Edge-coloring Multigraphs

Daniel W. Cranston
Virginia Commonwealth University dcranston@vcu.edu

Cumberland Conference
20 May 2017

Edge-coloring Examples

Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors;

Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible.

Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible. For a graph G, minimum number of colors is $\chi^{\prime}(G)$.

Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible. For a graph G, minimum number of colors is $\chi^{\prime}(G)$.

Ex 1:

Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible. For a graph G, minimum number of colors is $\chi^{\prime}(G)$.

Ex 1:

Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible. For a graph G, minimum number of colors is $\chi^{\prime}(G)$.

Ex 1:

Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible. For a graph G, minimum number of colors is $\chi^{\prime}(G)$.

Ex 1:

Equivalent to coloring vertices of line graph $L(G)$ of G.

Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible. For a graph G, minimum number of colors is $\chi^{\prime}(G)$.

Ex 1:

Equivalent to coloring vertices of line graph $L(G)$ of G.
Ex 2: Simple graphs with $\chi^{\prime}(G) \geq \Delta(G)+1$

Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible. For a graph G, minimum number of colors is $\chi^{\prime}(G)$.

Ex 1:

Equivalent to coloring vertices of line graph $L(G)$ of G.
Ex 2: Simple graphs with $\chi^{\prime}(G) \geq \Delta(G)+1$
Let G be k-regular on $2 t$ vertices.

Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible. For a graph G, minimum number of colors is $\chi^{\prime}(G)$.

Ex 1:

Equivalent to coloring vertices of line graph $L(G)$ of G.
Ex 2: Simple graphs with $\chi^{\prime}(G) \geq \Delta(G)+1$
Let G be k-regular on $2 t$ vertices. Form \widehat{G} from G by subdividing one edge.

Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible. For a graph G, minimum number of colors is $\chi^{\prime}(G)$.

Ex 1:

Equivalent to coloring vertices of line graph $L(G)$ of G.
Ex 2: Simple graphs with $\chi^{\prime}(G) \geq \Delta(G)+1$
Let G be k-regular on $2 t$ vertices. Form \widehat{G} from G by subdividing one edge. \widehat{G} has $k t+1$ edges, but each color class has size at most t.

Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible. For a graph G, minimum number of colors is $\chi^{\prime}(G)$.

Ex 1:

Equivalent to coloring vertices of line graph $L(G)$ of G.
Ex 2: Simple graphs with $\chi^{\prime}(G) \geq \Delta(G)+1$
Let G be k-regular on $2 t$ vertices. Form \widehat{G} from G by subdividing one edge. \widehat{G} has $k t+1$ edges, but each color class has size at most t. Thus, $\chi^{\prime}(\widehat{G}) \geq\left\lceil\frac{k t+1}{t}\right\rceil=k+1$.

Edge-coloring Examples

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible. For a graph G, minimum number of colors is $\chi^{\prime}(G)$.

Ex 1:

Equivalent to coloring vertices of line graph $L(G)$ of G.
Ex 2: Simple graphs with $\chi^{\prime}(G) \geq \Delta(G)+1$
Let G be k-regular on $2 t$ vertices. Form \widehat{G} from G by subdividing one edge. \widehat{G} has $k t+1$ edges, but each color class has size at most t. Thus, $\chi^{\prime}(\widehat{G}) \geq\left\lceil\frac{k t+1}{t}\right\rceil=k+1 . \widehat{G}$ is an overfull graph.

Easy Theorems for Simple Graphs

Easy Theorems for Simple Graphs

- König: If G is bipartite, then $\chi^{\prime}(G)=\Delta(G)$.

Easy Theorems for Simple Graphs

- König: If G is bipartite, then $\chi^{\prime}(G)=\Delta(G)$.
- Vizing: Always $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.

Easy Theorems for Simple Graphs

- König: If G is bipartite, then $\chi^{\prime}(G)=\Delta(G)$.
- Vizing: Always $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.
- Holyer: NP-hard to decide if $\chi^{\prime}(G)=\Delta(G)$.

Easy Theorems for Simple Graphs

- König: If G is bipartite, then $\chi^{\prime}(G)=\Delta(G)$.
- Vizing: Always $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.
- Holyer: NP-hard to decide if $\chi^{\prime}(G)=\Delta(G)$.
- Erdős-Wilson: Almost always $\chi^{\prime}(G)=\Delta(G)$.

Easy Theorems for Simple Graphs

- König: If G is bipartite, then $\chi^{\prime}(G)=\Delta(G)$.
- Vizing: Always $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.
- Holyer: NP-hard to decide if $\chi^{\prime}(G)=\Delta(G)$.
- Erdős-Wilson: Almost always $\chi^{\prime}(G)=\Delta(G)$.

Proof of König's Theorem:

Easy Theorems for Simple Graphs

- König: If G is bipartite, then $\chi^{\prime}(G)=\Delta(G)$.
- Vizing: Always $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.
- Holyer: NP-hard to decide if $\chi^{\prime}(G)=\Delta(G)$.
- Erdős-Wilson: Almost always $\chi^{\prime}(G)=\Delta(G)$.

