• ||pi , pi+1 || small,  for all i;
• p1 is concentrated on configurations of size < n;
• pm is concentrated on configurations of size > n;
• MC is rapidly mixing, for all li.

Then there exists a li s.t.
Pr(pi outputs a sample of size n)  > poly(n).

?
pi

pm

p1

[Bhakta, Cousins, Fahrbach, R.]



Outline

Simple Exclusion Processes
1 + 1 + 4 + 5 = 11
Integer Partitions

Lozenge Tilings

0       

3-colorings

0   1   0   1    0

0   2   0   1    2      
2   0   2    0   1       

0   1   0    2   1         

• Sampling paths uniformly   

• Paths with uniform bias   

• Paths with non-uniform bias

Card Shuffling



Biased Card Shuffling

5 n 1 7 3... i j ... n-1 2 6

- Pick a pair of adjacent cards uniformly at random
- Put  j  ahead of i with probability pj,i = 1- pi,j

Converges to: π(σ) = Π / Z
i<j:σ(i)>σ(j) pji

pij

This is related to “Move-Ahead-One” for self-organizing lists.   
[Fill]



Biased Permutations

[BBHM]
Recall, with constant bias:

If pij = p ∀ i < j,  p>1/2, then M mixes in θ(n2) time.

Question:  If the {pij} are positively biased  (pij ≥ 1/2 ∀ i < j),
is M always rapidly mixing?

Linear extensions of a partial order:   If pi,j = 1/2 or 1   ∀ i < j,
then M mixes in O(n3 log n) time.                     [Bubley and Dyer]

Fast for two classes:  “Choose your weapon” and “league
hierarchies” (if weakly regular). [Bhakta, Miracle, R., Streib]



Biased Permutations

Question:  If the {pij} are positively biased  (pij ≥ 1/2 ∀ i < j),
is M always rapidly mixing?

1/2 + 1/n2

M= n2/3

1-δ

No !!!    [BMRS]



Biased Permutations

Question:  If the {pij} are positively biased  (pij ≥ 1/2 ∀ i < j),
is M always rapidly mixing?

No !!!    

S S
W

The state space has a “bad cut” so M requires exponential time.
However, most cases do seem fast….



“Choose your weapon”

Thm 1: Let pij = ri ∀ i < j.   Then MNN is rapidly mixing.
Given  r1, … ,rn-1, ri ≥ 1/2.     

p

p

p

[BMRS]



“Choose your weapon”

Given r1, … ,rn-1, ri ≥ 1/2.     

p

p

pq
q

q

q

[BMRS]

Thm 1: Let  pij = ri ∀ i < j.   Then MNN is rapidly mixing.



“League Hierarchies”

Let T be a binary tree with leaves labeled {1,…,n}.  
Given qv ≥ 1/2 for each internal vertex v.

Thm 2: Let pi,j = qi^j for all i < j.  Then MNN is rapidly mixing.



League Hierarchies

A-League B-League

Let T be a binary tree with leaves labeled {1,…,n}.  
Given qv ≥ 1/2 for each internal vertex v.

Thm 2: Let pi,j = qi^j for all i < j.  Then MNN is rapidly mixing.



League Hierarchies

Let T be a binary tree with leaves labeled {1,…,n}.  
Let qv ≥ ½ be assigned to each internal vertex v.
Thm 2: Suppose pij = qi^j for all i < j for some labeled binary tree.    

Then MNN is rapidly mixing.

1st Tier

2nd Tier



Thm 2:  Proof sketch

Thm 2:  Let T be a binary tree with leaves labeled {1,…,n}.  
Let qv ≥ ½ be assigned to each internal vertex v.
Let pi,j = qi^j for all i < j.    Then MNN is rapidly mixing.



Thm 2:  Proof sketch

Thm 2:  Let T be a binary tree with leaves labeled {1,…,n}.  
Let qv ≥ ½ be assigned to each internal vertex v.
Let pi,j = qi^j for all i < j.    Then MNN is rapidly mixing.



Thm 2:  Proof sketch

Thm 2:  Let T be a binary tree with leaves labeled {1,…,n}.  
Let qv ≥ ½ be assigned to each internal vertex v.
Let pi,j = qi^j for all i < j.    Then MNN is rapidly mixing.



Thm 2:  Proof sketch

Markov chain M’ allows a transposition if it corresponds to 
an ASEP move on one of the internal vertices. 

Each ASEP is rapidly mixing       M’ is rapidly mixing.

MNN is also rapidly mixing if  {p} is weakly regular.   
i.e., for all i,    pi,j < pi,j+1 if  j > i.                (by comparison)

ß



Open Problems

2.  When does bias speed up or slow down a chain?

1. Fill’s conjecture:  is MNN always rapidly mixing when {pij} 
are positively biased  and  regular?

(i.e., pij > ½   and   pij is monotonic in i and j)

1’.  What about the special case:
Given  a1,…,an “strengths”, with ai > 0,  let  pij = ai / (ai + aj).




