Edge-coloring Multigraphs

Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

Cumberland Conference 20 May 2017

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors;

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible.

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible. For a graph G, minimum number of colors is $\chi'(G)$.

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible. For a graph G, minimum number of colors is $\chi'(G)$.

Ex 1:

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible. For a graph G, minimum number of colors is $\chi'(G)$.

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible. For a graph G, minimum number of colors is $\chi'(G)$.

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible. For a graph G, minimum number of colors is $\chi'(G)$.

Ex 1:

Equivalent to coloring vertices of line graph L(G) of G.

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible. For a graph G, minimum number of colors is $\chi'(G)$.

Ex 1:

Equivalent to coloring vertices of line graph L(G) of G.

Ex 2: Simple graphs with $\chi'(G) \ge \Delta(G) + 1$

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible. For a graph G, minimum number of colors is $\chi'(G)$.

Ex 1:

Equivalent to coloring vertices of line graph L(G) of G.

- **Ex 2:** Simple graphs with $\chi'(G) \ge \Delta(G) + 1$
- Let G be k-regular on 2t vertices.

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible. For a graph G, minimum number of colors is $\chi'(G)$.

Ex 1:

Equivalent to coloring vertices of line graph L(G) of G.

Ex 2: Simple graphs with $\chi'(G) \ge \Delta(G) + 1$ Let *G* be *k*-regular on 2*t* vertices. Form \widehat{G} from *G* by subdividing one edge.

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible. For a graph G, minimum number of colors is $\chi'(G)$.

Ex 1:

Equivalent to coloring vertices of line graph L(G) of G.

Ex 2: Simple graphs with $\chi'(G) \ge \Delta(G) + 1$ Let *G* be *k*-regular on 2*t* vertices. Form \widehat{G} from *G* by subdividing one edge. \widehat{G} has kt + 1 edges, but each color class has size at most *t*.

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible. For a graph G, minimum number of colors is $\chi'(G)$.

Ex 1:

Equivalent to coloring vertices of line graph L(G) of G.

Ex 2: Simple graphs with $\chi'(G) \ge \Delta(G) + 1$ Let *G* be *k*-regular on 2*t* vertices. Form \widehat{G} from *G* by subdividing one edge. \widehat{G} has kt + 1 edges, but each color class has size at most *t*. Thus, $\chi'(\widehat{G}) \ge \left\lceil \frac{kt+1}{t} \right\rceil = k + 1$.

Goal: Assign colors to the edges of a graph so that edges with a common endpoint get distinct colors; use as few colors as possible. For a graph G, minimum number of colors is $\chi'(G)$.

Ex 1:

Equivalent to coloring vertices of line graph L(G) of G.

Ex 2: Simple graphs with $\chi'(G) \ge \Delta(G) + 1$ Let *G* be *k*-regular on 2*t* vertices. Form \widehat{G} from *G* by subdividing one edge. \widehat{G} has kt + 1 edges, but each color class has size at most *t*. Thus, $\chi'(\widehat{G}) \ge \left\lceil \frac{kt+1}{t} \right\rceil = k+1$. \widehat{G} is an overfull graph.

• König: If G is bipartite, then $\chi'(G) = \Delta(G)$.

- König: If G is bipartite, then $\chi'(G) = \Delta(G)$.
- ▶ Vizing: Always $\Delta(G) \le \chi'(G) \le \Delta(G) + 1$.

- König: If G is bipartite, then $\chi'(G) = \Delta(G)$.
- ▶ Vizing: Always $\Delta(G) \le \chi'(G) \le \Delta(G) + 1$.
- Holyer: NP-hard to decide if $\chi'(G) = \Delta(G)$.

- König: If G is bipartite, then $\chi'(G) = \Delta(G)$.
- ▶ Vizing: Always $\Delta(G) \le \chi'(G) \le \Delta(G) + 1$.
- Holyer: NP-hard to decide if $\chi'(G) = \Delta(G)$.
- Erdős–Wilson: Almost always $\chi'(G) = \Delta(G)$.

- König: If G is bipartite, then $\chi'(G) = \Delta(G)$.
- ▶ Vizing: Always $\Delta(G) \le \chi'(G) \le \Delta(G) + 1$.
- Holyer: NP-hard to decide if $\chi'(G) = \Delta(G)$.
- Erdős–Wilson: Almost always $\chi'(G) = \Delta(G)$.