Proof of König's Theorem:

Easy Theorems for Simple Graphs

- König: If G is bipartite, then $\chi^{\prime}(G)=\Delta(G)$.
- Vizing: Always $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.
- Holyer: NP-hard to decide if $\chi^{\prime}(G)=\Delta(G)$.
- Erdős-Wilson: Almost always $\chi^{\prime}(G)=\Delta(G)$.

Proof of König's Theorem:

Easy Theorems for Simple Graphs

- König: If G is bipartite, then $\chi^{\prime}(G)=\Delta(G)$.
- Vizing: Always $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.
- Holyer: NP-hard to decide if $\chi^{\prime}(G)=\Delta(G)$.
- Erdős-Wilson: Almost always $\chi^{\prime}(G)=\Delta(G)$.

Proof of König's Theorem:

Easy Theorems for Simple Graphs

- König: If G is bipartite, then $\chi^{\prime}(G)=\Delta(G)$.
- Vizing: Always $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.
- Holyer: NP-hard to decide if $\chi^{\prime}(G)=\Delta(G)$.
- Erdős-Wilson: Almost always $\chi^{\prime}(G)=\Delta(G)$.

Proof of König's Theorem:

Easy Theorems for Simple Graphs

- König: If G is bipartite, then $\chi^{\prime}(G)=\Delta(G)$.
- Vizing: Always $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.
- Holyer: NP-hard to decide if $\chi^{\prime}(G)=\Delta(G)$.
- Erdős-Wilson: Almost always $\chi^{\prime}(G)=\Delta(G)$.

Proof of König's Theorem:

Easy Theorems for Simple Graphs

- König: If G is bipartite, then $\chi^{\prime}(G)=\Delta(G)$.
- Vizing: Always $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.
- Holyer: NP-hard to decide if $\chi^{\prime}(G)=\Delta(G)$.
- Erdős-Wilson: Almost always $\chi^{\prime}(G)=\Delta(G)$.

Proof of König's Theorem:

Easy Theorems for Simple Graphs

- König: If G is bipartite, then $\chi^{\prime}(G)=\Delta(G)$.
- Vizing: Always $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.
- Holyer: NP-hard to decide if $\chi^{\prime}(G)=\Delta(G)$.
- Erdős-Wilson: Almost always $\chi^{\prime}(G)=\Delta(G)$.

Proof of König's Theorem:

Rem: Kempe swaps are fundamental tool for edge-coloring.

Harder Theorems for Simple Graphs

Vizing's Planar Graph Conjecture:
If G is planar and $\Delta(G) \geq 6$, then $\chi^{\prime}(G)=\Delta(G)$.

Harder Theorems for Simple Graphs

Vizing's Planar Graph Conjecture:
If G is planar and $\Delta(G) \geq 6$, then $\chi^{\prime}(G)=\Delta(G)$.
True for $\Delta(G) \geq 7$ (Sanders-Zhao; Zhang).

Harder Theorems for Simple Graphs

Vizing's Planar Graph Conjecture:
If G is planar and $\Delta(G) \geq 6$, then $\chi^{\prime}(G)=\Delta(G)$.
True for $\Delta(G) \geq 7$ (Sanders-Zhao; Zhang). False for $\Delta(G) \leq 5$.

Harder Theorems for Simple Graphs

Vizing's Planar Graph Conjecture:
If G is planar and $\Delta(G) \geq 6$, then $\chi^{\prime}(G)=\Delta(G)$.
True for $\Delta(G) \geq 7$ (Sanders-Zhao; Zhang). False for $\Delta(G) \leq 5$.
Ex 2, starting from 4-cycle, cube, octahedron, and icosahedron.

Harder Theorems for Simple Graphs

Vizing's Planar Graph Conjecture:
If G is planar and $\Delta(G) \geq 6$, then $\chi^{\prime}(G)=\Delta(G)$.
True for $\Delta(G) \geq 7$ (Sanders-Zhao; Zhang). False for $\Delta(G) \leq 5$.
Ex 2, starting from 4-cycle, cube, octahedron, and icosahedron.

4 Color Theorem:

If G is 3 -regular, has no overfull
subgraph, and is planar, then $\chi^{\prime}(G)=3$.

Harder Theorems for Simple Graphs

Vizing's Planar Graph Conjecture:
If G is planar and $\Delta(G) \geq 6$, then $\chi^{\prime}(G)=\Delta(G)$.
True for $\Delta(G) \geq 7$ (Sanders-Zhao; Zhang). False for $\Delta(G) \leq 5$.
Ex 2, starting from 4-cycle, cube, octahedron, and icosahedron.

4 Color Theorem:

If G is 3 -regular, has no overfull subgraph, and is planar, then $\chi^{\prime}(G)=3$.

Tutte's Edge-coloring Conj (proved!): If G is 3 -regular, has no overfull subgraph, and has no subdivision of the Petersen graph, then $\chi^{\prime}(G)=3$.

