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1. SC 4309

Edge-coloring of graphs and multigraphs
Dan Cranston
Virginia Commonwealth University
dcranston@vcu.edu

We survey some beautiful theorems and conjectures in edge-coloring, focusing
on graph classes where an obvious lower bound on the chromatic index holds with
equality. One of these problems leads us to Tashkinov trees, which are a powerful
recoloring tool for edge-coloring multigraphs.

Saturday, 20 May 2017 9:30

2. SC 4309

Strong chromatic index of graphs with maximum degree four
Michael Santana
Grand Valley State University
santanmi@gvsu.edu

Coauthors: Mingfang Huang and Gexin Yu

A strong edge-coloring is a coloring of the edges of a graph such that every color
class forms an induced matching. In 1985, Erdős and Nešetřil conjectured that
every graph with maximum degree ∆ has a strong edge-coloring using at most
5
4∆2 colors. While this conjecture has inspired a wide range of work in the area of
strong edge-colorings, only one nontrivial case (for graphs with maximum degree
three) has been verified (due to Anderson, and independently, Horák, Qing, and
Trotter). In this talk we will discuss our recent work that shows 21 colors suffice
for graphs with maximum degree four, extending a previous result of Cranston.
We will also present several additional problems in this area.

3. SC 4327

Obstacle Numbers of Some Ptolemaic Graphs
Tim Brauch
Manchester University
tmbrauch@manchester.edu

Coauthors: Thomas Dean, Manchester University

An obstacle representation of a graph is a visibility (line of sight) graph in
which the vertices are points in the plane with a set of polygonal obstacles. Two
vertices are adjacent if the straight line between the two points does not intersect
an obstacle. The obstacle number of a graph G, denoted obs(G) is an embedding
with the fewest number of polygons that realizes the graph. Ptolemaic graphs are
graphs that can be built from K1 using three operations: [1] adding a pendent
vertex, [2] adding a true twin vertex, [3] adding a false twin vertex to a vertex
whose neighborhood is a clique. This presentation will find the obstacle numbers
for a subclass of the Ptolemaic graphs that can be built from a single vertex using
only the first two operations, adding a pendent vertex and adding a true twin.
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4. SC 4309

Double-critical graph conjecture for claw-free graphs
Martin Rolek
University of Central Florida
mrolek@knights.ucf.edu

Coauthors: Zi-Xia Song

A connected graph G with chromatic number t is double-critical if G\{x, y}
is (t − 2)-colorable for each edge xy ∈ E(G). The complete graphs are the only
known examples of double-critical graphs. A long-standing conjecture of Erdős and
Lovász from 1966, which is referred to as the Double-Critical Graph Conjecture,
states that there are no other double-critical graphs. That is, if a graph G with
chromatic number t is double-critical, then G is the complete graph on t vertices.
This has been verified for t ≤ 5, but remains open for t ≥ 6. In this paper, we first
prove that if G is a non-complete, double-critical graph with chromatic number
t ≥ 6, then no vertex of degree t+ 1 is adjacent to a vertex of degree t+ 1, t+ 2,
or t + 3 in G. We then use this result to show that the Double-Critical Graph
Conjecture is true for double-critical graphs G with chromatic number t ≤ 8 if G
is claw-free.

5. SC 4327

Vector Space based Secret Sharing Scheme for non-complete multipar-
tite graphs
Mustafa Atici
Western Kentucky University
mustafa.atici@wku.edu

Some time it is not safe to give secure key K to an individual. One needs to find
a way to give shares of information about the secure key K to certain authorized
group so that when the group pool their share, then they can figure out the key
K. If one or more people are missing from the group, rest of the group member is
unable to find the key K. There are some construction for complete multipartite
graph based authorization. If authorized group is no longer forming a multipartite
graph, then there is no know sharing algorithm. We will present algorithm for
some special cases.
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6. SC 4309

Property of an edge-chromatic critical graph : Hamiltonicity
Suyun Jiang
Shandong University, China; Georgia State University
jiangsuyun1991@gmail.com

Coauthors: Yan Cao, Georgia State University; Guantao Chen,Georgia State Uni-
versity; Huiqing Liu, Hubei University, China; Fuliang Lu,Linyi University,China.

