Double-critical graph conjecture for claw-free graphs

Martin Rolek Joint work with Zi-Xia Song

University of Central Florida

Shanks Workshop: 29th Cumberland Conference on Combinatorics, Graph Theory, and Computing Vanderbilt University May 20, 2017

• All graphs considered have no loops and no multiple edges.

- All graphs considered have no loops and no multiple edges.
- A graph is *t*-colorable if there exists a function $c: V(G) \rightarrow \{1, ..., t\}$ such that $c(u) \neq c(v)$ for all edges $uv \in E(G)$.

- All graphs considered have no loops and no multiple edges.
- A graph is *t*-colorable if there exists a function $c: V(G) \rightarrow \{1, ..., t\}$ such that $c(u) \neq c(v)$ for all edges $uv \in E(G)$.
- $\chi(G) := \min\{t : G \text{ is } t\text{-colorable}\}.$

- All graphs considered have no loops and no multiple edges.
- A graph is *t*-colorable if there exists a function $c: V(G) \rightarrow \{1, ..., t\}$ such that $c(u) \neq c(v)$ for all edges $uv \in E(G)$.
- $\chi(G) := \min\{t : G \text{ is } t\text{-colorable}\}.$
- A graph G is t-chromatic if $\chi(G) = t$.

- All graphs considered have no loops and no multiple edges.
- A graph is *t*-colorable if there exists a function $c: V(G) \rightarrow \{1, ..., t\}$ such that $c(u) \neq c(v)$ for all edges $uv \in E(G)$.
- $\chi(G) := \min\{t : G \text{ is } t\text{-colorable}\}.$
- A graph G is t-chromatic if $\chi(G) = t$.
- $\omega(G) := \max\{t : K_t \subseteq G\}.$

- All graphs considered have no loops and no multiple edges.
- A graph is *t*-colorable if there exists a function $c: V(G) \rightarrow \{1, ..., t\}$ such that $c(u) \neq c(v)$ for all edges $uv \in E(G)$.
- $\chi(G) := \min\{t : G \text{ is } t\text{-colorable}\}.$
- A graph G is t-chromatic if $\chi(G) = t$.
- $\omega(G) := \max\{t : K_t \subseteq G\}.$
- *χ*(*G*) ≥ ω(*G*), and equality holds for many graphs, i.e.
 perfect graphs.

If $\chi(G) = 3t$, then it is trivial to show G contains t vertex-disjoint odd cycles.

Is it true for $t \ge 2$ that every (3t - 1)-chromatic critical graph with sufficiently many vertices contains t vertex-disjoint odd cycles?

If $\chi(G) = 3t$, then it is trivial to show G contains t vertex-disjoint odd cycles.

Is it true for $t \ge 2$ that every (3t - 1)-chromatic critical graph with sufficiently many vertices contains t vertex-disjoint odd cycles?

• (3t - 2)-chromatic critical graphs may not have t vertex-disjoint odd cycles (Gallai 1968, t = 2)

If $\chi(G) = 3t$, then it is trivial to show G contains t vertex-disjoint odd cycles.

Is it true for $t \ge 2$ that every (3t - 1)-chromatic critical graph with sufficiently many vertices contains t vertex-disjoint odd cycles?

- (3t 2)-chromatic critical graphs may not have t vertex-disjoint odd cycles (Gallai 1968, t = 2)
- Is it true that every 5-chromatic critical graph with sufficiently many vertices contains two vertex-disjoint odd cycles?

If $\chi(G) = 3t$, then it is trivial to show G contains t vertex-disjoint odd cycles.

Is it true for $t \ge 2$ that every (3t - 1)-chromatic critical graph with sufficiently many vertices contains t vertex-disjoint odd cycles?

- (3t − 2)-chromatic critical graphs may not have t vertex-disjoint odd cycles (Gallai 1968, t = 2)
- Is it true that every 5-chromatic critical graph with sufficiently many vertices contains two vertex-disjoint odd cycles?
- If a 5-chromatic graph contains two vertex disjoint odd cycles, then it has two disjoint 3-chromatic subgraphs.

Erdős-Lovász Tihany Conjecture (1968)

Erdős-Lovász Tihany Conjecture (1968)

Erdős-Lovász Tihany Conjecture (1968)

Let G be a graph with $\chi(G) > \omega(G)$, and let $s, t \ge 2$ be integers such that $\chi(G) = s + t - 1$. Then G contains two disjoint subgraphs H_1 and H_2 such that $\chi(H_1) \ge s$ and $\chi(H_2) \ge t$.