Simple Graphs with $\chi^{\prime}(G)=\Delta$

Simple Graphs with $\chi^{\prime}(G)=\Delta$

Def: Let G_{Δ} be subgraph induced by Δ-vertices.

Simple Graphs with $\chi^{\prime}(G)=\Delta$

Def: Let G_{Δ} be subgraph induced by Δ-vertices.

- If G_{Δ} has no cycles, then $\chi^{\prime}(G)=\Delta$.

Simple Graphs with $\chi^{\prime}(G)=\Delta$

Def: Let G_{Δ} be subgraph induced by Δ-vertices.

- If G_{Δ} has no cycles, then $\chi^{\prime}(G)=\Delta$.

Simple Graphs with $\chi^{\prime}(G)=\Delta$

Def: Let G_{Δ} be subgraph induced by Δ-vertices.

- If G_{Δ} has no cycles, then $\chi^{\prime}(G)=\Delta$.
- Does $\Delta\left(G_{\Delta}\right) \leq 2$ imply $\chi^{\prime}(G)=\Delta$?

Simple Graphs with $\chi^{\prime}(G)=\Delta$

Def: Let G_{Δ} be subgraph induced by Δ-vertices.

- If G_{Δ} has no cycles, then $\chi^{\prime}(G)=\Delta$.
- Does $\Delta\left(G_{\Delta}\right) \leq 2$ imply $\chi^{\prime}(G)=\Delta$?
- No. G could be overfull.

Simple Graphs with $\chi^{\prime}(G)=\Delta$

Def: Let G_{Δ} be subgraph induced by Δ-vertices.

- If G_{Δ} has no cycles, then $\chi^{\prime}(G)=\Delta$.
- Does $\Delta\left(G_{\Delta}\right) \leq 2$ imply $\chi^{\prime}(G)=\Delta$?
- No. G could be overfull.

- Does $\Delta\left(G_{\Delta}\right) \leq 2$ imply $\chi^{\prime}(G)=\Delta$ if G is not overfull?

Simple Graphs with $\chi^{\prime}(G)=\Delta$

Def: Let G_{Δ} be subgraph induced by Δ-vertices.

- If G_{Δ} has no cycles, then $\chi^{\prime}(G)=\Delta$.
- Does $\Delta\left(G_{\Delta}\right) \leq 2$ imply $\chi^{\prime}(G)=\Delta$?
- No. G could be overfull.

- Does $\Delta\left(G_{\Delta}\right) \leq 2$ imply $\chi^{\prime}(G)=\Delta$ if G is not overfull? No.

Simple Graphs with $\chi^{\prime}(G)=\Delta$

Def: Let G_{Δ} be subgraph induced by Δ-vertices.

- If G_{Δ} has no cycles, then $\chi^{\prime}(G)=\Delta$.
- Does $\Delta\left(G_{\Delta}\right) \leq 2$ imply $\chi^{\prime}(G)=\Delta$?
- No. G could be overfull.

- Does $\Delta\left(G_{\Delta}\right) \leq 2$ imply $\chi^{\prime}(G)=\Delta$ if G is not overfull? No.

Hilton-Zhao Conjecture:
If $\Delta\left(G_{\Delta}\right) \leq 2$ and $G \neq P^{*}$, then $\chi^{\prime}(G)>\Delta$ iff G is overfull.

Simple Graphs with $\chi^{\prime}(G)=\Delta$

Def: Let G_{Δ} be subgraph induced by Δ-vertices.

- If G_{Δ} has no cycles, then $\chi^{\prime}(G)=\Delta$.
- Does $\Delta\left(G_{\Delta}\right) \leq 2$ imply $\chi^{\prime}(G)=\Delta$?
- No. G could be overfull.

- Does $\Delta\left(G_{\Delta}\right) \leq 2$ imply $\chi^{\prime}(G)=\Delta$ if G is not overfull? No.

Hilton-Zhao Conjecture:
If $\Delta\left(G_{\Delta}\right) \leq 2$ and $G \neq P^{*}$, then $\chi^{\prime}(G)>\Delta$ iff G is overfull.
Cariolaro-Cariolaro: True for $\Delta=3$.

Simple Graphs with $\chi^{\prime}(G)=\Delta$

Def: Let G_{Δ} be subgraph induced by Δ-vertices.

- If G_{Δ} has no cycles, then $\chi^{\prime}(G)=\Delta$.
- Does $\Delta\left(G_{\Delta}\right) \leq 2$ imply $\chi^{\prime}(G)=\Delta$?
- No. G could be overfull.

- Does $\Delta\left(G_{\Delta}\right) \leq 2$ imply $\chi^{\prime}(G)=\Delta$ if G is not overfull? No.

Hilton-Zhao Conjecture:
If $\Delta\left(G_{\Delta}\right) \leq 2$ and $G \neq P^{*}$, then $\chi^{\prime}(G)>\Delta$ iff G is overfull.
Cariolaro-Cariolaro: True for $\Delta=3$.
C. -Rabern: True for $\Delta=4$.

Multigraphs

Obs: Now $\chi^{\prime}(G) \leq \Delta(G)+1$ may not hold!

