Sampling Paths, Permutations and Lattice Structures

Dana Randall

Georgia Institute of Technology

Sampling Problems

Simple Exclusion Processes

Integer Partitions

Card Shuffling

0	2	0	1	2
2	0	2	0	1
0	1	0	1	0
1	0	1	0	2
0	2	0	2	1

Lattice Paths

State space: All monotonic lattice paths from (0,0) to (n,n).

Local dynamics: Switch between "mountains" and "valleys".

Lattice Paths

Card Shuffling with Nearest Neighbor Transpositions

Integer Partitions

An Integer Partition of n is a sum of positive integers where order doesn't matter (4 + 6) is the same as (6 + 4).

Integer Partitions

Ferrers (Young) Diagrams:

Each piece of the partition is represented as an ordered "stack" of squares.

Sampling integer partitions of n is the same as sampling lattice paths bounding regions of area n.

Multiple Nonintersecting Paths

Multiple Nonintersecting Paths

Vertex Disjoint Paths = Lozenge Tilings

There is a bijection between nonintersecting lattice paths and lozenge tilings (or dimer coverings).

Or, If *Edge* Disjoint...

<u>Crossing path:</u> D, R: +1 (mod 3) U, L: -1 <u>No path:</u> D, R: -1 U, L: +1

3-Colorings (or Eulerian Orientations)

There is a bijection between edge disjoint lattice paths and proper **3-colorings of Z²** (and the "**6-vertex model**").

Repeat:

- Pick a cell uniformly;
- Recolor the cell w.p. $\frac{1}{2}$, if possible.

Q: How do we sample lattice paths?

Simple Exclusion Processes

1 + 1 + 4 + 5 = 11

Integer Partitions

Card Shuffling

0	2	0	1	2
2	0	2	0	1
0	1	0	1	0
1	0	1	0	2
0	2	0	2	1

Outline

- Sampling paths uniformly
- Paths with uniform bias
- Paths with non-uniform bias

Simple Exclusion Processes

1 + 1 + 4 + 5 = 11

Integer Partitions

Card Shuffling

0	2	0	1	2
2	0	2	0	1
0	1	0	1	0
1	0	1	0	2
0	2	0	2	1

Outline

- Sampling paths uniformly: One path
- Paths with uniform bias
- Paths with non-uniform bias

Simple Exclusion Processes

1 + 1 + 4 + 5 = 11

Integer Partitions

Card Shuffling

0	2	0	1	2
2	0	2	0	1
0	1	0	1	0
1	0	1	0	2
0	2	0	2	1

Lattice Paths in Z²

To sample, repeat:

- Pick v on the path;
- If v is a mountain/valley, invert w.p. $\frac{1}{2}$ (if possible).

This Markov chain is reversible and ergodic, so it converges to the uniform distribution over lattice paths.

How long? Answer: $\Theta(n^3 \log n)$ [Wilson]

The mixing time

 $\begin{array}{ll} \underline{\text{Def}} \colon & \text{The total variation distance is} \\ \| \mathbb{P}^t, \pi \| &= \max \ \frac{1}{2} \sum_{y \in \Omega} |\mathbb{P}^t(x,y) - \pi(x)|. \\ & x \in \Omega \ \frac{1}{2} \sum_{y \in \Omega} |\mathbb{P}^t(x,y) - \pi(x)|. \end{array}$

A Markov chain is rapidly mixing if $\tau(\varepsilon)$ is poly(n, log(ε^{-1})). (or polynomially mixing)

A Markov chain is slowly mixing if $\tau(\varepsilon)$ is at least exp(n).

Coupling

<u>Definition</u>: A coupling is a MC on $\Omega \times \Omega$:

- 1) Each process $\{X_t\}$, $\{Y_t\}$ is a faithful copy of the original MC;
- 2) If $X_t = Y_t$, then $X_{t+1} = Y_{t+1}$.

<u>Thm</u>: $\tau(\varepsilon) \leq T \in \ln \varepsilon^{-1}$. [Aldous]

Path Coupling

Coupling: Show for all $x, y \in \Omega$, $E[\Delta(dist(x,y))] \le 0$.

Path coupling:Show for all u,v s.t. dist(u,v)=1, that $E[\Delta(dist(u,v))] \leq 0.$ [Bubley, Dyer, Greenhill]

Consider a shortest path:

 $x = z_0, z_1, z_2, ..., z_r = y,$ $dist(z_i, z_{i+1}) = 1,$ dist(x, y) = r.

