Sampling Paths, Permutations and Lattice Structures

Dana Randall
Georgia Institute of Technology

Sampling Problems

Simple Exclusion Processes

Card Shuffling
$1+1+4+5=11$
Integer Partitions

0	2	0	1	2
2	0	2	0	1
0	1	0	1	0
1	0	1	0	2
0	2	0	2	1

3-colorings

Lozenge Tilings

Lattice Paths

State space: All monotonic lattice paths from $(0,0)$ to (n, n).
Local dynamics: Switch between "mountains" and "valleys".

Lattice Paths

Card Shuffling with Nearest Neighbor Transpositions

Integer Partitions

An Integer Partition of n is a sum of positive integers where order doesn't matter ($4+6$ is the same as $6+4$).

Ex: $1+1+4+5,3+3+5$, and 11 are partitions of 11 .

Integer Partitions

Ferrers (Young) Diagrams:
Each piece of the partition is represented as an ordered "stack" of squares.

Sampling integer partitions of n is the same as sampling lattice paths bounding regions of area n.

Multiple Nonintersecting Paths

Multiple Nonintersecting Paths

Vertex Disjoint Paths = Lozenge Tilings

Repeat:

- Pick v in the lattice region;
- Add / remove the "cube" at v w.p. $1 / 2$, if possible.

There is a bijection between nonintersecting lattice paths and lozenge tilings (or dimer coverings).

Or, If Edge Disjoint...

Crossing path:
D, R: +1 $(\bmod 3)$
U, L: -1
No path:
D, R: -1
U, L: +1

3-Colorings (or Eulerian Orientations)

0					\rightarrow	0	2	0	1	2
:---	:---	:---	:---	:---						
2	0	2	0	1						
0	1	0	1	0						
1	0	1	0	2						
0	1	0	2	1						

Crossing path:
D, R: +1 $(\bmod 3)$
U, L: -1
No path:
D, R: -1
$\mathrm{U}, \mathrm{L}:+1$

There is a bijection between edge disjoint lattice paths and proper 3-colorings of \mathbf{Z}^{2} (and the " 6 -vertex model").

Repeat:

- Pick a cell uniformly;
- Recolor the cell w.p. $1 / 2$, if possible.

Q: How do we sample lattice paths?

Simple Exclusion Processes
$1+1+4+5=11$
Integer Partitions

Card Shuffling

0	2	0	1	2
2	0	2	0	1
0	1	0	1	0
1	0	1	0	2
0	2	0	2	1

3-colorings
Lozenge Tilings

Outline

- Sampling paths uniformly
- Paths with uniform bias
- Paths with non-uniform bias

Simple Exclusion Processes

Card Shuffling

$1+1+4+5=11$
Integer Partitions

Lozenge Tilings

0	2	0	1	2
2	0	2	0	1
0	1	0	1	0
1	0	1	0	2
0	2	0	2	1

3-colorings

Outline

- Sampling paths uniformly: One path
- Paths with uniform bias
- Paths with non-uniform bias

Simple Exclusion Processes

0	2	0	1	2
2	0	2	0	1
0	1	0	1	0
1	0	1	0	2
0	2	0	2	1

3-colorings
$1+1+4+5=11$
Integer Partitions

Card Shuffling

Lattice Paths in \mathbf{Z}^{2}

$\mathrm{n} \times \mathrm{n}$ grid

To sample, repeat:

- Pick v on the path;
- If v is a mountain/valley, invert w.p. $1 / 2$ (if possible).

This Markov chain is reversible and ergodic, so it converges to the uniform distribution over lattice paths.

The mixing time

Def: The total variation distance is

$$
\left\|\mathrm{P}^{\mathrm{t}}, \pi\right\|=\max _{\mathrm{x} \in \Omega} \frac{1}{2} \sum_{\mathrm{y} \in \Omega}\left|\mathrm{P}^{\mathrm{t}}(\mathrm{x}, \mathrm{y})-\pi(\mathrm{x})\right| .
$$

Def: Given ε, the mixing time is

$$
\tau(\varepsilon)=\min \left\{\mathrm{t}:\left\|\mathrm{Pt}^{\prime}, \pi\right\|<\varepsilon, \quad \forall \mathrm{t}^{\prime} \geq \mathrm{t}\right\} .
$$

A Markov chain is rapidly mixing if $\tau(\varepsilon)$ is poly $\left(\mathrm{n}, \log \left(\varepsilon^{-1}\right)\right)$. (or polynomially mixing)

A Markov chain is slowly mixing if $\tau(\varepsilon)$ is at least $\exp (\mathrm{n})$.