Multigraphs

Obs: Now $\chi^{\prime}(G) \leq \Delta(G)+1$ may not hold! Ex 4:

Multigraphs

Obs: Now $\chi^{\prime}(G) \leq \Delta(G)+1$ may not hold! Ex 4:

Let

$$
\mathcal{W}(G)=\max _{\substack{H \subseteq G \\|H| \geq 3}} \frac{|E(H)|}{\lfloor|V(H)| / 2\rfloor} .
$$

Multigraphs

Obs: Now $\chi^{\prime}(G) \leq \Delta(G)+1$ may not hold!
Ex 4:

Let

$$
\mathcal{W}(G)=\max _{\substack{H \subseteq G \\|H| \geq 3}} \frac{|E(H)|}{\lfloor|V(H)| / 2\rfloor} .
$$

Since $\chi^{\prime}(G) \geq \chi^{\prime}(H)$ for every subgraph $H, \chi^{\prime}(G) \geq\lceil\mathcal{W}(G)\rceil$.

Multigraphs

Obs: Now $\chi^{\prime}(G) \leq \Delta(G)+1$ may not hold! Ex 4:

Let

$$
\mathcal{W}(G)=\max _{\substack{H \subseteq G \\|H| \geq 3}} \frac{|E(H)|}{\lfloor|V(H)| / 2\rfloor} .
$$

Since $\chi^{\prime}(G) \geq \chi^{\prime}(H)$ for every subgraph $H, \chi^{\prime}(G) \geq\lceil\mathcal{W}(G)\rceil$.
Goldberg-Seymour Conj: Every multigraph G satisfies

$$
\chi^{\prime}(G) \leq \max \{\Delta(G)+1,\lceil\mathcal{W}(G)\rceil\} .
$$

Multigraphs

Obs: Now $\chi^{\prime}(G) \leq \Delta(G)+1$ may not hold!

Ex 4:

Let

$$
\mathcal{W}(G)=\max _{\substack{H \subseteq G \\|H| \geq 3}} \frac{|E(H)|}{\lfloor|V(H)| / 2\rfloor} .
$$

Since $\chi^{\prime}(G) \geq \chi^{\prime}(H)$ for every subgraph $H, \chi^{\prime}(G) \geq\lceil\mathcal{W}(G)\rceil$.
Goldberg-Seymour Conj: Every multigraph G satisfies

$$
\chi^{\prime}(G) \leq \max \{\Delta(G)+1,\lceil\mathcal{W}(G)\rceil\} .
$$

Thm: G-S Conj is true asymptotically, and for $\Delta(G) \leq 23$.

Multigraphs

Obs: Now $\chi^{\prime}(G) \leq \Delta(G)+1$ may not hold! Ex 4:

Let

$$
\mathcal{W}(G)=\max _{\substack{H \subseteq G \\|H| \geq 3}} \frac{|E(H)|}{\lfloor|V(H)| / 2\rfloor} .
$$

Since $\chi^{\prime}(G) \geq \chi^{\prime}(H)$ for every subgraph $H, \chi^{\prime}(G) \geq\lceil\mathcal{W}(G)\rceil$.
Goldberg-Seymour Conj: Every multigraph G satisfies

$$
\chi^{\prime}(G) \leq \max \{\Delta(G)+1,\lceil\mathcal{W}(G)\rceil\} .
$$

Thm: G-S Conj is true asymptotically, and for $\Delta(G) \leq 23$. Always $\chi^{\prime}(G) \leq \max \{\Delta+\sqrt[3]{\Delta / 2},\lceil\mathcal{W}(G)\rceil\}$.

Strengthening Brooks' Theorem for Line Graphs

Strengthening Brooks' Theorem for Line Graphs

- Brooks: $\chi(G) \leq \max \{\omega(G), \Delta(G), 3\}$

Strengthening Brooks' Theorem for Line Graphs

- Brooks: $\chi(G) \leq \max \{\omega(G), \Delta(G), 3\}$
- Vizing: $\chi(G) \leq \omega(G)+1$ for line graph of simple graph

Strengthening Brooks' Theorem for Line Graphs

- Brooks: $\chi(G) \leq \max \{\omega(G), \Delta(G), 3\}$
- Vizing: $\chi(G) \leq \omega(G)+1$ for line graph of simple graph
- Kierstead: $\chi(G) \leq \omega(G)+1$ for $\left\{K_{1,3}, K_{5}-e\right\}$-free

Strengthening Brooks' Theorem for Line Graphs

- Brooks: $\chi(G) \leq \max \{\omega(G), \Delta(G), 3\}$
- Vizing: $\chi(G) \leq \omega(G)+1$ for line graph of simple graph
- Kierstead: $\chi(G) \leq \omega(G)+1$ for $\left\{K_{1,3}, K_{5}-e\right\}$-free
- C.-Rabern: $\chi(G) \leq \max \left\{\omega(G), \frac{5 \Delta(G)+8}{6}\right\}$ for line graph of a multigraph