- König: If G is bipartite, then $\chi'(G) = \Delta(G)$.
- ▶ Vizing: Always $\Delta(G) \le \chi'(G) \le \Delta(G) + 1$.
- Holyer: NP-hard to decide if $\chi'(G) = \Delta(G)$.
- Erdős–Wilson: Almost always $\chi'(G) = \Delta(G)$.

- König: If G is bipartite, then $\chi'(G) = \Delta(G)$.
- ▶ Vizing: Always $\Delta(G) \le \chi'(G) \le \Delta(G) + 1$.
- Holyer: NP-hard to decide if $\chi'(G) = \Delta(G)$.
- Erdős–Wilson: Almost always $\chi'(G) = \Delta(G)$.

- König: If G is bipartite, then $\chi'(G) = \Delta(G)$.
- ▶ Vizing: Always $\Delta(G) \le \chi'(G) \le \Delta(G) + 1$.
- Holyer: NP-hard to decide if $\chi'(G) = \Delta(G)$.
- Erdős–Wilson: Almost always $\chi'(G) = \Delta(G)$.

- König: If G is bipartite, then $\chi'(G) = \Delta(G)$.
- ▶ Vizing: Always $\Delta(G) \le \chi'(G) \le \Delta(G) + 1$.
- Holyer: NP-hard to decide if $\chi'(G) = \Delta(G)$.
- Erdős–Wilson: Almost always $\chi'(G) = \Delta(G)$.

- König: If G is bipartite, then $\chi'(G) = \Delta(G)$.
- ▶ Vizing: Always $\Delta(G) \le \chi'(G) \le \Delta(G) + 1$.
- Holyer: NP-hard to decide if $\chi'(G) = \Delta(G)$.
- Erdős–Wilson: Almost always $\chi'(G) = \Delta(G)$.

- König: If G is bipartite, then $\chi'(G) = \Delta(G)$.
- ▶ Vizing: Always $\Delta(G) \le \chi'(G) \le \Delta(G) + 1$.
- Holyer: NP-hard to decide if $\chi'(G) = \Delta(G)$.
- Erdős–Wilson: Almost always $\chi'(G) = \Delta(G)$.

- König: If G is bipartite, then $\chi'(G) = \Delta(G)$.
- ▶ Vizing: Always $\Delta(G) \le \chi'(G) \le \Delta(G) + 1$.
- Holyer: NP-hard to decide if $\chi'(G) = \Delta(G)$.
- Erdős–Wilson: Almost always $\chi'(G) = \Delta(G)$.

Proof of König's Theorem:

Rem: Kempe swaps are fundamental tool for edge-coloring.

Vizing's Planar Graph Conjecture: If G is planar and $\Delta(G) \ge 6$, then $\chi'(G) = \Delta(G)$.

Vizing's Planar Graph Conjecture: If G is planar and $\Delta(G) \ge 6$, then $\chi'(G) = \Delta(G)$. True for $\Delta(G) \ge 7$ (Sanders–Zhao; Zhang).

Vizing's Planar Graph Conjecture: If G is planar and $\Delta(G) \ge 6$, then $\chi'(G) = \Delta(G)$. True for $\Delta(G) \ge 7$ (Sanders–Zhao; Zhang). False for $\Delta(G) \le 5$.

Vizing's Planar Graph Conjecture:

If G is planar and $\Delta(G) \ge 6$, then $\chi'(G) = \Delta(G)$. True for $\Delta(G) \ge 7$ (Sanders–Zhao; Zhang). False for $\Delta(G) \le 5$. Ex 2, starting from 4-cycle, cube, octahedron, and icosahedron.

Vizing's Planar Graph Conjecture:

If G is planar and $\Delta(G) \ge 6$, then $\chi'(G) = \Delta(G)$. True for $\Delta(G) \ge 7$ (Sanders–Zhao; Zhang). False for $\Delta(G) \le 5$. Ex 2, starting from 4-cycle, cube, octahedron, and icosahedron.

4 Color Theorem:

If G is 3-regular, has no overfull subgraph, and is planar, then $\chi'(G) = 3$.

Vizing's Planar Graph Conjecture: If G is planar and $\Delta(G) \ge 6$, then $\chi'(G) = \Delta(G)$. True for $\Delta(G) \ge 7$ (Sanders–Zhao; Zhang). False for $\Delta(G) \le 5$. Ex 2, starting from 4-cycle, cube, octahedron, and icosahedron.

4 Color Theorem:

If G is 3-regular, has no overfull subgraph, and is planar, then $\chi'(G) = 3$.