Coupling

Definition: A coupling is a MC on $\Omega \times \Omega$:

1) Each process $\left\{X_{t}\right\},\left\{Y_{t}\right\}$ is a faithful copy of the original $M C$;
2) If $X_{t}=Y_{t}$, then $X_{t+1}=Y_{t+1}$.

The coupling time T is:

$$
T=\max _{x, y}\left(E\left[T^{x, y}\right]\right),
$$

where $T^{x, y}=\min \left\{t: X_{t}=Y_{t} \mid X_{0}=x, Y_{0}=y\right\}$.

Thm: $\tau(\boldsymbol{\varepsilon}) \leq \mathrm{Te} \ln \boldsymbol{\varepsilon}^{-1} . \quad$ [Aldous]

Path Coupling

Coupling: Show for all $x, y \in \Omega, \quad E[\Delta(\operatorname{dist}(x, y))] \leq 0$.
Path coupling: Show for all u,v s.t. $\operatorname{dist}(u, v)=1$, that $E[\Delta(\operatorname{dist}(u, v))] \leq 0 . \quad$ [Bubley, Dyer, Greenhill]

Consider a shortest path:

$$
x=z_{0}, \quad z_{1}, \quad z_{2}, \ldots, \quad z_{r}=y,
$$

$$
\begin{aligned}
\operatorname{dist}\left(z_{i}, \mathrm{z}_{\mathrm{i}+1}\right) & =1 \\
\operatorname{dist}(\mathrm{x}, \mathrm{y}) & =\mathrm{r} .
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad \mathrm{E}[\Delta(\operatorname{dist}(\mathrm{x}, \mathrm{y}))] & \leq \Sigma_{\mathrm{i}} \mathrm{E}\left[\Delta\left(\operatorname{dist}\left(\mathrm{z}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}+1}\right)\right)\right] \\
& \leq 0 .
\end{aligned}
$$

Coupling the Unbiased Chain

Coupling:
 Choose same (v, d) in S x \{+,-\}.

The distance ψ_{+}at time t is the unsigned area between the two configurations.

- $\mathrm{E}\left[\Delta\left(\Psi_{+}\right)\right]=\mathrm{p}(-\# \mathrm{G}+\# \mathrm{~B}) \leq 0$
- Var >0 if $\psi_{+}>0$;
- $0 \leq \psi_{+} \leq n^{2}$;
- $\psi_{\dagger}=0$ implies $\psi_{\dagger+1}=0$.

Then the paths couple quickly, so the MC is rapidly mixing.

Outline

- Sampling paths uniformly: Multiple paths
- Paths with uniform bias
- Paths with non-uniform bias

Simple Exclusion Processes
$1+1+4+5=11$
Integer Partitions

Card Shuffling

0	2	0	1	2
2	0	2	0	1
0	1	0	1	0
1	0	1	0	2
0	2	0	2	1

3-colorings

Markov chain for Lozenge Tilings

"Tower chain" for Lozenge Tilings

The "tower chain"
[Luby, R., Sinclair]
Also couples (and mixes) quickly for lozenge tilings (and similarly for 3-colorings).

Higher Dimensions?

When does the MC converge in poly time on $\mathbf{Z}^{\text {d}}$?
Lattice paths, lozenge tilings and "space partitions" in Z $^{\text {d }}$
$\mathrm{d}=2$: Yes (simple coupling)
d=3: Yes [Luby, R., Sinclair], [Wilson], [R., Tetali] $\mathrm{d} \geq 4$: ???

