Elusive problems in extremal graph theory

Andrzej Grzesik (Krakow) <u>Dan Král'</u> (Warwick) László Miklós Lovász (MIT/Stanford)

21/5/2017

OVERVIEW OF TALK

- uniqueness of extremal configurations motivation and formulation of problem
- graph limits

representation of large graphs

- finitely forcible graph limits large graphs with assymptotically unique structures
- main result, proof tools and extensions

TURÁN PROBLEMS

- Maximum edge-density of H-free graph
- Mantel's Theorem (1907): $\frac{1}{2}$ for $H = K_3 \left(K_{\frac{n}{2}, \frac{n}{2}} \right)$
- Turán's Theorem (1941): $\frac{\ell-2}{\ell-1}$ for $H = K_{\ell} \left(K_{\frac{n}{\ell-1}, \dots, \frac{n}{\ell-1}} \right)$
- Erdős-Stone Theorem (1946): $\frac{\chi(H)-2}{\chi(H)-1}$
- extremal examples unique up to $o(n^2)$ edges

Edge vs. Triangle Problem

- Minimum density of K_3 for a specific edge-density
- determined by Razborov (2008), $K_{\alpha n,...,\alpha n,(1-k\alpha)n}$
- extensions by Nikiforov (2011) and Reiher (2016) for K_{ℓ}
- Pikhurko and Razborov (2017) gave extremal examples generally not unique, can be made unique by $\overline{K_n} = 0$

ANOTHER EXAMPLE

- Minimum sum of densities of K_3 and $\overline{K_3}$
- Goodman's Bound (1959): $K_3 + \overline{K_3} \ge \frac{1}{4}$ every n/2-regular graph is a minimizer
- minimizer can be made unique $K_3 = 0$, or $\overline{K_3} = 0$, or $C_4 = 1/16$ (Erdős-Rényi random graph $G_{n,1/2}$)

THIS TALK

- Conjecture (Lovász 2008, Lovász and Szegedy 2011)
 Every finite feasible set H_i = d_i, i = 1,...,k,
 can be extended to a finite feasible set
 with an asymptotically unique structure.
- Every extremal problem has a finitely forcible optimum.
- Theorem (Grzesik, K., Lovász Jr.): FALSE

GRAPH LIMITS

- large networks ≈ large graphs how to represent? how to model? how to generate?
- concise (analytic) representation of large graphs we implicitly use limits in our considerations anyway
- mathematics motivation extremal graph theory What is a typical structure of an extremal graph? calculations avoiding smaller order terms
- in this talk: dense graphs $(|E| = \Omega(|V|^2))$ Borgs, Chayes, Lovász, Sós, Szegedy, Vesztergombi, ...
- convergence vs. analytic representation

CONVERGENT GRAPH SEQUENCE

- d(H,G) = probability |H|-vertex subgraph of G is H
- a sequence $(G_n)_{n \in \mathbb{N}}$ of graphs is convergent if $d(H, G_n)$ converges for every H
- examples: K_n , $K_{\alpha n,n}$, blow ups $G[K_n]$ Erdős-Rényi random graphs $G_{n,p}$, planar graphs
- extendable to other discrete structures

LIMIT OBJECT: GRAPHON

- graphon $W : [0,1]^2 \to [0,1]$, s.t. W(x,y) = W(y,x)
- W-random graph of order nrandom points $x_i \in [0, 1]$, edge probability $W(x_i, x_j)$
- d(H, W) = prob. |H|-vertex W-random graph is H
- W is a limit of $(G_n)_{n \in \mathbb{N}}$ if $d(H, W) = \lim_{n \to \infty} d(H, G_n)$

LIMIT OBJECT: GRAPHON

- graphon $W: [0,1]^2 \rightarrow [0,1]$, s.t. W(x,y) = W(y,x)
- W-random graph of order nrandom points $x_i \in [0, 1]$, edge probability $W(x_i, x_j)$
- d(H, W) = prob. |H|-vertex W-random graph is H
- W is a limit of $(G_n)_{n \in \mathbb{N}}$ if $d(H, W) = \lim_{n \to \infty} d(H, G_n)$
- every convergent sequence of graphs has a limit
- W-random graphs converge to W with probability one