• True for (s, t) = (2, 2) (easy)

Erdős-Lovász Tihany Conjecture (1968)

- True for (s, t) = (2, 2) (easy)
- True for (s, t) = (2, 3) (Brown and Jung 1969)

Erdős-Lovász Tihany Conjecture (1968)

- True for (s, t) = (2, 2) (easy)
- True for (s, t) = (2, 3) (Brown and Jung 1969)
- True for (s, t) = (2, 4) (Mozhan 1987; Stiebitz 1987)

Erdős-Lovász Tihany Conjecture (1968)

- True for (s, t) = (2, 2) (easy)
- True for (s, t) = (2, 3) (Brown and Jung 1969)
- True for (s, t) = (2, 4) (Mozhan 1987; Stiebitz 1987)
- True for (s, t) = (3, 3), (3, 4), (3, 5) (Stiebitz 1987)

Erdős-Lovász Tihany Conjecture (1968)

- True for (s, t) = (2, 2) (easy)
- True for (s, t) = (2, 3) (Brown and Jung 1969)
- True for (s, t) = (2, 4) (Mozhan 1987; Stiebitz 1987)
- True for (s, t) = (3, 3), (3, 4), (3, 5) (Stiebitz 1987)
- True for line graphs (Kostochka and Stiebitz 2008)

Erdős-Lovász Tihany Conjecture (1968)

- True for (s, t) = (2, 2) (easy)
- True for (s, t) = (2, 3) (Brown and Jung 1969)
- True for (s, t) = (2, 4) (Mozhan 1987; Stiebitz 1987)
- True for (s, t) = (3, 3), (3, 4), (3, 5) (Stiebitz 1987)
- True for line graphs (Kostochka and Stiebitz 2008)
- True for quasi-line graphs, and true for graphs with α(G) = 2 (Balogh, Kostochka, Prince, and Stiebitz 2009)

Erdős-Lovász Tihany Conjecture (1968)

- True for (s, t) = (2, 2) (easy)
- True for (s, t) = (2, 3) (Brown and Jung 1969)
- True for (s, t) = (2, 4) (Mozhan 1987; Stiebitz 1987)
- True for (s, t) = (3, 3), (3, 4), (3, 5) (Stiebitz 1987)
- True for line graphs (Kostochka and Stiebitz 2008)
- True for quasi-line graphs, and true for graphs with α(G) = 2 (Balogh, Kostochka, Prince, and Stiebitz 2009)
- Otherwise fairly wide open

Erdős-Lovász Tihany Conjecture (1968)

Let G be a graph with $\chi(G) > \omega(G)$, and let $s, t \ge 2$ be integers such that $\chi(G) = s + t - 1$. Then G contains two disjoint subgraphs H_1 and H_2 such that $\chi(H_1) \ge s$ and $\chi(H_2) \ge t$.

 If we fix s = 2, the conjecture claims there exists an edge uv such that χ(G − u − v) ≥ χ(G) − 1.

Erdős-Lovász Tihany Conjecture (1968)

- If we fix s = 2, the conjecture claims there exists an edge uv such that χ(G − u − v) ≥ χ(G) − 1.
- A connected graph G is double-critical if for every edge uv ∈ E(G), χ(G − u − v) = χ(G) − 2.

Erdős-Lovász Tihany Conjecture (1968)

Let G be a graph with $\chi(G) > \omega(G)$, and let $s, t \ge 2$ be integers such that $\chi(G) = s + t - 1$. Then G contains two disjoint subgraphs H_1 and H_2 such that $\chi(H_1) \ge s$ and $\chi(H_2) \ge t$.

- If we fix s = 2, the conjecture claims there exists an edge uv such that χ(G − u − v) ≥ χ(G) − 1.
- A connected graph G is double-critical if for every edge uv ∈ E(G), χ(G − u − v) = χ(G) − 2.

Double-Critical Graph Conjecture (Erdős and Lovász 1968)

Double-Critical Graph Conjecture (Erdős and Lovász 1968)

For every $t \ge 1$, the only double-critical, *t*-chromatic graph is K_t .

• Special case s = 2 of Erdős-Lovász Tihany Conjecture.