An edge-∆-critical graph G is a simple connected graph of maximum degree ∆
such that edge chromatic number χ′(G) = ∆ + 1 and χ′(G − e) = ∆ for each
edge e of G. In 1965, Vizing conjectured that every edge-∆-critical graph with
chromatic index at least 3 contains a 2-factor. Chen and Shan verified Vizing’s
2-factor conjecture for ∆ ≥ n/2. Obviously, if a graph is Hamiltonian, then it
contains a 2-factor. Let G be an edge-∆-critical graph of order n. Luo and Zhao
proved that G is Hamiltonian when ∆ ≥ 6n/7. And Luo, Miao and Zhao showed
that G is Hamiltonian when ∆ ≥ 4n/5. Recently, Chen, Chen and Zhao showed
that G is Hamiltonian if ∆ ≥ 3n/4. Using a new method, we proved that every
edge chromatic critical graph of order n with ∆ ≥ 2n/3 + 13 is Hamiltonian.

7. SC 4327

The maximum size of a partial spread in a finite vector space
Esmeralda Nastase
Xavier University
nastasee@xavier.edu

Coauthors: Papa Sissokho

Let V (n, q) denote the vector space of dimension n over the finite field with q
elements. A partial t-spread of V (n, q) is a set of t-dimensional subspaces of V (n, q)
such that any two of them have trivial intersection. Let r ≡ n (mod t). We prove
that if t > (qr − 1)/(q − 1), then the maximum size, i.e., cardinality, of a partial
t-spread of V (n, q) is (qn−qt+r)/(qt−1)+1. This essentially settles a longstanding
open problem in this area. Prior to this result, this maximum size was only known
for r = 1 and for r = q = 2. In particular, this result also determines the clique
number of the q-Kneser graph.
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8. SC 4309

A (5, 5)-coloring of Kn with few colors
Alex Cameron
University of Illinois at Chicago
acamer4@uic.edu

Coauthors: Emily Heath (UIUC)

For fixed integers p and q, let f(n, p, q) denote the minimum number of colors
needed to color all of the edges of the complete graph Kn such that no clique of p
vertices spans fewer than q distinct colors. Any edge-coloring with this property
is known as a (p, q)-coloring. In this talk, I will discuss an explicit (5, 5)-coloring
that shows that f(n, 5, 5) ≤ n1/3+o(1) as n → ∞. This improves upon the best
known probabilistic upper bound of O

(
n1/2

)
given by Erdős and Gyárfás, and

comes close to matching the best known lower bound Ω
(
n1/3

)
.

9. SC 4327

Completing Some Partial Latin Squares
Jaromy Kuhl
University of West Florida
jkuhl@uwf.edu

Coauthors: Michael Schroeder and Donald McGinn

A partial latin square can be completed if there is a latin square of the same
order containing it. Let r, c, s ∈ {1, 2, . . . , n} and P be a partial latin square of
order n in which each nonempty cell lies in row r, column c, or contains symbol
s. We will show that if n /∈ {3, 4, 5} and row r, column c, and symbol s can
be completed in P , then a completion of P exists. We will also show that it is
always possible to complete partial latin squares with two filled rows and two filled
columns, except for a few small counterexamples.
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10. SC 4309

Arc Graphs and Posets
Danny Rorabaugh
Queen’s University
rorabaugh@mast.queensu.ca

Coauthors: Claude Tardif, David Wehlau, Imed Zaguia

The arc graph δ(G) of a digraph G is the digraph with the set of arcs of G as
vertex-set, where the arcs of δ(G) join consecutive arcs of G. In 1981, Poljak and
Rödl characterised the chromatic number of δ(G) in terms of the chromatic number
of G when G is symmetric (i.e., undirected). In contrast, directed graphs with
equal chromatic numbers can have arc graphs with distinct chromatic numbers.
Even though the arc graph of a symmetric graph is not symmetric, we show that
the chromatic number of the iterated arc graph δk(G) still only depends on the
chromatic number of G when G is symmetric. arXiv:1610.01259 [math.CO]