Tutte's Edge-coloring Conj (proved!): If *G* is 3-regular, has no overfull subgraph, and has no subdivision of the Petersen graph, then $\chi'(G) = 3$.

Simple Graphs with $\chi'(G) = \Delta$

Simple Graphs with $\chi'(G) = \Delta$

Def: Let G_{Δ} be subgraph induced by Δ -vertices.
Def: Let G_{Δ} be subgraph induced by Δ -vertices.

• If G_{Δ} has no cycles, then $\chi'(G) = \Delta$.

Def: Let G_{Δ} be subgraph induced by Δ -vertices.

• If G_{Δ} has no cycles, then $\chi'(G) = \Delta$.

Def: Let G_{Δ} be subgraph induced by Δ -vertices.

- If G_{Δ} has no cycles, then $\chi'(G) = \Delta$.
- Does $\Delta(G_{\Delta}) \leq 2$ imply $\chi'(G) = \Delta$?

Def: Let G_{Δ} be subgraph induced by Δ -vertices.

- If G_{Δ} has no cycles, then $\chi'(G) = \Delta$.
- Does $\Delta(G_{\Delta}) \leq 2$ imply $\chi'(G) = \Delta$?
- ▶ No. *G* could be overfull.

Def: Let G_{Δ} be subgraph induced by Δ -vertices.

- If G_{Δ} has no cycles, then $\chi'(G) = \Delta$.
- Does $\Delta(G_{\Delta}) \leq 2$ imply $\chi'(G) = \Delta$?
- ▶ No. *G* could be overfull.

▶ Does $\Delta(G_{\Delta}) \leq 2$ imply $\chi'(G) = \Delta$ if G is not overfull?

Def: Let G_{Δ} be subgraph induced by Δ -vertices.

- If G_{Δ} has no cycles, then $\chi'(G) = \Delta$.
- Does $\Delta(G_{\Delta}) \leq 2$ imply $\chi'(G) = \Delta$?
- ▶ No. *G* could be overfull.

▶ Does $\Delta(G_{\Delta}) \leq 2$ imply $\chi'(G) = \Delta$ if G is not overfull? No.

Def: Let G_{Δ} be subgraph induced by Δ -vertices.

- If G_{Δ} has no cycles, then $\chi'(G) = \Delta$.
- Does $\Delta(G_{\Delta}) \leq 2$ imply $\chi'(G) = \Delta$?
- ▶ No. *G* could be overfull.

▶ Does $\Delta(G_{\Delta}) \leq 2$ imply $\chi'(G) = \Delta$ if G is not overfull? No.

Hilton–Zhao Conjecture:

If $\Delta(G_{\Delta}) \leq 2$ and $G \neq P^*$, then $\chi'(G) > \Delta$ iff G is overfull.

Def: Let G_{Δ} be subgraph induced by Δ -vertices.

- If G_{Δ} has no cycles, then $\chi'(G) = \Delta$.
- Does $\Delta(G_{\Delta}) \leq 2$ imply $\chi'(G) = \Delta$?
- ▶ No. *G* could be overfull.

▶ Does $\Delta(G_{\Delta}) \leq 2$ imply $\chi'(G) = \Delta$ if G is not overfull? No.

Hilton–Zhao Conjecture: If $\Delta(G_{\Delta}) \leq 2$ and $G \neq P^*$, then $\chi'(G) > \Delta$ iff *G* is overfull. **Cariolaro–Cariolaro:** True for $\Delta = 3$.

Def: Let G_{Δ} be subgraph induced by Δ -vertices.

- If G_{Δ} has no cycles, then $\chi'(G) = \Delta$.
- Does $\Delta(G_{\Delta}) \leq 2$ imply $\chi'(G) = \Delta$?
- ▶ No. *G* could be overfull.

▶ Does $\Delta(G_{\Delta}) \leq 2$ imply $\chi'(G) = \Delta$ if G is not overfull? No.

Hilton–Zhao Conjecture: If $\Delta(G_{\Delta}) \leq 2$ and $G \neq P^*$, then $\chi'(G) > \Delta$ iff *G* is overfull. **Cariolaro–Cariolaro:** True for $\Delta = 3$. **C.–Rabern:** True for $\Delta = 4$.

Obs: Now $\chi'(G) \leq \Delta(G) + 1$ may not hold!