 $\Rightarrow E[\Delta(dist(x,y))] \leq \sum_{i} E[\Delta(dist(z_{i},z_{i+1}))] \\ \leq 0.$

Coupling the Unbiased Chain

Coupling:

Choose same (v, d) in S x {+,-}.

The **distance** Ψ_{\dagger} at time t is the unsigned area between the two configurations.

- $E[\Delta(\Psi_{\dagger})] = p(-\#G + \#B) \le 0$
- Var > 0 if Ψ_{t} > 0;
- $0 \leq \Psi_{\dagger} \leq n^2;$
- $\Psi_{\dagger} = 0$ implies $\Psi_{\dagger+1} = 0$.

Then the paths couple quickly, so the MC is rapidly mixing.

Outline

- Sampling paths uniformly: Multiple paths
- Paths with uniform bias
- Paths with non-uniform bias

Simple Exclusion Processes

1 + 1 + 4 + 5 = 11

Integer Partitions

Card Shuffling

0	2	0	1	2
2	0	2	0	1
0	1	0	1	0
1	0	1	0	2
0	2	0	2	1

Markov chain for Lozenge Tilings

"Tower chain" for Lozenge Tilings

The "tower chain" [Luby, R., Sinclair]

Also couples (and mixes) quickly for lozenge tilings (and similarly for 3-colorings).

Higher Dimensions?

When does the MC converge in poly time on Z^d?

Lattice paths, lozenge tilings and "space partitions" in Z^d : d=2: Yes (simple coupling)

d=3: Yes [Luby, R., Sinclair], [Wilson], [R., Tetali] d≥4: ???

3-colorings of **Z**^d:

- d=2: Yes (simple coupling)
- d=3: Yes [LRS], [Martin, Goldberg, Patterson], [R., Tetali] d=4: ???

Higher Dimensions?

When does the MC converge in poly time on Z^d?

Lattice paths, lozenge tilings and "space partitions" in Z^d:

- d=2: Yes (simple coupling)
- d=3: Yes [Luby, R., Sinclair], [Wilson], [R., Tetali] d≥4: ???

3-colorings of **Z**^d:

- d=2: Yes (simple coupling)
- d=3: Yes [LRS], [Martin, Goldberg, Patterson], [R., Tetali] d=4: ???
- d>>1: No! [Galvin, Kahn, R., Sorkin], [Peled]

Outline

- Sampling paths uniformly
- Paths with uniform bias
- Paths with non-uniform bias

Simple Exclusion Processes

1 + 1 + 4 + 5 = 11

Integer Partitions

Card Shuffling

Lozenge Tilings

0	2	0	1	2
2	0	2	0	1
0	1	0	1	0
1	0	1	0	2
0	2	0	2	1

Lattice Paths with Uniform Bias

<u>Tile-based self-assembly</u> (a growth model):

A tile can attach if 2 neighbors are present and detach if 2 neighbors are missing.

Generating Biased Surfaces

Given $\lambda > 1$:

Repeat:
Choose (v,d) in S x {+,-}.
If a square can be added at v, and d=+, add it;
If a square can be removed at v, and d=-, remove it w.p. λ⁻¹;
Otherwise do nothing.

Converges to the distribution:

 $\pi(S) = \lambda^{\operatorname{area}(S)} / Z.$

Generating Biased Surfaces

How fast?

Q: How long does the biased MC take to converge?

[Benjamini, Berger, Hoffman, Mossel]

d = 2; $\lambda > 1 \text{ const}, O(n^2)$ mixing time (optimal).

Q: How long does the biased MC take to converge?

[Benjamini, Berger, Hoffman, Mossel]

d = 2; $\lambda > 1 \text{ const},$ $O(n^2)$ mixing time (optimal).

[Majumder, Sahu, Reif]

 $d = 2,3; \lambda = \Theta(n),$ poly time.

Q: How long does the biased MC take to converge?

[Benjamini, Berger, Hoffman, Mossel]

d = 2; $\lambda > 1 \text{ const},$ $O(n^2)$ mixing time (optimal).

[Majumder, Sahu, Reif]

 $d = 2,3; \lambda = \Theta(n),$ poly time.

[Greenberg, Pascoe, R.]

Q: How long does the biased MC take to converge?

[Benjamini, Berger, Hoffman, Mossel]

d = 2; $\lambda > 1 \text{ const},$ $O(n^2)$ mixing time (optimal).

[Majumder, Sahu, Reif]

 $d = 2,3; \lambda = \Theta(n),$ poly time.

[Greenberg, Pascoe, R.]

[Caputo, Martinelli, Toninelli]

d = 3, $\lambda > 1$ O(n³) mixing time.

Coupling the Biased Chain

Coupling:

Choose same (v,d) in S x $\{+,-\}$.