11. SC 4327

On the Existence of Generalized Designs
Amin Bahmanian
Illinois State University
mbahman@ilstu.edu

A set S of q-subsets of an n-set X is a design with parameters (n, q, r, λ) if
every r-subset of X belongs to exactly λ elements of S. In other words, a design
with parameters (n, q, r, λ) is an n-vertex q-uniform hypergraph in which every r-
subset of the vertex set belongs to exactly λ edges. The existence of a design with
parameters (n, q, r, λ) is equivalent to a Kr

q -decomposition of λKr
n (the complete

λ-fold r-uniform hypergraph of order n). By Keevash’s Theorem (2014), λKr
n can

be decomposed into Kr
q when some obvious divisibility conditions are satisfied

and n is sufficiently large. In this talk, I will discuss a “multipartite” version of
Keevash’s Theorem.
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12. SC 4309

Sampling Paths, Partitions and Permutations
Dana Randall
Georgia Institute of Technology
randall@cc.gatech.edu

Random sampling is ubiquitous across the sciences and engineering as a means
of studying properties of large sets. Often these sets are exponentially large, and
to be useful we need to be able to sample elements from a target distribution in
polynomial time. We will look at how a simple mountain-valley Markov chain on
monotonic lattice paths can be used as the basis for sampling algorithms arising
in self-assembly, combinatorics and computing. Examples we will discuss include
sampling lozenge tilings, biased permutations, and integer partitions.
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13. SC 4309

Entire Colorability for a Class of Plane Graphs
Sarah Loeb
University of Illinois, Urbana-Champaign
sloeb2@illinois.edu

Coauthors: Axel Brandt, Michael Ferrara, Nathan Graber, and Stephen Hartke

A plane graph G is entirely k-colorable if every element in the set of vertices,
edges, and faces of G can be colored from 1, . . . , k so that every two adjacent
or incident elements have distinct colors. In 2011, Wang and Zhu asked if every
simple plane graph G, other than K4, is entirely (∆(G) + 3)-colorable. In 2012,
Wang, Mao, and Miao answered in the affirmative for simple plane graphs with
∆(G) ≥ 8. We show that every loopless plane multigraph with ∆(G) = 7, no
2-faces, and no two 3-faces sharing an edge is entirely 10-colorable.

14. SC 4327

Efficient Boltzmann samplers for weighted partitions and selections
Matthew Fahrbach
Georgia Institute of Technology
matthew.fahrbach@gatech.edu

Coauthors: Megan Bernstein, Dana Randall

Boltzmann sampling is commonly used to sample from large combinatorial sets
by biasing the distributions to favor samples of a particular size. For the approach
to be effective, one needs to prove that the sampling procedure is efficient and
samples of the desired size will be generated with sufficiently high probability. We
use this approach to provide a provably efficient sampling algorithm for a class of
weighted integer partitions that gives the first rigorous solution to a sampling prob-
lem related to Bose–Einstein condensation from statistical physics. Our sampling
algorithm uses a probabilistic interpretation of the ordinary generating function
for these objects. Other approaches using generating functions have been previ-
ously considered, but without rigorous bounds on the rejection rates. We use the
Khintchine–Meinardus probabilistic method to provide such a bound through a
singularity analysis of the associated Dirichlet generating function.
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15. SC 4309

Additive coloring planar graphs with girth at least 5
Axel Brandt
Davidson College
axbrandt@davidson.edu

Coauthors: Jennifer Diemunsch (Saint Vincent College), Sogol Jahanbekam
(Rochester Institute of Technology)

The additive coloring number of G, denoted χΣ(G), is the least integer k for
which G has a labeling of its vertices from {1, 2, . . . , k} such that two adjacent
vertices have distinct sums of labels on their neighbors. In 2009, Czerwiński,
Grytczuk, and Żelazny conjectured that χΣ(G) ≤ χ(G), where χ(G) is the chro-
matic number of G. This conjecture remains open even for bipartite graphs, for
which no constant bound is currently known. In this talk, we discuss known bounds
on the additive coloring number and present improved bounds for planar graphs
with girth at least five. Our proof uses the discharging method and the Combina-
torial Nullstellensatz to obtain results on a list version of additive coloring.