Obs: Now $\chi'(G) \leq \Delta(G) + 1$ may not hold! **Ex 4:**

Obs: Now $\chi'(G) \leq \Delta(G) + 1$ may not hold! **Ex 4:**

Let

$\mathcal{W}(G) =$	$\max_{\substack{H \subseteq G \\ H \ge 3}}$	E(H)
		$\frac{ V(H) /2 }{ V(H) /2 }$

Obs: Now $\chi'(G) \leq \Delta(G) + 1$ may not hold! **Ex 4:**

Let

Since $\chi'(G) \ge \chi'(H)$ for every subgraph H, $\chi'(G) \ge \lceil W(G) \rceil$.

Obs: Now $\chi'(G) \leq \Delta(G) + 1$ may not hold! **Ex 4:**

Let

$$\mathcal{W}(G) = \max_{\substack{H \subseteq G \\ |H| \geq 3}} \frac{|E(H)|}{\lfloor |V(H)|/2 \rfloor}.$$

Since $\chi'(G) \ge \chi'(H)$ for every subgraph H, $\chi'(G) \ge \lceil W(G) \rceil$. Goldberg–Seymour Conj: Every multigraph G satisfies

 $\chi'(G) \leq \max\{\Delta(G) + 1, \lceil \mathcal{W}(G) \rceil\}.$

Obs: Now $\chi'(G) \leq \Delta(G) + 1$ may not hold! **Ex 4:**

Let

Since $\chi'(G) \ge \chi'(H)$ for every subgraph H, $\chi'(G) \ge \lceil W(G) \rceil$. Goldberg–Seymour Conj: Every multigraph G satisfies

 $\chi'(G) \leq \max\{\Delta(G) + 1, \lceil \mathcal{W}(G) \rceil\}.$

Thm: G–S Conj is true asymptotically, and for $\Delta(G) \leq 23$.

Obs: Now $\chi'(G) \leq \Delta(G) + 1$ may not hold! **Ex 4:**

Let

Since $\chi'(G) \ge \chi'(H)$ for every subgraph H, $\chi'(G) \ge \lceil W(G) \rceil$. Goldberg–Seymour Conj: Every multigraph G satisfies

 $\chi'(G) \leq \max\{\Delta(G) + 1, \lceil \mathcal{W}(G) \rceil\}.$

Thm: G–S Conj is true asymptotically, and for $\Delta(G) \leq 23$. Always $\chi'(G) \leq \max{\{\Delta + \sqrt[3]{\Delta/2}, \lceil W(G) \rceil\}}$.

• Brooks: $\chi(G) \leq \max\{\omega(G), \Delta(G), 3\}$

- Brooks: $\chi(G) \leq \max\{\omega(G), \Delta(G), 3\}$
- ▶ Vizing: $\chi(G) \le \omega(G) + 1$ for line graph of simple graph

- Brooks: $\chi(G) \leq \max\{\omega(G), \Delta(G), 3\}$
- ▶ Vizing: $\chi(G) \le \omega(G) + 1$ for line graph of simple graph
- ▶ Kierstead: $\chi(G) \le \omega(G) + 1$ for $\{K_{1,3}, K_5 e\}$ -free

- Brooks: $\chi(G) \leq \max\{\omega(G), \Delta(G), 3\}$
- ▶ Vizing: $\chi(G) \le \omega(G) + 1$ for line graph of simple graph
- ▶ Kierstead: $\chi(G) \le \omega(G) + 1$ for $\{K_{1,3}, K_5 e\}$ -free
- C.-Rabern: χ(G) ≤ max{ω(G), ^{5Δ(G)+8}/₆} for line graph of a multigraph

- Brooks: $\chi(G) \leq \max\{\omega(G), \Delta(G), 3\}$
- ▶ Vizing: $\chi(G) \le \omega(G) + 1$ for line graph of simple graph
- ▶ Kierstead: $\chi(G) \le \omega(G) + 1$ for $\{K_{1,3}, K_5 e\}$ -free
- C.-Rabern: χ(G) ≤ max{ω(G), ^{5Δ(G)+8}/₆} for line graph of a multigraph; this is best possible

Ex 5:

- Brooks: $\chi(G) \leq \max\{\omega(G), \Delta(G), 3\}$
- ▶ Vizing: $\chi(G) \le \omega(G) + 1$ for line graph of simple graph
- Kierstead: $\chi(G) \le \omega(G) + 1$ for $\{K_{1,3}, K_5 e\}$ -free
- C.-Rabern: χ(G) ≤ max{ω(G), ^{5Δ(G)+8}/₆} for line graph of a multigraph; this is best possible