(case 1):

• $E[\Delta(\Psi_{\dagger})] = p(-wt(G) + wt(B))$

= p (-1 - λ^{-1} + 1 + λ^{-1})

≤ 0

Coupling the Biased Chain

Introduce a different metric.

Introduce a New Metric

• $E[\Delta(\Psi)] = p(-wt(G) + wt(B))$

 $= p \lambda^{(k+1)/2} \left(-1 - \lambda^{-1} + \lambda^{-1/2} + \lambda^{-1/2} \right) < 0$

Introduce a New Metric

= p $\lambda^{(\kappa+1)/2}$ (-1 - λ^{-1} + $\lambda^{-1/2}$ + (λ^{-1}) $\lambda^{1/2}$) < 0

The distance Ψ'_{\dagger} is always nonincreasing (in expectation), and by path coupling the chain is rapidly mixing.

Outline

- Sampling paths uniformly
- Paths with uniform bias
- Paths with non-uniform bias

Simple Exclusion Processes

1 + 1 + 4 + 5 = 11

Integer Partitions

Card Shuffling

0	2	0	1	2
2	0	2	0	1
0	1	0	1	0
1	0	1	0	2
0	2	0	2	1

Integer Partitions

Ferrers Diagrams:

Let the partition number p(n) be the number of partitions of size n:

p(i): 1, 2, 3, 5, 7, 11, 15, 20,...

Asymptotic Estimate:
$$p(n) \sim \frac{1}{4\sqrt{3}n} e^{\pi \sqrt{2n/3}}$$

[Hardy, Ramanujan 1918]

Sampling Integer Partitions

Dynamic Programming:

Restricted Partition Number p(n,k): number of ways to partition n into at most k pieces.

Simple recurrence relation: p(n,k) = p(n-k, k) + p(n, k-1).

Thus we can exactly sample partitions of n using dynamic programming and self-reducibility.

However, *space* requirements are very large: partition numbers grow as $\approx e^{O(\sqrt{n})}$

Almost a petabyte for $n \approx 1000000$.

Markov Chains?

Many chains with simple rules converge to the uniform dist'n, but the mixing time remains open for all of them.

Ex:

[Aldous 1999], [Berestycki, Pitman 2007]

And many others....

Approaches

Need: 1. The chain is rapidly mixing.

2. Rejection sampling is efficient.

Boltzmann Sampling [Bhakta, Cousins, Fahrbach, R.]

Let Ω be the set of all lattice paths in an n x n region;

and Ω_n the set of lattice paths with area n.

<u>Thm:</u> $p_i = |\Omega_i|$ is logconcave (n > 25). [DeSalvo, Pak]

• Generate samples σ of Ω with prob. proportional to $\lambda^{area(\sigma)}$.

So $q_i = p_i \lambda^i$ is also logconcave (and therefore unimodal).

- Setting $\lambda = p_n / p_{n+1}$ gives $q_n = q_{n+1}$.
- So n and n+1 must be the modes of the dist'n.

Boltzmann Sampling [Bhakta, Cousins, Fahrbach, R.]

What about partition classes where we do not know if the sequence is logconcave? (e.g., partitions with at most k pieces,...)

- Need: 1. The chain is rapidly mixing.
 - 2. Rejection sampling is efficient.

<u>Thm:</u> If the Markov chain is rapidly mixing for all λ , then rejection sampling is also efficient for some λ !

Boltzmann Sampling [Bhakta, Cousins, Fahrbach, R.]

Define $\lambda_1, \ldots, \lambda_m$ and let π_i is the distribution with bias λ_i s.t.:

- $\|\pi_i, \pi_{i+1}\|$ small, for all i;
- π_1 is concentrated on configurations of size < n;
- $\pi_{\rm m}$ is concentrated on configurations of size > n;
- MC is rapidly mixing, for all λ_i .

Then there exists a λ_i s.t.

 $Pr(\pi_i \text{ outputs a sample of size } n) > poly(n).$

Outline

- Sampling paths uniformly
- Paths with uniform bias
- Paths with non-uniform bias

Simple Exclusion Processes

1 + 1 + 4 + 5 = 11

Integer Partitions

Card Shuffling

0	2	0	1	2
2	0	2	0	1
0	1	0	1	0
1	0	1	0	2
0	1	0	2	1

3-colorings

Lozenge Tilings

Biased Card Shuffling

- Pick a pair of adjacent cards uniformly at random
- Put j ahead of i with probability $p_{j,i} = 1 p_{i,j}$

5 n 1 7 ... i j ... n-1 2 6 3
Converges to:
$$\pi(\sigma) = \prod_{i < j: \sigma(i) > \sigma(j)} \frac{p_{ij}}{p_{ji}} / Z$$

This is related to "Move-Ahead-One" for self-organizing lists. [Fill]

Biased Permutations

<u>Question</u>: If the {p_{ij}} are positively biased ($p_{ij} \ge 1/2 \quad \forall i < j$), is M always rapidly mixing?