16. SC 4327

Graph Minors: When Being Shallow is Hard
Blair D. Sullivan
North Carolina State University
blair sullivan@ncsu.edu

Coauthors: Irene Muzi, Michael O’Brien, Felix Reidl

Identifying dense substructures is a frequent task in analyzing real-world graphs,
with a rich history of results characterizing its computational complexity for var-
ious notions of substructure. For example, one can find the densest subgraph in
polynomial time using flow-based methods, yet finding the densest clique or graph
minor is NP-complete. We show that in some sense, finding dense substructures
which are just slightly ‘less local’ than subgraphs seems to be intrinsically difficult.

Specifically, we consider r-shallow minors, which naturally intermediate be-
tween the local nature of subgraphs (r = 0) and the global notion of minors
(r = ∞). Finding densest 0-shallow minors is in P, but Densest 1-Shallow Minor
is NP-complete, so we focus on substructures that fall between 0- and 1-shallow.
Specifically, we prove that Densest r/2-Shallow Topological Minor and Densest
r-Subdivision are NP-complete already in sub-cubic apex-graphs for r ≥ 1, and
that neither problem can be solved in time O(2o(n)) unless the Exponential Time
Hypothesis (ETH) fails. Further, for Densest 1-Shallow Topological Minor, we
show the problem is FPT for bounded treewidth, but no algorithm with running
time O(2o(tw(G)2)n) can exist unless the ETH fails.
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17. SC 4309

Planar graphs with girth at least 5 are (3, 4)-colorable
Xia Zhang
Shandong Normal University, China; College of William and Mary
pandarhz@gmail.com

Coauthors: Ilkyoo Choi and Gexin Yu

A graph is (d1, d2, . . . , dk)-colorable if its vertex set can be partitioned into k
nonempty subsets so that the subgraph induced by the ith part has maximum
degree at most di for each i ∈ {1, . . . , k}. It was previously known that planar
graphs with girth at least 5 are (3, 5)-colorable and (4, 4)-colorable. We improve
both results by showing that planar graphs with girth at least 5 are (3, 4)-colorable.

18. SC 4327

Balanced vertices in rooted labeled trees
Miklós Bóna
University of Florida
bona@ufl.edu

A vertex v in a rooted tree is called balanced if all descending paths from v to
a leaf have the same length. For a number of tree varieties, we will compute the
limiting probability that a random vertex of a random tree is balanced as the tree
size goes to infinity. In some cases, we can prove that the mentioned probability
decreases as the size of the tree increases.
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19. SC 4309

The extremal function and Colin de Verdière parameter
Rose McCarty
Georgia Institute of Technology
rmccarty3@gatech.edu

For a graph G, the Colin de Verdière graph parameter µ(G) is the maximum
corank of any matrix in a certain family of generalized adjacency matrices of
G. Given a non-negative integer t, the family of graphs with Colin de Verdière
parameter no more than t is minor-closed. A graph G is planar if and only if
µ(G) ≤ 3. Colin de Verdière conjectured that the chromatic number χ(G) of a
graph satisfies χ(G) ≤ µ(G) + 1. For graphs with µ(G) ≤ 3 this is the Four Color
Theorem.

We conjecture that if G has at least t vertices and µ(G) ≤ t, then |E(G)| ≤
t|V (G)| − t(t + 1)/2. If this conjecture is true, then χ(G) ≤ 2µ(G). We show
that this conjecture is related to the graph complement conjecture for the Colin
de Verdière parameter, and prove that the conjecture is true for every graph G
such that: either µ(G) ≤ 7, or µ(G) ≥ |V (G)| − 6, or the complement of G is
chordal, or G is chordal.