Strengthening Brooks' Theorem for Line Graphs

- Brooks: $\chi(G) \leq \max \{\omega(G), \Delta(G), 3\}$
- Vizing: $\chi(G) \leq \omega(G)+1$ for line graph of simple graph
- Kierstead: $\chi(G) \leq \omega(G)+1$ for $\left\{K_{1,3}, K_{5}-e\right\}$-free
- C.-Rabern: $\chi(G) \leq \max \left\{\omega(G), \frac{5 \Delta(G)+8}{6}\right\}$ for line graph of a multigraph; this is best possible

Ex 5:

Strengthening Brooks' Theorem for Line Graphs

- Brooks: $\chi(G) \leq \max \{\omega(G), \Delta(G), 3\}$
- Vizing: $\chi(G) \leq \omega(G)+1$ for line graph of simple graph
- Kierstead: $\chi(G) \leq \omega(G)+1$ for $\left\{K_{1,3}, K_{5}-e\right\}$-free
- C.-Rabern: $\chi(G) \leq \max \left\{\omega(G), \frac{5 \Delta(G)+8}{6}\right\}$ for line graph of a multigraph; this is best possible

Ex 5:

$\Delta(G)=3 k-1$

Strengthening Brooks' Theorem for Line Graphs

- Brooks: $\chi(G) \leq \max \{\omega(G), \Delta(G), 3\}$
- Vizing: $\chi(G) \leq \omega(G)+1$ for line graph of simple graph
- Kierstead: $\chi(G) \leq \omega(G)+1$ for $\left\{K_{1,3}, K_{5}-e\right\}$-free
- C.-Rabern: $\chi(G) \leq \max \left\{\omega(G), \frac{5 \Delta(G)+8}{6}\right\}$ for line graph of a multigraph; this is best possible

Ex 5:

$\Delta(G)=3 k-1, \chi(G)=\left\lceil\frac{5 k}{2}\right\rceil$

Strengthening Brooks' Theorem for Line Graphs

- Brooks: $\chi(G) \leq \max \{\omega(G), \Delta(G), 3\}$
- Vizing: $\chi(G) \leq \omega(G)+1$ for line graph of simple graph
- Kierstead: $\chi(G) \leq \omega(G)+1$ for $\left\{K_{1,3}, K_{5}-e\right\}$-free
- C.-Rabern: $\chi(G) \leq \max \left\{\omega(G), \frac{5 \Delta(G)+8}{6}\right\}$ for line graph of a multigraph; this is best possible

Ex 5:

$\Delta(G)=3 k-1, \chi(G)=\left\lceil\frac{5 k}{2}\right\rceil, \frac{5(3 k-1)+8}{6}$

Strengthening Brooks' Theorem for Line Graphs

- Brooks: $\chi(G) \leq \max \{\omega(G), \Delta(G), 3\}$
- Vizing: $\chi(G) \leq \omega(G)+1$ for line graph of simple graph
- Kierstead: $\chi(G) \leq \omega(G)+1$ for $\left\{K_{1,3}, K_{5}-e\right\}$-free
- C.-Rabern: $\chi(G) \leq \max \left\{\omega(G), \frac{5 \Delta(G)+8}{6}\right\}$ for line graph of a multigraph; this is best possible

Ex 5:

$$
\Delta(G)=3 k-1, \chi(G)=\left\lceil\frac{5 k}{2}\right\rceil, \frac{5(3 k-1)+8}{6}=\frac{5 k+1}{2}
$$

Strengthening Brooks' Theorem for Line Graphs

- Brooks: $\chi(G) \leq \max \{\omega(G), \Delta(G), 3\}$
- Vizing: $\chi(G) \leq \omega(G)+1$ for line graph of simple graph
- Kierstead: $\chi(G) \leq \omega(G)+1$ for $\left\{K_{1,3}, K_{5}-e\right\}$-free
- C.-Rabern: $\chi(G) \leq \max \left\{\omega(G), \frac{5 \Delta(G)+8}{6}\right\}$ for line graph of a multigraph; this is best possible

Ex 5:

$$
\Delta(G)=3 k-1, \chi(G)=\left\lceil\frac{5 k}{2}\right\rceil, \frac{5(3 k-1)+8}{6}=\frac{5 k+1}{2}=\left\lceil\frac{5 k}{2}\right\rceil
$$

Strengthening Brooks' Theorem for Line Graphs

- Brooks: $\chi(G) \leq \max \{\omega(G), \Delta(G), 3\}$
- Vizing: $\chi(G) \leq \omega(G)+1$ for line graph of simple graph
- Kierstead: $\chi(G) \leq \omega(G)+1$ for $\left\{K_{1,3}, K_{5}-e\right\}$-free
- C.-Rabern: $\chi(G) \leq \max \left\{\omega(G), \frac{5 \Delta(G)+8}{6}\right\}$ for line graph of a multigraph; this is best possible

Ex 5:

$$
\Delta(G)=3 k-1, \chi(G)=\left\lceil\frac{5 k}{2}\right\rceil, \frac{5(3 k-1)+8}{6}=\frac{5 k+1}{2}=\left\lceil\frac{5 k}{2}\right\rceil
$$

Kierstead Paths

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$.