APPLICATIONS OF GRAPH LIMITS

• extremal combinatorics

flag algebras of Razborov density calculations, computer search

• computer science

property and parameter testing cover of the space of all graphons

• structure of typical graphs graphon entropy, number of graphs $\approx c^{\binom{n}{2}}$

STATEMENT OF PROBLEM

- Conjecture (Lovász 2008, Lovász and Szegedy 2011): Every finite feasible set H_i = d_i, i = 1,...,k, can be extended to a finite feasible set that is satisifed by a unique graphon.
- uniqueness of graphons (Borgs, Chayes, Lovász 2010) W(x,y) and $W^{\varphi}(x,y) := W(\varphi(x),\varphi(y))$ are the same
- A graphon W is finitely forcible if there exist H_1, \ldots, H_k and d_1, \ldots, d_k such that W is the only graphon with the density of H_i equal to d_i .

FINITELY FORCIBLE GRAPH LIMITS

- Lovász, Sós (2008): Step graphons are finitely forcible.
- extremal graph theory problem →
 finitely forcible optimal solution →
 "simple structure" gives new bounds on old problems
- Conjectures (Lovász and Szegedy): The space T(W) of a finitely forcible W is compact. The space T(W) has finite dimension.

FINITELY FORCIBLE GRAPHONS

- Theorem (Glebov, K., Volec): T(W) can fail to be locally compact
- Theorem (Glebov, Klimošová, K.): T(W) can have a part homeomorphic to $[0, 1]^{\infty}$
- Theorem (Cooper, Kaiser, K., Noel): \exists finitely forcible W such that every ε -regular partition has at least $2^{\varepsilon^{-2}/\log\log\varepsilon^{-1}}$ parts (for inf. many $\varepsilon \to 0$).
- Theorem (Cooper, K., Martins):
 Every graphon is a subgraphon of a finitely forcible graphon.

RADEMACHER GRAPHON

Non-regular graphon

UNIVERSAL CONSTRUCTION

MAIN RESULT

• Theorem (Grzesik, K., Lovász Jr.)

 \exists graphon family \mathcal{W} , graphs H_i , reals d_i , $i = 1, \ldots, m$ $W \in \mathcal{W} \Leftrightarrow d(H_i, W) = d_i$ for $i = 1, \ldots, m$ no graphon in \mathcal{W} is finitely forcible

Some details of the proof

- graphons $W_P(\vec{z}), \ \vec{z} \in [0, 1]^{\mathbb{N}}$ \vec{z} satisfies polynomial inequalities in P (e.g. $z_1 + z_2^2 \leq 1$)
- \vec{z} constrained to be from $Z \subseteq [0,1]^{\mathbb{N}}$ such that $d(H_1, W_P(\vec{z})) = f_1(z_1, z_2)$ $d(H_2, W_P(\vec{z})) = f_2(z_1, z_2, z_3, z_4, z_5)$ $d(H_3, W_P(\vec{z})) = f_3(z_1, z_2, z_3, z_4, z_5, z_6, z_7, z_8, z_9)$
- the set Z is non-trivial

there exists a bijective map from $[0,1]^{\mathbb{N}}$ to Z such that $(x_1) \to (z_1, z_2), (x_1, x_2) \to (z_1, z_2, z_3, z_4, z_5)$, etc.

Some details of the proof

- graphons $W_P(\vec{z}), \ \vec{z} \in [0,1]^{\mathbb{N}}$ \vec{z} satisfies polynomial inequalities in P (e.g. $z_1 + z_2^2 \leq 1$)
- independent of P: there exist graphs H_1, \ldots, H_k there exist polynomials q_1, \ldots, q_ℓ in $d(H_i, W)$
- for every P: there exist reals $\alpha_1, \ldots, \alpha_\ell$ $W_P(\vec{z})$ are precisely graphons satisfying $q_i = \alpha_i$
- analysis of the dependance of $d(H_i, W_P(\vec{z}))$ on Papproximation of inverse maps by polyn. inequalities

Possible extensions

- techniques universal to prove more general results equalize other functions than subgraph densities
- Theorem (Grzesik, K., Lovász Jr.)
 ∃ graphon family W, graphs H_i, reals d_i, i = 1,...,m
 W ∈ W ⇔ d(H_i, W) = d_i for i = 1,...,m
 no graphon in W is finitely forcible
 all graphons in W have the same entropy
- extremal problems with no typical structure

Thank you for your attention!