20. SC 4327

Expected Number of Distinct Subsequences in Randomly Generated
Binary Strings
Anant Godbole
East Tennessee State University
godbolea@etsu.edu

Coauthors: Yonah Biers-Ariel, Rutgers University, and Elizabeth Kelley, Univer-
sity of Minnesota

When considering binary strings, it is natural to ask how many distinct subse-
quences might exist in a given string. Given that there is an existing algorithm
which provides a straightforward way to compute the number of distinct subse-
quences in a fixed string, we will be interested in the expected number of distinct
subsequences in random strings. This expected value is already known for random
binary strings where each letter in the string is equally likely to be a 1 or a 0.
We first generalize this result to random strings where the letter 1 appears with
probability α ∈ [0, 1], and then to the case of non-uniform letter generation from
an alphabet of size d. Finally, we identify subsequences that are the most “typical”
in the sense that they occur an “average” number of times.
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21. SC 4309

Quasi-surfaces: Chromatic Numbers and Euler’s Formula
Jinko Kanno
Louisiana Tech University
jkanno@latech.edu

Coauthors: Galen E. Turner III

Euler’s formula is the foundation for many results in graph theory. Knowing this
universal constant associated with graph embeddings on any surface has allowed
us to advance our understanding of many foundational concepts in the discipline.
In this talk, we describe a quasi-surface, a generalization of both the k-book space
and the 2-sphere, for the first time. Natural questions related to graph embeddings
such as the chromatic number, and whether or not there is an equivalent to the
Euler formula for a quasi-surface are investigated.

22. SC 4327

New characterizations of Gallais i-triangulated graphs
Terry McKee
Wright State University
terry.mckee@wright.edu

In 1962, Tibor Gallai defined the oddly-named ”i-triangulated graphs.” In
1993, Elias Dahlhaus named the oddly-defined ”good generalized strongly chordal
graphs.” I ’ll give some modern characterizations of each and a link between them.
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23. SC 4309

An Interactive Proof Study of Erdős-Szekeres Conjecture
Rupei Xu
University of Texas at Dallas
rupei.xu@utdallas.edu

In 1935, Erdős and Szekeres proved that for every integer n ≥ 3, there is a
minimal integer ES(n) such that any set of ES(n) points in the plane in general
position contains n points in convex position. They showed that ES(n) ≥ 2n−2 +1
and conjectured this to be sharp.

There are many different variations of Erdős-Szekeres Conjecture. Babai and
Moran said:”Since the creation of formal systems, the element of interaction in the
proof process has been ignored in mathematics.” In this paper, for the first time,
the Interactive Proof Method was introduced to investigate the Erdős-Szekeres
Conjecture. The connection of this method to the design of randomized and de-
terministic algorithms to find the convex hull of n points for a given point set is
also discussed.

24. SC 4327

On Vertex-Edge and Edge-Vertex Domination and Degrees
Thomas M. Lewis
Furman University
tom.lewis@furman.edu

Coauthors: Mustapha Chellali, Teresa W Haynes, Stephen T Hedetniemi

In this talk we will introduce vertex-edge (ve) and edge-vertex (ev) domination
and degrees. Amongst other things, we will present some results regarding the
ve and ev-regularity of graphs, the ve and ev-irregularity of graphs, and some
connections with chemical graphs.
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25. SC 4309

Some new progress in decycling number
Erling Wei
Renmin University of China
erling.wei@mtsu.edu

Coauthors: Chao Yang and Han Ren

In this talk we consider the effects of spanning trees on several graphical invari-
ants such as decycling number, independence number, large induced forest and
covering number of a graph and present several more equivalent conditions for
such numbers. Based on the result in cubic graph, an application is provided too.

26. SC 4327

Irregular Total Labellings of Knödel Graphs W3,n

Khandoker Mohammed Mominul Haque
Department of Computer Science and Engineering, Shahjalal University of Science
and Technology, Sylhet, Bangladesh
momin66@gmail.com

The total edge irregularity strength tes(G) and total vertex irregularity strength
tvs(G) are invariants analogous to irregular strength s(G) of a graph G for total
labellings. Bača et al. determined the bounds and precise values for some families
of graphs concerning these parameters. In this paper, we show the exact values of
the total edge irregularity strength and total vertex irregularity strength of Knödel
graphs W3,n.
Keywords: Irregular total labelling; Knödel graphs; Total labelling
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27. SC 4309

Matchings, covers, and network games
Laura Sanitá
University of Waterloo, Canada
laura.sanita@uwaterloo.ca