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.

Vizing's Theorem: If G is simple, then $\chi^{\prime}(G) \leq \Delta(G)+1$.

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.

Vizing's Theorem: If G is simple, then $\chi^{\prime}(G) \leq \Delta(G)+1$. Pf (using Key Lemma):

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.

Vizing's Theorem: If G is simple, then $\chi^{\prime}(G) \leq \Delta(G)+1$. Pf (using Key Lemma): Induction on $|E(G)|$.

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.

Vizing's Theorem: If G is simple, then $\chi^{\prime}(G) \leq \Delta(G)+1$. Pf (using Key Lemma): Induction on $|E(G)|$. Let $k=\Delta(G)+1$.

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.

Vizing's Theorem: If G is simple, then $\chi^{\prime}(G) \leq \Delta(G)+1$. Pf (using Key Lemma): Induction on $|E(G)|$. Let $k=\Delta(G)+1$. Base case: at most $\Delta(G)+1$ edges.

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.

Vizing's Theorem: If G is simple, then $\chi^{\prime}(G) \leq \Delta(G)+1$. Pf (using Key Lemma): Induction on $|E(G)|$. Let $k=\Delta(G)+1$. Base case: at most $\Delta(G)+1$ edges. Induction: Given k-edge-coloring of $G-e$, get long Kierstead path.

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.

Vizing's Theorem: If G is simple, then $\chi^{\prime}(G) \leq \Delta(G)+1$. Pf (using Key Lemma): Induction on $|E(G)|$. Let $k=\Delta(G)+1$. Base case: at most $\Delta(G)+1$ edges. Induction: Given k-edge-coloring of $G-e$, get long Kierstead path.

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.

Vizing's Theorem: If G is simple, then $\chi^{\prime}(G) \leq \Delta(G)+1$. Pf (using Key Lemma): Induction on $|E(G)|$. Let $k=\Delta(G)+1$. Base case: at most $\Delta(G)+1$ edges. Induction: Given k-edge-coloring of $G-e$, get long Kierstead path.

By Pigeonhole, two vertices miss the same color.

Kierstead Paths

Def: Fix $G, u_{0} u_{1} \in E(G), k \geq \Delta(G)+1$, and φ a k-edge-coloring of $G-u_{0} u_{1}$. A Kierstead Path is a path $u_{0}, u_{1}, \ldots, u_{\ell}$ where for each $i, \varphi\left(u_{i} u_{i-1}\right)$ is missing at u_{j} for some $j<i$.

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.

Vizing's Theorem: If G is simple, then $\chi^{\prime}(G) \leq \Delta(G)+1$. Pf (using Key Lemma): Induction on $|E(G)|$. Let $k=\Delta(G)+1$. Base case: at most $\Delta(G)+1$ edges. Induction: Given k-edge-coloring of $G-e$, get long Kierstead path.

By Pigeonhole, two vertices miss the same color.

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}.

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case 1: $i=0, j=1$
- Case 2: $i=j-1$
- Case 3: $i<j-1$

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case 1: $i=0, j=1$
- Case 2: $i=j-1$
- Case 3: $i<j-1$

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case 1: $i=0, j=1$
- Case 2: $i=j-1$
- Case 3: $i<j-1$

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case 1: $i=0, j=1 \checkmark$
- Case 2: $i=j-1$
- Case 3: $i<j-1$

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case $1: i=0, j=1 \checkmark$
- Case 2: $i=j-1$
- Case 3: $i<j-1$

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case $1: i=0, j=1 \checkmark$
- Case 2: $i=j-1$
- Case 3: $i<j-1$

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case 1: $i=0, j=1 \checkmark$
- Case 2: $i=j-1$
- Case 3: $i<j-1$

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case 1: $i=0, j=1 \checkmark$
- Case 2: $i=j-1$
- Case 3: $i<j-1$

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case $1: i=0, j=1 \checkmark$
- Case 2: $i=j-1 \checkmark$
- Case 3: $i<j-1$

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case $1: i=0, j=1 \checkmark$
- Case 2: $i=j-1 \checkmark$
- Case 3: $i<j-1$

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case $1: i=0, j=1 \checkmark$
- Case 2: $i=j-1 \checkmark$
- Case 3: $i<j-1$

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case $1: i=0, j=1 \checkmark$
- Case 2: $i=j-1 \checkmark$
- Case 3: $i<j-1$

Do α, β swap at u_{i+1}. Three places path could end.

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case $1: i=0, j=1 \checkmark$
- Case 2: $i=j-1 \checkmark$
- Case 3: $i<j-1$

Do α, β swap at u_{i+1}. Three places path could end.

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case 1: $i=0, j=1 \checkmark$
- Case 2: $i=j-1 \checkmark$
- Case 3: $i<j-1$

Do α, β swap at u_{i+1}. Three places path could end.