Double-Critical Graph Conjecture (Erdős and Lovász 1968)

- Special case s = 2 of Erdős-Lovász Tihany Conjecture.
- True for line graphs, quasi-line graphs, and true for graphs with α(G) = 2 (Kostochka and Stiebitz 2008; Balogh, Kostochka, Prince, and Stiebitz 2009)

Double-Critical Graph Conjecture (Erdős and Lovász 1968)

- Special case s = 2 of Erdős-Lovász Tihany Conjecture.
- True for line graphs, quasi-line graphs, and true for graphs with α(G) = 2 (Kostochka and Stiebitz 2008; Balogh, Kostochka, Prince, and Stiebitz 2009)
- True for t ≤ 5 (Brown and Jung 1969; Mozhan 1987; Stiebitz 1987)

Double-Critical Graph Conjecture (Erdős and Lovász 1968)

- Special case s = 2 of Erdős-Lovász Tihany Conjecture.
- True for line graphs, quasi-line graphs, and true for graphs with α(G) = 2 (Kostochka and Stiebitz 2008; Balogh, Kostochka, Prince, and Stiebitz 2009)
- True for t ≤ 5 (Brown and Jung 1969; Mozhan 1987; Stiebitz 1987)
- Open for $t \geq 6$.

Double-Critical Graph Conjecture (Erdős and Lovász 1968)

- Special case s = 2 of Erdős-Lovász Tihany Conjecture.
- True for line graphs, quasi-line graphs, and true for graphs with α(G) = 2 (Kostochka and Stiebitz 2008; Balogh, Kostochka, Prince, and Stiebitz 2009)
- True for t ≤ 5 (Brown and Jung 1969; Mozhan 1987; Stiebitz 1987)
- Open for $t \geq 6$.
- Not yet known if a double critical, t-chromatic graph G ≠ Kt contains a K4 subgraph for t ≥ 6.

 $G = K_6.$

Theorem - Huang and Yu (2016+)

If G is a claw-free, double-critical, 6-chromatic graph, then $G = K_6$.

Theorem - R. and Song (2017)

For $t \in \{6,7,8\}$, if G is a claw-free, double-critical, t-chromatic graph, then $G = K_t$.

Theorem - Huang and Yu (2016+)

If G is a claw-free, double-critical, 6-chromatic graph, then $G = K_6$.

Theorem - R. and Song (2017)

For $t \in \{6,7,8\}$, if G is a claw-free, double-critical, t-chromatic graph, then $G = K_t$.

• For t = 6, our proof is different and shorter.

Proposition (Kawarabayashi, Pedersen, and Toft 2011)

Suppose G is a non-complete, double-critical, t-chromatic graph. Then the following are true:

- $\delta(G) \geq t+1$.
- Every edge belongs to at least t 2 triangles.
- If $x \in V(G)$ such that d(x) < |V(G)| 1, then $\chi(G[N(x)]) \le t 3$.
- If d(x) = t + 1, then G[N(x)] consists only of isolated vertices and/or disjoint cycles of length at least 5.

Theorem - Kawarabayashi, Pedersen, and Toft (2010)

If G is a non-complete, double-critical, t-chromatic graph, then no two vertices of degree t + 1 are adjacent.

Theorem - Kawarabayashi, Pedersen, and Toft (2010)

If G is a non-complete, double-critical, t-chromatic graph, then no two vertices of degree t + 1 are adjacent.

Theorem - R. and Song (2017)

If G is a non-complete, double-critical, t-chromatic graph, then no vertex of degree t + 1 is adjacent to any vertex of degree $\leq t + 3$.

Proposition - R. and Song (2017)

If G is a non-complete, double-critical, t-chromatic claw-free graph, then for any $x \in V(G)$, $d(x) \leq 2t - 4$. Furthermore, if d(x) < |V(G)| - 1, then $d(x) \leq 2t - 6$.

(日) (個) (注) (日) (日) (日)

Proposition - R. and Song (2017)

If G is a non-complete, double-critical, t-chromatic claw-free graph, then for any $x \in V(G)$, $d(x) \leq 2t - 4$. Furthermore, if d(x) < |V(G)| - 1, then $d(x) \leq 2t - 6$.

Theorem (R. and Song 2017)

If G is a claw-free, double-critical, t-chromatic graph for $t \in \{6, 7, 8\}$, then $G = K_t$.