Several interesting game theory problems are defined on networks, where the
vertices represent players and the edges model the way players can interact with
each other. In such games, studying the structure of the underlying graph that
describes the network setting is important to identify the existence of stable out-
comes for the corresponding games. Prominent examples are cooperative matching
games and network bargaining games. A key role in such games is played by sta-
ble graphs, which are graphs where the cardinality of a maximum matching equals
the size of a minimum fractional vertex-cover. In fact, stable graphs characterize
instances of such games that admit the existence of stable outcomes. In this talk,
we will discuss properties of stable graphs, and discuss the algorithmic problem of
turning a given graph into a stable one, via edge- and vertex-removal operations,
highlighting both the graph theory and the game theory aspects of the problem.
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Let G be a matching-covered graph, i.e., every edge is contained in a perfect
matching. An edge subset X of G is feasible if there exists two perfect matchings
M1 and M2 such that |M1∩X| 6≡ |M2∩X| (mod 2). Lukot’ka and Rollová proved
that an edge subset X of a regular bipartite graph is not feasible if and only if X
is switching-equivalent to ∅, and they further ask whether a non-feasible set of a
regular graph of class 1 is always switching-equivalent to either ∅ or E(G)? Two
edges of G are equivalent to each other if a perfect matching M of G either contains
both of them or contains none of them. An equivalent class of G is an edge subset
K with at least two edges such that the edges of K are mutually equivalent. An
equivalent class is not a feasible set. Lovász proved that an equivalent class of a
brick has size 2. In this paper, we show that, for every integer k ≥ 3, there exist
infinitely many k-regular graphs of class 1 with an arbitrarily large equivalent class
K such that K is not switching-equivalent to either ∅ or E(G), which provides a
negative answer to the problem proposed by Lukot’ka and Rollová. Further, we
characterize bipartite graphs with equivalent class, and characterize matching-
covered bipartite graphs of which every edge is removable.
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A theta graph consists of three internally disjoint paths sharing the same end-
points. Note that there are exactly three cycles in a theta graph. A biased graph
is a pair (G,B) in which G is a graph and B is a collection of cycles such that any
theta subgraph does not have exactly two cycles from B.

Given a group Γ and a graph G, let ϕ be a function from the set of orientations
of the edges of G to Γ such that ϕ(e−1) = ϕ(e)−1. The pair (G,ϕ) is called a
gain graph. (In topological graph theory this is often called a voltage graph.) If
we let Bϕ be the collection of cycles C of G whose ϕ-values along C compose to
the identity element of Γ, then (G,Bϕ) is a biased graph. This is, in fact, the
canonical example of a biased graph.

Biased graphs and gain graphs have many applications in linear programming,
algebraic topology, topological graph theory, and matroid theory. In this talk we
will present some current results concerning biased graphs and gain graphs.
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If G is any graph, the prism graph of G, denoted P (G), is the cartesian product
of G with a single edge, or equivalently, the graph obtained by taking two copies
of G, say G1 and G2, with the same vertex labelings and joining each vertex of
G1 to the vertex of G2 having the same label by an edge. A connected graph G
has property E(m,n) (or more briefly “G is E(m,n)”) if for every pair of disjoint
matchings M and N in G with |M | = m and |N | = n respectively, there is a
perfect matching F in G such that M ⊆ F and N ∩ F = ∅. In this paper, we
begin the study of the E(m,n) properties of the prism graph P (G) when G is
an arbitrary graph, as well as the more special situations when, in addition, G is
bipartite or bicritical.
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Recent advances in adiabatic quantum computing have required fast and effec-
tive algorithms for assigning a program’s logical qubits to a set of physical qubits
in a hardware fabric. Formally, this assignment can be viewed as a graph minor.
Computing graph minor embeddings is difficult in general, therefore efficient al-
gorithms rely on local domain knowledge such as hardware fabric topology and
program structure; we examine how to exploit bipartite structure in both of these
graphs. We first show how to compute graph bipartization (i.e. Minimum Odd
Cycle Transversal) exactly for series-parallel graphs in linear time, and provide an
approximation ratio for the general case. We additionally show an asymptotically-
sharp upper bound on the bipartite edit distance for minors of the ’Chimera’ hard-
ware class (recently implemented by D-Wave Systems). Experimentally, we find
that heuristics utilizing these results can construct minor embeddings for larger
programs than previous methods, while also using a smaller hardware resource
footprint.
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A hexagonal system is a finite 2-connected plane bipartite graph in which every
interior face is bounded by a regular hexagon. A hexagonal system is called cata-
condensed if it is outer planar. A set of disjoint hexagons H of a hexagonal system
G is a forcing resonant set if a subgraph consisting of deleting all vertices of H
from G has a unique perfect matching. The forcing resonance polynomial of G is