Ex 5:

$$\Delta(G)=3k-1$$

- Brooks: $\chi(G) \leq \max\{\omega(G), \Delta(G), 3\}$
- ▶ Vizing: $\chi(G) \le \omega(G) + 1$ for line graph of simple graph
- Kierstead: $\chi(G) \le \omega(G) + 1$ for $\{K_{1,3}, K_5 e\}$ -free
- C.-Rabern: χ(G) ≤ max{ω(G), ^{5Δ(G)+8}/₆} for line graph of a multigraph; this is best possible

Ex 5:

 $\Delta(G) = 3k - 1, \chi(G) = \left\lceil \frac{5k}{2} \right\rceil$

- Brooks: $\chi(G) \leq \max\{\omega(G), \Delta(G), 3\}$
- ▶ Vizing: $\chi(G) \le \omega(G) + 1$ for line graph of simple graph
- ▶ Kierstead: $\chi(G) \le \omega(G) + 1$ for $\{K_{1,3}, K_5 e\}$ -free
- C.-Rabern: χ(G) ≤ max{ω(G), ^{5Δ(G)+8}/₆} for line graph of a multigraph; this is best possible

Ex 5:

 $\Delta(G) = 3k - 1, \ \chi(G) = \left\lceil \frac{5k}{2} \right\rceil, \ \frac{5(3k-1)+8}{6}$

- Brooks: $\chi(G) \leq \max\{\omega(G), \Delta(G), 3\}$
- ▶ Vizing: $\chi(G) \le \omega(G) + 1$ for line graph of simple graph
- ▶ Kierstead: $\chi(G) \le \omega(G) + 1$ for $\{K_{1,3}, K_5 e\}$ -free
- C.-Rabern: χ(G) ≤ max{ω(G), ^{5Δ(G)+8}/₆} for line graph of a multigraph; this is best possible

Ex 5:

 $\Delta(G) = 3k - 1$, $\chi(G) = \left\lceil \frac{5k}{2} \right\rceil$, $\frac{5(3k-1)+8}{6} = \frac{5k+1}{2}$

- Brooks: $\chi(G) \leq \max\{\omega(G), \Delta(G), 3\}$
- ▶ Vizing: $\chi(G) \le \omega(G) + 1$ for line graph of simple graph
- ▶ Kierstead: $\chi(G) \le \omega(G) + 1$ for $\{K_{1,3}, K_5 e\}$ -free
- C.-Rabern: χ(G) ≤ max{ω(G), ^{5Δ(G)+8}/₆} for line graph of a multigraph; this is best possible

Ex 5:

 $\Delta(G) = 3k - 1, \ \chi(G) = \left\lceil \frac{5k}{2} \right\rceil, \ \frac{5(3k-1)+8}{6} = \frac{5k+1}{2} = \left\lceil \frac{5k}{2} \right\rceil$

- Brooks: $\chi(G) \leq \max\{\omega(G), \Delta(G), 3\}$
- ▶ Vizing: $\chi(G) \le \omega(G) + 1$ for line graph of simple graph
- ▶ Kierstead: $\chi(G) \le \omega(G) + 1$ for $\{K_{1,3}, K_5 e\}$ -free
- C.-Rabern: χ(G) ≤ max{ω(G), ^{5Δ(G)+8}/₆} for line graph of a multigraph; this is best possible

Ex 5:

 $\Delta(G) = 3k - 1, \ \chi(G) = \left\lceil \frac{5k}{2} \right\rceil, \ \frac{5(3k-1)+8}{6} = \frac{5k+1}{2} = \left\lceil \frac{5k}{2} \right\rceil$

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each i, $\varphi(u_iu_{i-1})$ is missing at u_j for some j < i.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each $i, \varphi(u_iu_{i-1})$ is missing at u_i for some j < i.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each i, $\varphi(u_iu_{i-1})$ is missing at u_i for some j < i.

 α missing at both, then G has a k-coloring.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each i, $\varphi(u_iu_{i-1})$ is missing at u_i for some j < i.

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

Vizing's Theorem: If G is simple, then $\chi'(G) \leq \Delta(G) + 1$.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each i, $\varphi(u_iu_{i-1})$ is missing at u_i for some j < i.

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

Vizing's Theorem: If G is simple, then $\chi'(G) \le \Delta(G) + 1$. **Pf (using Key Lemma):**

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each i, $\varphi(u_iu_{i-1})$ is missing at u_i for some j < i.