3-colorings of $\mathbf{Z}^{\text {d}}$:
$\mathrm{d}=2$: Yes (simple coupling)
d=3: Yes [LRS], [Martin, Goldberg, Patterson], [R., Tetali]
$\mathrm{d}=4$: ???

Higher Dimensions?

When does the MC converge in poly time on $\mathbf{Z}^{\text {d}}$?

Lattice paths, lozenge tilings and "space partitions" in Z $^{\text {d }}$
$\mathrm{d}=2$: Yes (simple coupling)
d=3: Yes [Luby, R., Sinclair], [Wilson], [R., Tetali] $\mathrm{d} \geq 4$: ???

3-colorings of $\mathbf{Z}^{\text {d}}$:
$\mathrm{d}=2$: Yes (simple coupling)
d=3: Yes [LRS], [Martin, Goldberg, Patterson], [R., Tetali]
d=4: ???
d>>1: No! [Galvin, Kahn, R., Sorkin], [Peled]

Outline

- Sampling paths uniformly
- Paths with uniform bias
- Paths with non-uniform bias

Simple Exclusion Processes
$1+1+4+5=11$
Integer Partitions

Card Shuffling

Lozenge Tilings

0	2	0	1	2
2	0	2	0	1
0	1	0	1	0
1	0	1	0	2
0	2	0	2	1

3-colorings

Lattice Paths with Uniform Bias

Tile-based self-assembly (a growth model):
A tile can attach if 2 neighbors are present and detach if 2 neighbors are missing.

Generating Biased Surfaces

Given $\lambda>1$:

Repeat:

Choose (v, d) in S x \{+,-\}.
If a square can be added at v , and d=+, add it;
If a square can be removed at v , and $d=-$, remove it w.p. λ^{-1};
Otherwise do nothing.

Converges to the distribution:

$$
\pi(S)=\lambda^{\operatorname{area}(S)} / Z .
$$

Generating Biased Surfaces

\mathbf{Z}^{2}

ASEPs: Asymmetric Simple Exclusion Process:

How fast?

Biased Surfaces in Z $^{\text {d }}$

Q: How long does the biased MC take to converge?
[Benjamini, Berger, Hoffman, Mossel]

$$
d=2 ; \quad \lambda>1 \text { const, } \quad O\left(n^{2}\right) \text { mixing time (optimal). }
$$

Biased Surfaces in Z $^{\text {d }}$

Q: How long does the biased MC take to converge?
[Benjamini, Berger, Hoffman, Mossel]

$$
d=2 ; \quad \lambda>1 \text { const, } \quad O\left(n^{2}\right) \text { mixing time (optimal). }
$$

[Majumder, Sahu, Reif]

$$
\mathrm{d}=2,3 ; \quad \lambda=\Theta(\mathrm{n}), \quad \text { poly time } .
$$

Biased Surfaces in Z $^{\text {d }}$

Q: How long does the biased MC take to converge?
[Benjamini, Berger, Hoffman, Mossel]

$$
d=2 ; \quad \lambda>1 \text { const, } \quad O\left(n^{2}\right) \text { mixing time (optimal). }
$$

[Majumder, Sahu, Reif]

$$
d=2,3 ; \quad \lambda=\theta(n), \quad \text { poly time } .
$$

[Greenberg, Pascoe, R.]

$$
\left.\begin{array}{ll}
d=2, & \lambda>1 \text { const } \\
d \geq 3, & \lambda>d^{2}
\end{array}\right\} O\left(n^{d}\right) \text { mixing time. }
$$

Biased Surfaces in $\mathbf{Z}^{\text {d }}$

Q: How long does the biased MC take to converge?
[Benjamini, Berger, Hoffman, Mossel]

$$
d=2 ; \quad \lambda>1 \text { const, } \quad O\left(n^{2}\right) \text { mixing time (optimal). }
$$

[Majumder, Sahu, Reif]

$$
d=2,3 ; \quad \lambda=\theta(n), \quad \text { poly time. }
$$

[Greenberg, Pascoe, R.]

$$
\left.\begin{array}{ll}
d=2, & \lambda>1 \text { const } \\
d \geq 3, & \lambda>d^{2}
\end{array}\right\} O\left(n^{d}\right) \text { mixing time. }
$$

[Caputo, Martinelli, Toninelli]

$$
d=3, \quad \lambda>1 \quad O\left(n^{3}\right) \text { mixing time } .
$$

Coupling the Biased Chain

Coupling:

Choose same (v, d) in $S \times\{+,-\}$.