defined as f(x) =
∑cl(G)
i=0 aix

i where ai is the number of distinct forcing resonant
set of size i and cl(G) is the Clar number of G. The polynomial can be used
to enumerate the forcing resonant sets of hexagonal systems. In this paper, we
compute the forcing resonance polynomial of cata-condensed hexagonal system G.
Our computation results demonstrate that an isomer with larger coefficient vectors
of forcing resonance polynomial has larger HOMO-LUMO gap. In other words, an
isomer with larger coefficient vector is more stable.
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A matroid is a finite set with a collection of independent sets that behave like
linearly independent sets in a vector space. The rank, r(X), of a set X is the
size of a largest independent subset of X, and the closure, cl(X), of X is {x :
r(X ∪ {x} = r(X)}. A laminar family is a collection of sets such that if two sets
intersect, one is contained in the other. A laminar matroid is defined in terms of
a laminar family A and a capacity function c : A → N, a set I being independent
if |I ∩ A| ≤ c(A) for all A ∈ A . It is not hard to show that the class of laminar
matroids is minor closed. This talk will describe the set of excluded minors for
this class.
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The concept of conditional connectivity proposed by Harary, it provided an
interesting measures for fault-tolerance in networks. The conditional connectivity
of G with respect to some property P is the smallest cardinality of a set S of
vertices, if any, such that every component of the disconnected graph G − S has
property P . In this talk, we consider the property δ ≥ h in some networks, report
recent results about this topic, and also propose several problems.
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A matroid M is N -connected if, for every pair of elements {e, f} of E(M), there
is an N -minor of M using {e, f}. We prove some equivalent characterizations of
N -connectivity for certain matroids N . In particular, U2,3-connected is connected
and simple, M(W2)-connected is connected and non-uniform, and U0,1⊕U1,1 means
that M has no clones. We will also provide a decomposition theorem for when N
is 3-connected.
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Suppose that H is a simple uniform hypergraph satisfying |E(H)| = k(|V (H)|−
1). A k-partition π = (X1, X2, · · · , Xk) of E(H) such that |Xi| = |V (H)| − 1 for
1 ≤ i ≤ k is a uniform k-partition. Let Pk(H) be the collection of all uniform

k-partitions of E(H) and define ε(π) =
∑k
i=1 c(H(Xi)) − k, where c(H) denotes

the number of maximal partition-connected sub-hypergraphs of H. Let ε(H) =
minπ∈Pk(H) ε(π). Then ε(H) ≥ 0 with equality holds if and only if H is a union
of k edge-disjoint spanning hypertrees. The parameter ε(H) is used to measure
how close H is being from a union of k edge-disjoint spanning hypertrees. We
prove that if H is a simple uniform hypergraph with |E(H)| = k(|V (H)| − 1) and
ε(H) > 0, then there exist e ∈ E(H) and e′ ∈ E(Hc) such that ε(H−e+e′) < ε(H).
The result iteratively defines a finite ε-decreasing sequence of uniform hypergraphs
H0, H1, H2, · · · , Hm such thatH0 = H, Hm is the union of k edge-disjoint spanning
hypertrees, and such that two consecutive hypergraphs in the sequence differ by
exactly one hyperedge.
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Matroids conforming to a binary frame template are obtained by altering a
graphic matroid in a certain way. We introduce a preorder on the set of binary
frame templates and a list of minimal nontrivial templates with respect to this
preorder. The 1-flowing property for matroids is a generalization of the max-flow
min-cut property of graphs. An application of our main result is that all highly
connected 1-flowing matroids of sufficient size are either graphic or cographic.