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

Vizing's Theorem: If G is simple, then $\chi'(G) \le \Delta(G) + 1$. **Pf (using Key Lemma):** Induction on |E(G)|.
Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each i, $\varphi(u_iu_{i-1})$ is missing at u_i for some j < i.

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

Vizing's Theorem: If G is simple, then $\chi'(G) \le \Delta(G) + 1$. **Pf (using Key Lemma):** Induction on |E(G)|. Let $k = \Delta(G) + 1$.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each $i, \varphi(u_iu_{i-1})$ is missing at u_i for some j < i.

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

Vizing's Theorem: If G is simple, then $\chi'(G) \leq \Delta(G) + 1$. Pf (using Key Lemma): Induction on |E(G)|. Let $k = \Delta(G) + 1$. Base case: at most $\Delta(G) + 1$ edges.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each i, $\varphi(u_iu_{i-1})$ is missing at u_i for some j < i.

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

Vizing's Theorem: If G is simple, then $\chi'(G) \leq \Delta(G) + 1$. **Pf (using Key Lemma):** Induction on |E(G)|. Let $k = \Delta(G) + 1$. Base case: at most $\Delta(G) + 1$ edges. Induction: Given k-edge-coloring of G - e, get long Kierstead path.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each $i, \varphi(u_iu_{i-1})$ is missing at u_i for some j < i.

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

Vizing's Theorem: If G is simple, then $\chi'(G) \leq \Delta(G) + 1$. **Pf (using Key Lemma):** Induction on |E(G)|. Let $k = \Delta(G) + 1$. Base case: at most $\Delta(G) + 1$ edges.

Induction: Given k-edge-coloring of G - e, get long Kierstead path.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each i, $\varphi(u_iu_{i-1})$ is missing at u_i for some j < i.

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

Vizing's Theorem: If G is simple, then $\chi'(G) \leq \Delta(G) + 1$. **Pf (using Key Lemma):** Induction on |E(G)|. Let $k = \Delta(G) + 1$. Base case: at most $\Delta(G) + 1$ edges.

Induction: Given k-edge-coloring of G - e, get long Kierstead path.

By Pigeonhole, two vertices miss the same color.

Def: Fix G, $u_0u_1 \in E(G)$, $k \ge \Delta(G) + 1$, and φ a k-edge-coloring of $G - u_0u_1$. A Kierstead Path is a path u_0, u_1, \ldots, u_ℓ where for each i, $\varphi(u_iu_{i-1})$ is missing at u_i for some j < i.

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

Vizing's Theorem: If G is simple, then $\chi'(G) \leq \Delta(G) + 1$. **Pf (using Key Lemma):** Induction on |E(G)|. Let $k = \Delta(G) + 1$. Base case: at most $\Delta(G) + 1$ edges.

Induction: Given k-edge-coloring of G - e, get long Kierstead path.

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring. **Pf:** Double induction, first on path length ℓ ; next on distance between u_i and u_i .

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

- ► Case 1: i = 0, j = 1
- ► Case 2: i = j − 1
- ► Case 3: *i* < *j* − 1

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

- ► Case 1: i = 0, j = 1
- ► Case 2: i = j − 1
- ► Case 3: *i* < *j* − 1

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

- ► Case 1: i = 0, j = 1
- ► Case 2: i = j − 1
- ► Case 3: *i* < *j* − 1

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

- ► Case 1: i = 0, j = 1 √
- ► Case 2: i = j − 1
- ► Case 3: *i* < *j* − 1

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

- ► Case 1: i = 0, j = 1 √
- ► Case 2: i = j − 1
- ► Case 3: *i* < *j* − 1

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

- ► Case 1: i = 0, j = 1 √
- ► Case 2: i = j − 1
- ► Case 3: *i* < *j* − 1

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

- ► Case 1: i = 0, j = 1 √
- ► Case 2: i = j − 1
- ► Case 3: *i* < *j* − 1

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

- ► Case 1: i = 0, j = 1 √
- ► Case 2: i = j − 1
- ► Case 3: *i* < *j* − 1

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

- ► Case 1: i = 0, j = 1 √
- ► Case 2: i = j 1 ✓

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

- ► Case 1: i = 0, j = 1 √
- ► Case 2: i = j 1 ✓
- ► Case 3: *i* < *j* − 1

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

- ► Case 1: i = 0, j = 1 √
- ► Case 2: i = j 1 ✓

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

Pf: Double induction, first on path length ℓ ; next on distance between u_i and u_j . Assume i < j. Three cases:

