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OVERVIEW OF TALK

uniqueness of extremal configurations

motivation and formulation of problem

graph limits

representation of large graphs

finitely forcible graph limits

large graphs with assymptotically unique structures

main result, proof tools and extensions




TURAN PROBLEMS

Maximum edge-density of H-free graph
Mantel’s Theorem (1907): % for H= K3 (K

Turdn’s Theorem (1941): == for H = K, (K.

y . x(H)—2
Erdés-Stone Theorem (1946): 1

extremal examples unique up to o(n?) edges




EDGE vSs. TRIANGLE PROBLEM

Minimum density of K3 for a specific edge-density

determined by Razborov (2008), Kup,. . an.(1—ka)n

extensions by Nikiforov (2011) and Reiher (2016) for K

Pikhurko and Razborov (2017) gave extremal examples

generally not unique, can be made unique by K,, = 0




ANOTHER EXAMPLE

e Minimum sum of densities of K5 and K3

e Goodman’s Bound (1959): K3+ K3 > &

every n/2-regular graph is a minimizer

e minimizer can be made unique K5 =0, or K35 = 0, or
C, = 1/16 (Erdds-Rényi random graph G, 1/2)




THIS TALK

e Conjecture (Lovasz 2008, Lovasz and Szegedy 2011)
Every finite feasible set H; = d;, 1 = 1,... k,
can be extended to a finite feasible set

with an asymptotically unique structure.

e Lvery extremal problem has a finitely forcible optimum.

e Theorem (Grzesik, K., Lovasz Jr.): FALSE




(FRAPH LIMITS

large networks ~ large graphs
how to represent? how to model? how to generate?

concise (analytic) representation of large graphs

we implicitly use limits in our considerations anyway

mathematics motivation — extremal graph theory
What is a typical structure of an extremal graph?
calculations avoiding smaller order terms

in this talk: dense graphs (|E| = Q(|V]?))
Borgs, Chayes, Lovasz, S6s, Szegedy, Vesztergombi, . ..

convergence vs. analytic representation




CONVERGENT GRAPH SEQUENCE

d(H,G) = probability |H |-vertex subgraph of G is H

a sequence (G,,)nen of graphs is convergent

if d(H,G,,) converges for every H

examples: K, Kon n, blow ups G|K,]
Erdds-Rényi random graphs G, ,, planar graphs

extendable to other discrete structures




LIMIT OBJECT: GRAPHON

graphon W : [0,1]* — [0,1], s.t. W(x,y) = W(y, x)

W-random graph of order n

random points z; € [0, 1|, edge probability W (z;, z;)
d(H,W) = prob. |H|-vertex W-random graph is H
W is a limit of (G, )nen if d(H, W) = lim d(H,G,)

n—oo




LIMIT OBJECT: GRAPHON

graphon W :[0,1]* — [0,1], s.t. W(x,y) = W (y,x)

W-random graph of order n

random points z; € [0, 1|, edge probability W (z;, z;)

d(H,W) = prob. |H|-vertex W-random graph is H

W is a limit of (G, )nen if d(H, W) = lim d(H,G,)
n—oo

every convergent sequence of graphs has a limit

W-random graphs converge to W with probability one
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APPLICATIONS OF GRAPH LIMITS

e cxtremal combinatorics
flag algebras of Razborov

density calculations, computer search

e computer science
property and parameter testing

cover of the space of all graphons

e structure of typical graphs

graphon entropy, number of graphs ~ C(Z’)
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STATEMENT OF PROBLEM

e Conjecture (Lovasz 2008, Lovasz and Szegedy 2011):
Every finite feasible set H; = d;, 1 = 1,... k,
can be extended to a finite feasible set that

is satisifed by a unique graphon.

uniqueness of graphons (Borgs, Chayes, Lovasz 2010)
W(x,y) and W¥(x,y) := W(p(x),p(y)) are the same

A graphon W is finitely forcible if there exist
Hq,...,H; and dq,...,d; such that W is the only
graphon with the density of H; equal to d;.
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FINITELY FORCIBLE GRAPH LIMITS

e Lovész, S6s (2008): Step graphons are finitely forcible.

e extremal graph theory problem —
finitely forcible optimal solution —

“simple structure” gives new bounds on old problems

e Conjectures (Lovész and Szegedy):
The space T (W) of a finitely forcible W is compact.
The space T'(W) has finite dimension.

o 4 4

13




FINITELY FORCIBLE GRAPHONS

Theorem (Glebov, K., Volec):
T'(W) can fail to be locally compact

Theorem (Glebov, Klimosova, K.):
T (W) can have a part homeomorphic to |0, 1]>°

Theorem (Cooper, Kaiser, K., Noel):

3 finitely forcible W such that every e-regular partition
has at least 2¢ /108108c™" parts (for inf. many € — 0).

Theorem (Cooper, K., Martins):
Every graphon is a subgraphon of a finitely
forcible graphon.
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RADEMACHER GRAPHON




NON-REGULAR GRAPHON

A B ¢ D E F & P Q R
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UNIVERSAL CONSTRUCTION

A B C D E F G P Q R
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P
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MAIN RESULT

e Theorem (Grzesik, K., Lovasz Jr.)
3 graphon family W, graphs H;, reals d;, 1 =1,...
WeWsdH;,W)=d; fori=1,...,m
no graphon in W is finitely forcible
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SOME DETAILS OF THE PROOF

e graphons Wp(7), Z € [0,1]Y

7 satisfies polynomial inequalities in P (e.g. z1 +25 < 1)

e 7 constrained to be from Z C [0,1]" such that
d(H1, Wp(Z)) = f1(z1, 22)
d(Hy, Wp(2)) = fa(z1, 22, 23, 24, 25)
d(H3, Wp(2)) = f3(z1, 22, 23, 24, 25, 26, 27, 28, 29)

e the set Z is non-trivial

there exists a bijective map from [0, 1]" to Z such that

(371) — (Z1722)7 (x17$2) — (217227 237'24725)7 etc.
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SOME DETAILS OF THE PROOF

graphons Wp(7), Z € [0,1]Y

7 satisfies polynomial inequalities in P (e.g. z1 +25 < 1)

independent of P: there exist graphs Hq,..., Hy
there exist polynomials ¢1,...,qe in d(H;, W)

for every P: there exist reals aq,...,ay

Wp(Z) are precisely graphons satisfying ¢; = «;

analysis of the dependance of d(H;, Wp(Z)) on P

approximation of inverse maps by polyn. inequalities
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POSSIBLE EXTENSIONS

e techniques universal to prove more general results

equalize other tunctions than subgraph densities

e Theorem (Grzesik, K., Lovasz Jr.)
J graphon family W, graphs H;, reals d;, 1 =1,...,m
WeWedH;,W)=d; fori=1,...,m
no graphon in VWV is finitely forcible

all graphons in YV have the same entropy

e extremal problems with no typical structure
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Thank you for your attention!
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