The classes of even-cycle matroids and even-cut matroids each have hundreds
of excluded minors. Another application of our main result is that the number of
excluded minors for these classes can be drastically reduced if we consider only
the highly connected matroids of sufficient size.
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We study the uniqueness of optimal configurations in extremal combinatorics.
Empirical experience suggests that optimal solutions to extremal graph theory
problems can be made asymptotically unique by introducing additional constraints.
Lovász conjectured that this phenomenon is true in general: every finite feasible set
of subgraph density constraints can be extended further by a finite set of density
constraints such that the resulting set is satisfied by an asymptotically unique
graph. We will present a counterexample to this conjecture and discuss related
results.
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We show a Ramsey-type result about Tverberg partition. Namely that for every
d, n, r > 1 integers there exists N such that every sequence of points in Rd of
length N contains a subsequence of length n such that the Tverberg partitions of
any T (d, r)-tuple are exactly the rainbow-partitions. Here T (d, r) = (r − 1)(d +
1) + 1 is the Tverberg number and the rainbow partitions are a generalization of
the alternating partition. This can be viewed as a generalization of order-type
homogeneous sequences.

A fast growing sequence of real number is a positive sequence where each element
is at least twice as large as the previous one. As part of the proof we show a higher
dimensional generalization of Rosenthal’s result that is a Ramsey-type result: every
sequence of distinct real numbers contains a ”long” subsequence that is the affine
image of a fast growing sequence.

Rosenthal’s result was used by Bukh and Matoušek in Erdős-Szekeres-type state-
ments: Ramsey function and decidability in dimension 1 (2014).
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A branch vertex of a tree is a vertex with degree at least three. Matsuda, Ozeki,
and Yamashita conjectured that, if n and k are non-negative integers and G is a
connected claw-free graph of order n, there is either an independent set on 2k+3
vertices whose degrees add up to at most n-3, or a spanning tree with at most k
branch vertices. The authors of this conjecture proved it for k=1; we prove it for
k=2.
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The Wv-path Conjecture (or Nonrevisiting-path Conjecture) due to Klee and
Wolfe states that any two vertices of a simple polytope can be joined by a path that
does not revisit any facet. This is equivalent to the well-known Hirsch Conjecture.
Klee conjectured even more, namely that the Wv-path Conjecture is true for all
general cell complexes. Klee proved that the Wv-path Conjecture is true for 3-
polytopes (3-connected plane graphs). Later, the general Wv-path Conjecture was
verified for polyhedral maps on the projective plane and the torus by Barnette,
and on the Klein bottle by Pulapaka and Vince. Recently, however, Santos proved
that the Hirsch conjecture is false in general.

In this talk, we show that the the Wv-path problem is closely related to (i) the lo-
cal connectivity κG(x, y) (i.e. the number of disjoint (x, y)-paths), (ii) the number
of different homotopy classes of (x, y)-paths, and (iii) the number of (x, y)-paths
in each homotopy class. For a given surface Σ, we give quantitative conditions for
the existence of a Wv-path between x and y. We also provide more systematic
counterexamples with high number (linear in the genus of the surface) of paths
between x and y but without any Wv-path between them. These results show the
importance of topological properties of embeddings of underlying graphs on the
surfaces for this Wv-path geometric setting problem.

42. SC 4327

Edge-Independent Spanning Tree Conjecture for k=4
Alexander Hoyer
Georgia Institute of Technology, School of Mathematics
ahoyer3@gatech.edu

Coauthors: Robin Thomas

For a graph G, a set of subtrees of G are edge-independent with root r ∈ V (G)
if, for every vertex v ∈ V (G), the paths between v and r in each tree are edge-
disjoint. A set of k such trees represent a set of redundant broadcasts from r which
can withstand k − 1 edge failures. It is easy to see that k-edge-connectivity is a
necessary condition for the existence of a set of k edge-independent spanning trees
for all possible roots. Itai and Rodeh have conjectured that this condition is also
sufficient. This has been proven for k = 2, 3. We prove the case k = 4 using a
decomposition of the graph similar to an ear decomposition.