- $E\left[\Delta\left(\Psi_{+}\right)\right]=p(-w t(G)+w t(B))$

$$
\begin{aligned}
& =p\left(-1-\lambda^{-1}+1+\lambda^{-1}\right) \\
& \leq 0
\end{aligned}
$$

Coupling the Biased Chain

Coupling:

Choose same (v, d) in $S \times\{+,-\}$.
(case 2):

$$
\text { - } \begin{aligned}
\mathrm{E}\left[\Delta\left(\Psi_{H}\right)\right] & =\mathrm{p}(-\mathrm{wt}(\mathrm{G})+\mathrm{wt}(\mathrm{~B})) \\
& =\mathrm{p}\left(-1-\lambda^{-1}+1+1\right) \\
& >0
\end{aligned}
$$

Introduce a different metric.

Introduce a New Metric

- $E[\Delta(\Psi)]=p(-w t(G)+w t(B))$

$$
=p \lambda^{(k+1) / 2}\left(-1-\lambda^{-1}+\lambda^{-1 / 2}+\lambda^{-1 / 2}\right)<0
$$

Introduce a New Metric

Geometric distance function:

$$
\Psi^{\prime}(\sigma, \tau)=\sum_{x \text { in }}(\sqrt{ }(\sqrt{ }))^{\operatorname{diag}(\mathbf{x})}
$$

(case 1):

- $E\left[\Delta\left(\Psi^{\prime}\right)\right]=p(-w t(G)+w t(B))$

$$
=p \lambda^{(k+1) / 2}\left(-1-\lambda^{-1}+\lambda^{-1 / 2}+\left(\lambda^{-1}\right) \lambda^{1 / 2}\right)<0
$$

The distance $\Psi^{\prime} \dagger$ is always nonincreasing (in expectation), and by path coupling the chain is rapidly mixing.

Outline

- Sampling paths uniformly
- Paths with uniform bias
- Paths with non-uniform bias

Simple Exclusion Processes
$1+1+4+5=11$
Integer Partitions

Card Shuffling

Lozenge Tilings

0	2	0	1	2
2	0	2	0	1
0	1	0	1	0
1	0	1	0	2
0	2	0	2	1

3-colorings

Integer Partitions

Ferrers Diagrams:

Let the partition number $\mathrm{p}(\mathrm{n})$ be the number of partitions of size n :
p(i): $1,2,3,5,7,11,15,20, \ldots$

Asymptotic Estimate: $p(n) \sim \frac{1}{4 \sqrt{3} n} e^{\pi \sqrt{2 n / 3}}$
[Hardy, Ramanujan 1918]

Sampling Integer Partitions

Dynamic Programming:

Restricted Partition Number $\mathrm{p}(\mathrm{n}, \mathrm{k})$: number of ways to partition n into at most k pieces.

Simple recurrence relation: $\quad p(n, k)=p(n-k, k)+p(n, k-1)$.

Thus we can exactly sample partitions of n using dynamic programming and self-reducibility.

However, space requirements are very large:
partition numbers grow as $\approx e^{O(\sqrt{n})}$
Almost a petabyte for $n \approx 1000000$.

Markov Chains?

Many chains with simple rules converge to the uniform dist' n , but the mixing time remains open for all of them.

Ex:

Chain 1: move a square

Chain 2: pick a sub-square and flip

[Aldous 1999], [Berestycki, Pitman 2007]
And many others....

Approaches

Try 1:

Ω_{n}

Try 2:

Try 3:

Need: 1. The chain is rapidly mixing.
2. Rejection sampling is efficient.

Boltzmann Sampling

[Bhakta, Cousins, Fahrbach, R.]
Let Ω be the set of all lattice paths in an $\mathrm{n} \times \mathrm{n}$ region; and Ω_{n} the set of lattice paths with area n .