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case 1: $i=0, j=1 \checkmark$
- Case 2: $i=j-1 \checkmark$
- Case 3: $i<j-1$

Do α, β swap at u_{i+1}. Three places path could end.

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case $1: i=0, j=1 \checkmark$
- Case 2: $i=j-1 \checkmark$
- Case 3: $i<j-1$

Do α, β swap at u_{i+1}. Three places path could end.

Proof of Key Lemma

Key Lemma: If a Kierstead Path has distinct u_{i} and u_{j} with color α missing at both, then G has a k-coloring.
Pf: Double induction, first on path length ℓ; next on distance between u_{i} and u_{j}. Assume $i<j$. Three cases:

- Case $1: i=0, j=1 \checkmark$
- Case 2: $i=j-1 \checkmark$
- Case 3: $i<j-1 \checkmark$

Do α, β swap at u_{i+1}. Three places path could end. In each case, win by induction hypothesis.

Tashkinov Trees

Tashkinov Trees

Tashkinov Trees

Tashkinov Trees

Tashkinov Trees

Tashkinov Trees

Tashkinov Trees

Tashkinov Trees

Tashkinov Trees

Summary

$$
\text { Simple Graphs: } \chi^{\prime}(G)=\Delta \text { or } \chi^{\prime}(G)=\Delta+1
$$

Summary

Simple Graphs: $\chi^{\prime}(G)=\Delta$ or $\chi^{\prime}(G)=\Delta+1$

- To get $\chi^{\prime}=\Delta$ must avoid overfull subgraphs

Summary

Simple Graphs: $\chi^{\prime}(G)=\Delta$ or $\chi^{\prime}(G)=\Delta+1$

- To get $\chi^{\prime}=\Delta$ must avoid overfull subgraphs
- Often this is enough

Summary

Simple Graphs: $\chi^{\prime}(G)=\Delta$ or $\chi^{\prime}(G)=\Delta+1$

- To get $\chi^{\prime}=\Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen

Summary

Simple Graphs: $\chi^{\prime}(G)=\Delta$ or $\chi^{\prime}(G)=\Delta+1$

- To get $\chi^{\prime}=\Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
- 4 Color Theorem: 3-regular planar

Summary

Simple Graphs: $\chi^{\prime}(G)=\Delta$ or $\chi^{\prime}(G)=\Delta+1$

- To get $\chi^{\prime}=\Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
- 4 Color Theorem: 3-regular planar
- Tutte's Edge-Coloring: 3-regular with no Petersen subdivision

Summary

Simple Graphs: $\chi^{\prime}(G)=\Delta$ or $\chi^{\prime}(G)=\Delta+1$

- To get $\chi^{\prime}=\Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
- 4 Color Theorem: 3-regular planar
- Tutte's Edge-Coloring: 3-regular with no Petersen subdivision
- Vizing's Planar Graph Conj: Planar with $\Delta \geq 7$.

Summary

Simple Graphs: $\chi^{\prime}(G)=\Delta$ or $\chi^{\prime}(G)=\Delta+1$

- To get $\chi^{\prime}=\Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
- 4 Color Theorem: 3-regular planar
- Tutte's Edge-Coloring: 3-regular with no Petersen subdivision
- Vizing's Planar Graph Conj: Planar with $\Delta \geq 7$. Open for 6 .

Summary

Simple Graphs: $\chi^{\prime}(G)=\Delta$ or $\chi^{\prime}(G)=\Delta+1$

- To get $\chi^{\prime}=\Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
- 4 Color Theorem: 3-regular planar
- Tutte's Edge-Coloring: 3-regular with no Petersen subdivision
- Vizing's Planar Graph Conj: Planar with $\Delta \geq 7$. Open for 6.
- Hilton-Zhao Conj: $\Delta\left(G_{\Delta}\right) \leq 2$, proved for $\Delta \leq 4$

Summary

Simple Graphs: $\chi^{\prime}(G)=\Delta$ or $\chi^{\prime}(G)=\Delta+1$

- To get $\chi^{\prime}=\Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
- 4 Color Theorem: 3-regular planar
- Tutte's Edge-Coloring: 3-regular with no Petersen subdivision
- Vizing's Planar Graph Conj: Planar with $\Delta \geq 7$. Open for 6.
- Hilton-Zhao Conj: $\Delta\left(G_{\Delta}\right) \leq 2$, proved for $\Delta \leq 4$

Multigraphs: Now $\chi^{\prime}(G)$ can be much bigger than Δ

Summary

Simple Graphs: $\chi^{\prime}(G)=\Delta$ or $\chi^{\prime}(G)=\Delta+1$

- To get $\chi^{\prime}=\Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
- 4 Color Theorem: 3-regular planar
- Tutte's Edge-Coloring: 3-regular with no Petersen subdivision
- Vizing's Planar Graph Conj: Planar with $\Delta \geq 7$. Open for 6.
- Hilton-Zhao Conj: $\Delta\left(G_{\Delta}\right) \leq 2$, proved for $\Delta \leq 4$

Multigraphs: Now $\chi^{\prime}(G)$ can be much bigger than Δ

- Goldberg-Seymour: If $\chi^{\prime}(G)>\Delta+1$, then χ^{\prime} determined by most overfull subgraph;