- ► Case 1: i = 0, j = 1 √
- ► Case 2: i = j 1 ✓

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

Pf: Double induction, first on path length ℓ ; next on distance between u_i and u_j . Assume i < j. Three cases:

- ► Case 1: i = 0, j = 1 √
- ► Case 2: i = j 1 ✓

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

Pf: Double induction, first on path length ℓ ; next on distance between u_i and u_j . Assume i < j. Three cases:

- ► Case 1: i = 0, j = 1 √
- ► Case 2: i = j 1 ✓
- ► Case 3: i < j − 1</p>

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

Pf: Double induction, first on path length ℓ ; next on distance between u_i and u_j . Assume i < j. Three cases:

- ► Case 1: i = 0, j = 1 √
- ► Case 2: i = j 1 ✓
- ► Case 3: i < j − 1</p>

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then G has a k-coloring.

Pf: Double induction, first on path length ℓ ; next on distance between u_i and u_j . Assume i < j. Three cases:

- ► Case 1: i = 0, j = 1 √
- ► Case 2: i = j 1 ✓

Key Lemma: If a Kierstead Path has distinct u_i and u_j with color α missing at both, then *G* has a *k*-coloring.

Pf: Double induction, first on path length ℓ ; next on distance between u_i and u_j . Assume i < j. Three cases:

► Case 1: i = 0, j = 1 √

Do α, β swap at u_{i+1} . Three places path could end. In each case, win by induction hypothesis.

Summary

Simple Graphs: $\chi'(G) = \Delta$ or $\chi'(G) = \Delta + 1$

Summary

Simple Graphs: $\chi'(G) = \Delta$ or $\chi'(G) = \Delta + 1$

• To get $\chi' = \Delta$ must avoid overfull subgraphs
- To get $\chi' = \Delta$ must avoid overfull subgraphs
- Often this is enough

- To get $\chi' = \Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen

- To get $\chi' = \Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
 - ▶ 4 Color Theorem: 3-regular planar

- To get $\chi' = \Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
 - 4 Color Theorem: 3-regular planar
 - ► Tutte's Edge-Coloring: 3-regular with no Petersen subdivision

- To get $\chi' = \Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
 - 4 Color Theorem: 3-regular planar
 - ► Tutte's Edge-Coloring: 3-regular with no Petersen subdivision
 - Vizing's Planar Graph Conj: Planar with $\Delta \ge 7$.

- To get $\chi' = \Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
 - 4 Color Theorem: 3-regular planar
 - ► Tutte's Edge-Coloring: 3-regular with no Petersen subdivision
 - Vizing's Planar Graph Conj: Planar with $\Delta \ge 7$. Open for 6.

- To get $\chi' = \Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
 - 4 Color Theorem: 3-regular planar
 - ► Tutte's Edge-Coloring: 3-regular with no Petersen subdivision
 - Vizing's Planar Graph Conj: Planar with $\Delta \ge 7$. Open for 6.
 - ▶ Hilton–Zhao Conj: $\Delta(G_{\Delta}) \leq 2$, proved for $\Delta \leq 4$

Simple Graphs: $\chi'(G) = \Delta$ or $\chi'(G) = \Delta + 1$

- To get $\chi' = \Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
 - 4 Color Theorem: 3-regular planar
 - ► Tutte's Edge-Coloring: 3-regular with no Petersen subdivision
 - ▶ Vizing's Planar Graph Conj: Planar with $\Delta \ge 7$. Open for 6.
 - ▶ Hilton–Zhao Conj: $\Delta(G_{\Delta}) \leq 2$, proved for $\Delta \leq 4$

Multigraphs: Now $\chi'(G)$ can be much bigger than Δ

Simple Graphs: $\chi'(G) = \Delta$ or $\chi'(G) = \Delta + 1$

- To get $\chi' = \Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
 - 4 Color Theorem: 3-regular planar
 - ► Tutte's Edge-Coloring: 3-regular with no Petersen subdivision
 - ▶ Vizing's Planar Graph Conj: Planar with $\Delta \ge 7$. Open for 6.
 - ▶ Hilton–Zhao Conj: $\Delta(G_{\Delta}) \leq 2$, proved for $\Delta \leq 4$

Multigraphs: Now $\chi'(G)$ can be much bigger than Δ

► Goldberg–Seymour: If χ'(G) > Δ + 1, then χ' determined by most overfull subgraph;