Thm: $\mathrm{p}_{\mathrm{i}}=\left|\Omega_{\mathrm{i}}\right|$ is logconcave
($\mathrm{n}>25$). [DeSalvo, Pak]

- Generate samples σ of Ω with prob. proportional to $\lambda^{\text {area(} \sigma)}$.

So $q_{i}=p_{i} \lambda^{i}$ is also logconcave (and therefore unimodal).

- Setting $\lambda=p_{n} / p_{n+1}$ gives $q_{n}=q_{n+1}$.
- So n and $\mathrm{n}+1$ must be the modes of the dist' n .

Boltzmann Sampling

[Bhakta, Cousins, Fahrbach, R.]
What about partition classes where we do not know if the sequence is logconcave? (e.g., partitions with at most k pieces,...)

Need: 1. The chain is rapidly mixing.
2. Rejection sampling is efficient.

Thm: If the Markov chain is rapidly mixing for all λ, then rejection sampling is also efficient for some λ !

Boltzmann Sampling

[Bhakta, Cousins, Fahrbach, R.]
Define $\lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ and let π_{i} is the distribution with bias λ_{i} s.t.:

- $\left\|\pi_{i}, \pi_{i+1}\right\|$ small, for all i;
- π_{1} is concentrated on configurations of size $<\mathrm{n}$;
- π_{m} is concentrated on configurations of size $>\mathrm{n}$;
- MC is rapidly mixing, for all λ_{i}.

Then there exists a λ_{i} s.t.
$\operatorname{Pr}\left(\pi_{\mathrm{i}}\right.$ outputs a sample of size n$)>\operatorname{poly}(\mathrm{n})$.

Outline

- Sampling paths uniformly
- Paths with uniform bias
- Paths with non-uniform bias

Simple Exclusion Processes
$1+1+4+5=11$
Integer Partitions

Card Shuffling

Lozenge Tilings

0	2	0	1	2
2	0	2	0	1
0	1	0	1	0
1	0	1	0	2
0	1	0	2	1

3-colorings

Biased Card Shuffling

- Pick a pair of adjacent cards uniformly at random
- Put j ahead of i with probability $\mathrm{p}_{\mathrm{j}, \mathrm{i}}=1-\mathrm{p}_{\mathrm{i}, \mathrm{j}}$

Converges to: $\pi(\sigma)=\prod_{\mathrm{i}<\mathrm{j}: \sigma(\mathrm{i})>\sigma(\mathrm{j})} \frac{\mathrm{p}_{\mathrm{ij}}}{\mathrm{p}_{\mathrm{ij}}} / \mathrm{Z}$

This is related to "Move-Ahead-One" for self-organizing lists.
[Fill]

Biased Permutations

Question: If the $\left\{p_{i j}\right\}$ are positively biased ($p_{i j} \geq 1 / 2 \quad \forall \mathrm{i}<\mathrm{j}$), is M always rapidly mixing?

Recall, with constant bias:
If $\mathrm{p}_{\mathrm{ij}}=\mathrm{p} \quad \forall \mathrm{i}<\mathrm{j}, \mathrm{p}>1 / 2$, then M mixes in $\theta\left(\mathrm{n}^{2}\right)$ time. [BBHM]

Linear extensions of a partial order: If $\mathrm{p}_{\mathrm{i}, \mathrm{j}}=1 / 2$ or $1 \quad \forall \mathrm{i}<\mathrm{j}$, then M mixes in $O\left(n^{3} \log n\right)$ time.
[Bubley and Dyer]

Fast for two classes: "Choose your weapon" and "league hierarchies" (if weakly regular). [Bhakta, Miracle, R., Streib]

Biased Permutations

Question: If the $\left\{p_{i j}\right\}$ are positively biased ($p_{\mathrm{ij}} \geq 1 / 2 \quad \forall \mathrm{i}<\mathrm{j}$), is M always rapidly mixing?

No !!!
[BMRS]

Biased Permutations

Question: If the $\left\{p_{i j}\right\}$ are positively biased ($p_{\mathrm{ij}} \geq 1 / 2 \quad \forall \mathrm{i}<\mathrm{j}$), is M always rapidly mixing?
No !!!