Proof sketch.

Theorem (R. and Song 2017)

If G is a claw-free, double-critical, t-chromatic graph for $t \in \{6, 7, 8\}$, then $G = K_t$.

Proof sketch.

• Suppose G is claw-free, double-critical, t-chromatic and $G \neq K_t$, and let $x \in V(G)$ such that $d(x) = \delta(x)$.

Theorem (R. and Song 2017)

If G is a claw-free, double-critical, t-chromatic graph for $t \in \{6, 7, 8\}$, then $G = K_t$.

Proof sketch.

- Suppose G is claw-free, double-critical, t-chromatic and $G \neq K_t$, and let $x \in V(G)$ such that $d(x) = \delta(x)$.
- $t+1 \le d(x) \le 2t-6$, and so $t \ge 7$.

Theorem (R. and Song 2017)

If G is a claw-free, double-critical, *t*-chromatic graph for $t \in \{6, 7, 8\}$, then $G = K_t$.

Proof sketch.

- Suppose G is claw-free, double-critical, t-chromatic and $G \neq K_t$, and let $x \in V(G)$ such that $d(x) = \delta(x)$.
- $t+1 \le d(x) \le 2t-6$, and so $t \ge 7$.
- If t = 7, then G is 8-regular, contradicting that vertices of degree t + 1 are not adjacent.

Theorem (R. and Song 2017)

If G is a claw-free, double-critical, t-chromatic graph for $t \in \{6, 7, 8\}$, then $G = K_t$.

Proof sketch.

• Suppose G is claw-free, double-critical, t-chromatic and $G \neq K_t$, and let $x \in V(G)$ such that $d(x) = \delta(x)$.

•
$$t+1 \le d(x) \le 2t-6$$
, and so $t \ge 7$.

- If t = 7, then G is 8-regular, contradicting that vertices of degree t + 1 are not adjacent.
- If t = 8, then no vertex of degree 9 is adjacent to a vertex of degree 9 or 10. Hence, G is 10-regular.

Theorem (R. and Song 2017)

If G is a claw-free, double-critical, t-chromatic graph for $t \in \{6, 7, 8\}$, then $G = K_t$.

Proof sketch.

• Suppose G is claw-free, double-critical, t-chromatic and $G \neq K_t$, and let $x \in V(G)$ such that $d(x) = \delta(x)$.

•
$$t+1 \le d(x) \le 2t-6$$
, and so $t \ge 7$.

- If t = 7, then G is 8-regular, contradicting that vertices of degree t + 1 are not adjacent.
- If t = 8, then no vertex of degree 9 is adjacent to a vertex of degree 9 or 10. Hence, G is 10-regular.
- By examining the structure of N(x), we find a claw.

Question

Is it true that the only claw-free, double-critical, 9-chromatic graph is K_9 ? Is it true that any claw-free, double-critical, *t*-chromatic graph is K_t for all *t*?

Question

Is it true that the only claw-free, double-critical, 9-chromatic graph is K_9 ? Is it true that any claw-free, double-critical, *t*-chromatic graph is K_t for all *t*?

• For the case t = 9, our results show that any such graph G must contain only of vertices of degrees 11 and 12.

Question

Is it true that the only claw-free, double-critical, 9-chromatic graph is K_9 ? Is it true that any claw-free, double-critical, *t*-chromatic graph is K_t for all *t*?

• For the case t = 9, our results show that any such graph G must contain only of vertices of degrees 11 and 12.

Question

In a double-critical, t chromatic graph, no vertex of degree t + i is adjacent to a vertex of t + j for $(i, j) \in \{(1, 1), (1, 2), (1, 3)\}$. Can any other pairs be found? (2, 2)? (2, 3)?

Question

Is it true that the only claw-free, double-critical, 9-chromatic graph is K_9 ? Is it true that any claw-free, double-critical, *t*-chromatic graph is K_t for all *t*?

• For the case t = 9, our results show that any such graph G must contain only of vertices of degrees 11 and 12.

Question

In a double-critical, t chromatic graph, no vertex of degree t + i is adjacent to a vertex of t + j for $(i, j) \in \{(1, 1), (1, 2), (1, 3)\}$. Can any other pairs be found? (2, 2)? (2, 3)?

Question

Is it true that the only double-critical, 6-chromatic graph is K_6 ?

Thank you!