Summary

Simple Graphs: $\chi^{\prime}(G)=\Delta$ or $\chi^{\prime}(G)=\Delta+1$

- To get $\chi^{\prime}=\Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
- 4 Color Theorem: 3-regular planar
- Tutte's Edge-Coloring: 3-regular with no Petersen subdivision
- Vizing's Planar Graph Conj: Planar with $\Delta \geq 7$. Open for 6.
- Hilton-Zhao Conj: $\Delta\left(G_{\Delta}\right) \leq 2$, proved for $\Delta \leq 4$

Multigraphs: Now $\chi^{\prime}(G)$ can be much bigger than Δ

- Goldberg-Seymour: If $\chi^{\prime}(G)>\Delta+1$, then χ^{\prime} determined by most overfull subgraph; true for $\Delta \leq 23$ and asymptotically

Summary

Simple Graphs: $\chi^{\prime}(G)=\Delta$ or $\chi^{\prime}(G)=\Delta+1$

- To get $\chi^{\prime}=\Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
- 4 Color Theorem: 3-regular planar
- Tutte's Edge-Coloring: 3-regular with no Petersen subdivision
- Vizing's Planar Graph Conj: Planar with $\Delta \geq 7$. Open for 6.
- Hilton-Zhao Conj: $\Delta\left(G_{\Delta}\right) \leq 2$, proved for $\Delta \leq 4$

Multigraphs: Now $\chi^{\prime}(G)$ can be much bigger than Δ

- Goldberg-Seymour: If $\chi^{\prime}(G)>\Delta+1$, then χ^{\prime} determined by most overfull subgraph; true for $\Delta \leq 23$ and asymptotically
- For line graph of multigraph, $\chi(G) \leq \max \left\{\omega(G), \frac{5}{6} \Delta(G)+\frac{4}{3}\right\}$

Summary

Simple Graphs: $\chi^{\prime}(G)=\Delta$ or $\chi^{\prime}(G)=\Delta+1$

- To get $\chi^{\prime}=\Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
- 4 Color Theorem: 3-regular planar
- Tutte's Edge-Coloring: 3-regular with no Petersen subdivision
- Vizing's Planar Graph Conj: Planar with $\Delta \geq 7$. Open for 6.
- Hilton-Zhao Conj: $\Delta\left(G_{\Delta}\right) \leq 2$, proved for $\Delta \leq 4$

Multigraphs: Now $\chi^{\prime}(G)$ can be much bigger than Δ

- Goldberg-Seymour: If $\chi^{\prime}(G)>\Delta+1$, then χ^{\prime} determined by most overfull subgraph; true for $\Delta \leq 23$ and asymptotically
- For line graph of multigraph, $\chi(G) \leq \max \left\{\omega(G), \frac{5}{6} \Delta(G)+\frac{4}{3}\right\}$

Tools:

- Kempe swaps

Summary

Simple Graphs: $\chi^{\prime}(G)=\Delta$ or $\chi^{\prime}(G)=\Delta+1$

- To get $\chi^{\prime}=\Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
- 4 Color Theorem: 3-regular planar
- Tutte's Edge-Coloring: 3-regular with no Petersen subdivision
- Vizing's Planar Graph Conj: Planar with $\Delta \geq 7$. Open for 6.
- Hilton-Zhao Conj: $\Delta\left(G_{\Delta}\right) \leq 2$, proved for $\Delta \leq 4$

Multigraphs: Now $\chi^{\prime}(G)$ can be much bigger than Δ

- Goldberg-Seymour: If $\chi^{\prime}(G)>\Delta+1$, then χ^{\prime} determined by most overfull subgraph; true for $\Delta \leq 23$ and asymptotically
- For line graph of multigraph, $\chi(G) \leq \max \left\{\omega(G), \frac{5}{6} \Delta(G)+\frac{4}{3}\right\}$

Tools:

- Kempe swaps, Kierstead paths

Summary

Simple Graphs: $\chi^{\prime}(G)=\Delta$ or $\chi^{\prime}(G)=\Delta+1$

- To get $\chi^{\prime}=\Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
- 4 Color Theorem: 3-regular planar
- Tutte's Edge-Coloring: 3-regular with no Petersen subdivision
- Vizing's Planar Graph Conj: Planar with $\Delta \geq 7$. Open for 6.
- Hilton-Zhao Conj: $\Delta\left(G_{\Delta}\right) \leq 2$, proved for $\Delta \leq 4$

Multigraphs: Now $\chi^{\prime}(G)$ can be much bigger than Δ

- Goldberg-Seymour: If $\chi^{\prime}(G)>\Delta+1$, then χ^{\prime} determined by most overfull subgraph; true for $\Delta \leq 23$ and asymptotically
- For line graph of multigraph, $\chi(G) \leq \max \left\{\omega(G), \frac{5}{6} \Delta(G)+\frac{4}{3}\right\}$

Tools:

- Kempe swaps, Kierstead paths, Tashkinov trees