Recall, with constant bias: If $p_{ij} = p \forall i < j$, p>1/2, then M mixes in $\theta(n^2)$ time. [BBHM]

Linear extensions of a partial order: If $p_{i,j} = 1/2$ or $1 \quad \forall i < j$, then M mixes in O(n³ log n) time. [Bubley and Dyer]

Fast for two classes: "Choose your weapon" and "league hierarchies" (if *weakly regular*). [Bhakta, Miracle, R., Streib]

Biased Permutations

<u>Question</u>: If the {p_{ij}} are positively biased ($p_{ij} \ge 1/2 \forall i < j$), is M always rapidly mixing?

No !!!

[BMRS]

Biased Permutations

<u>Question</u>: If the {p_{ij}} are positively biased ($p_{ij} \ge 1/2 \forall i < j$), is M always rapidly mixing?

No !!!

The state space has a "bad cut" so M requires exponential time. However, most cases do seem fast....

"Choose your weapon"

Given $r_{1, ..., r_{n-1}}$, $r_i \ge 1/2$. [BMRS] <u>Thm 1</u>: Let $p_{ij} = r_i$ $\forall i < j$. Then M_{NN} is rapidly mixing.

"Choose your weapon"

 $\label{eq:given r_1, ..., r_n-1, r_i \ge 1/2.} \qquad [\text{BMRS}]$

<u>Thm 1</u>: Let $p_{ij} = r_i \quad \forall i < j$. Then M_{NN} is rapidly mixing.

"League Hierarchies"

Let T be a binary tree with leaves labeled $\{1, ..., n\}$. Given $q_v \ge 1/2$ for each *internal* vertex v.

<u>Thm 2:</u> Let $p_{i,i} = q_{i^i}$ for all i < j. Then M_{NN} is rapidly mixing.

League Hierarchies

Let T be a binary tree with leaves labeled $\{1, ..., n\}$. Given $q_v \ge 1/2$ for each *internal* vertex v.

<u>Thm 2:</u> Let $p_{i,i} = q_{i^i}$ for all i < j. Then M_{NN} is rapidly mixing.

League Hierarchies

Let T be a binary tree with leaves labeled $\{1, ..., n\}$. Let $q_v \ge \frac{1}{2}$ be assigned to each *internal* vertex v.

<u>Thm 2:</u> Suppose $p_{ij} = q_{i \land j}$ for all i < j for some labeled binary tree. Then M_{NN} is rapidly mixing.

<u>Thm 2</u>: Let T be a binary tree with leaves labeled $\{1, ..., n\}$. Let $q_v \ge \frac{1}{2}$ be assigned to each *internal* vertex v. Let $p_{i,i} = q_{i^i}$ for all i < j. Then M_{NN} is rapidly mixing.

<u>Thm 2</u>: Let T be a binary tree with leaves labeled $\{1, ..., n\}$. Let $q_v \ge \frac{1}{2}$ be assigned to each *internal* vertex v. Let $p_{i,i} = q_{i^i}$ for all i < j. Then M_{NN} is rapidly mixing.

<u>Thm 2</u>: Let T be a binary tree with leaves labeled $\{1, ..., n\}$. Let $q_v \ge \frac{1}{2}$ be assigned to each *internal* vertex v. Let $p_{i,i} = q_{i^i}$ for all i < j. Then M_{NN} is rapidly mixing.

Markov chain M' allows a transposition if it corresponds to an ASEP move on one of the internal vertices.

Each ASEP is rapidly mixing \Rightarrow M' is rapidly mixing.

M_{NN} is also rapidly mixing if {p} is *weakly regular*.
i.e., for all i, p_{i,j} < p_{i,j+1} if j > i. (by comparison)

Open Problems

- 1. <u>Fill's conjecture</u>: is M_{NN} always rapidly mixing when $\{p_{ij}\}$ are positively biased and regular? (i.e., $p_{ij} > \frac{1}{2}$ and p_{ij} is monotonic in i and j)
- 1'. What about the **special case**: Given $a_1,...,a_n$ "strengths", with $a_i > 0$, let $p_{ij} = a_i / (a_i + a_j)$.

2. When does bias speed up or slow down a chain?