The state space has a "bad cut" so M requires exponential time. However, most cases do seem fast....

"Choose your weapon"

Given $r_{1}, \ldots, r_{n-1}, r_{i} \geq 1 / 2$.
[BMRS]
Thm 1: Let $\mathrm{p}_{\mathrm{ij}}=\mathrm{r}_{\mathrm{i}} \quad \forall \mathrm{i}<\mathrm{j}$. Then M_{NN} is rapidly mixing.

"Choose your weapon"

Given $r_{1, \ldots}, r_{n-1}, \quad r_{i} \geq 1 / 2$.
[BMRS]

Thm 1: Let $\mathrm{p}_{\mathrm{ij}}=\mathrm{r}_{\mathrm{i}} \quad \forall \mathrm{i}<\mathrm{j}$. Then M_{NN} is rapidly mixing.

"League Hierarchies"

Let T be a binary tree with leaves labeled $\{1, \ldots, n\}$.
Given $q_{v} \geq 1 / 2$ for each internal vertex v.
Thm 2: Let $p_{i, j}=q_{i^{\wedge} j}$ for all $i<j$. Then $M_{N N}$ is rapidly mixing.

League Hierarchies

Let T be a binary tree with leaves labeled $\{1, \ldots, n\}$. Given $q_{v} \geq 1 / 2$ for each internal vertex v.

Thm 2: Let $p_{i, j}=q_{i^{\wedge} j}$ for all $i<j$. Then $M_{N N}$ is rapidly mixing.

League Hierarchies

Let T be a binary tree with leaves labeled $\{1, \ldots, n\}$.
Let $q_{v} \geq 1 / 2$ be assigned to each internal vertex v.
Thm 2: Suppose $p_{i j}=q_{i \times j}$ for all $i<j$ for some labeled binary tree. Then M_{NN} is rapidly mixing.

Thm 2: Proof sketch

Thm 2: Let T be a binary tree with leaves labeled $\{1, \ldots, n\}$. Let $\mathrm{q}_{\mathrm{v}} \geq 1 / 2$ be assigned to each internal vertex v . Let $p_{i, j}=q_{i i_{j}}$ for all $i<j$. Then $M_{N N}$ is rapidly mixing.

Thm 2: Proof sketch

Thm 2: Let T be a binary tree with leaves labeled $\{1, \ldots, n\}$. Let $\mathrm{q}_{\mathrm{v}} \geq 1 / 2$ be assigned to each internal vertex v . Let $p_{i, j}=q_{i i_{j}}$ for all $i<j$. Then $M_{N N}$ is rapidly mixing.

Thm 2: Proof sketch

Thm 2: Let T be a binary tree with leaves labeled $\{1, \ldots, n\}$. Let $q_{v} \geq 1 / 2$ be assigned to each internal vertex v. Let $p_{i, j}=q_{i_{i j}}$ for all $i<j$. Then $M_{N N}$ is rapidly mixing.

Thm 2: Proof sketch

Markov chain M^{4} allows a transposition if it corresponds to an ASEP move on one of the internal vertices.

Each ASEP is rapidly mixing $\Rightarrow \mathrm{M}^{4}$ is rapidly mixing.

M_{NN} is also rapidly mixing if $\{\mathrm{p}\}$ is weakly regular.
i.e., for all $i, \quad p_{i, j}<p_{i, j+1}$ if $j>i$. (by comparison)

Open Problems

1. Fill's conjecture: is M_{NN} always rapidly mixing when $\left\{\mathrm{p}_{\mathrm{ij}}\right\}$ are positively biased and regular?

$$
\text { (i.e., } p_{i j}>1 / 2 \text { and } p_{i j} \text { is monotonic in } i \text { and } j \text {) }
$$

1^{1}. What about the special case:
Given a_{1}, \ldots, a_{n} "strengths", with $a_{i}>0$, let $p_{i j}=a_{i} /\left(a_{i}+a_{j}\right)$.
2. When does bias speed up or slow down a chain?