Simple Graphs: $\chi'(G) = \Delta$ or $\chi'(G) = \Delta + 1$

- To get $\chi' = \Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
 - 4 Color Theorem: 3-regular planar
 - ► Tutte's Edge-Coloring: 3-regular with no Petersen subdivision
 - ▶ Vizing's Planar Graph Conj: Planar with $\Delta \ge 7$. Open for 6.
 - ▶ Hilton–Zhao Conj: $\Delta(G_{\Delta}) \leq 2$, proved for $\Delta \leq 4$

Multigraphs: Now $\chi'(G)$ can be much bigger than Δ

Goldberg–Seymour: If χ'(G) > Δ + 1, then χ' determined by most overfull subgraph; true for Δ ≤ 23 and asymptotically

Simple Graphs: $\chi'(G) = \Delta$ or $\chi'(G) = \Delta + 1$

- To get $\chi' = \Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
 - 4 Color Theorem: 3-regular planar
 - ► Tutte's Edge-Coloring: 3-regular with no Petersen subdivision
 - ▶ Vizing's Planar Graph Conj: Planar with $\Delta \ge 7$. Open for 6.
 - ▶ Hilton–Zhao Conj: $\Delta(G_{\Delta}) \leq 2$, proved for $\Delta \leq 4$

Multigraphs: Now $\chi'(G)$ can be much bigger than Δ

- ► Goldberg–Seymour: If χ'(G) > Δ + 1, then χ' determined by most overfull subgraph; true for Δ ≤ 23 and asymptotically
- For line graph of multigraph, χ(G) ≤ max{ω(G), ⁵/₆Δ(G) + ⁴/₃}

Simple Graphs: $\chi'(G) = \Delta$ or $\chi'(G) = \Delta + 1$

- To get $\chi' = \Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
 - 4 Color Theorem: 3-regular planar
 - ► Tutte's Edge-Coloring: 3-regular with no Petersen subdivision
 - ▶ Vizing's Planar Graph Conj: Planar with $\Delta \ge 7$. Open for 6.
 - ▶ Hilton–Zhao Conj: $\Delta(G_{\Delta}) \leq 2$, proved for $\Delta \leq 4$

Multigraphs: Now $\chi'(G)$ can be much bigger than Δ

- Goldberg–Seymour: If χ'(G) > Δ + 1, then χ' determined by most overfull subgraph; true for Δ ≤ 23 and asymptotically
- For line graph of multigraph, χ(G) ≤ max{ω(G), ⁵/₆Δ(G) + ⁴/₃}

Tools:

Kempe swaps

Simple Graphs: $\chi'(G) = \Delta$ or $\chi'(G) = \Delta + 1$

- To get $\chi' = \Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
 - 4 Color Theorem: 3-regular planar
 - ► Tutte's Edge-Coloring: 3-regular with no Petersen subdivision
 - ▶ Vizing's Planar Graph Conj: Planar with $\Delta \ge 7$. Open for 6.
 - ▶ Hilton–Zhao Conj: $\Delta(G_{\Delta}) \leq 2$, proved for $\Delta \leq 4$

Multigraphs: Now $\chi'(G)$ can be much bigger than Δ

- Goldberg–Seymour: If χ'(G) > Δ + 1, then χ' determined by most overfull subgraph; true for Δ ≤ 23 and asymptotically
- For line graph of multigraph, χ(G) ≤ max{ω(G), ⁵/₆Δ(G) + ⁴/₃}

Tools:

Kempe swaps, Kierstead paths

Simple Graphs: $\chi'(G) = \Delta$ or $\chi'(G) = \Delta + 1$

- To get $\chi' = \Delta$ must avoid overfull subgraphs
- Often this is enough; also watch out for Petersen
 - 4 Color Theorem: 3-regular planar
 - ► Tutte's Edge-Coloring: 3-regular with no Petersen subdivision
 - ▶ Vizing's Planar Graph Conj: Planar with $\Delta \ge 7$. Open for 6.
 - ▶ Hilton–Zhao Conj: $\Delta(G_{\Delta}) \leq 2$, proved for $\Delta \leq 4$

Multigraphs: Now $\chi'(G)$ can be much bigger than Δ

- ► Goldberg–Seymour: If χ'(G) > Δ + 1, then χ' determined by most overfull subgraph; true for Δ ≤ 23 and asymptotically
- For line graph of multigraph, χ(G) ≤ max{ω(G), ⁵/₆Δ(G) + ⁴/₃}

Tools:

Kempe swaps, Kierstead paths, Tashkinov trees