Double-critical graph conjecture for claw-free graphs

Martin Rolek
Joint work with Zi-Xia Song
University of Central Florida

Shanks Workshop: 29th Cumberland Conference on Combinatorics, Graph Theory, and Computing

Vanderbilt University
May 20, 2017

- All graphs considered have no loops and no multiple edges.
- All graphs considered have no loops and no multiple edges.
- A graph is t-colorable if there exists a function $c: V(G) \rightarrow\{1, \ldots, t\}$ such that $c(u) \neq c(v)$ for all edges $u v \in E(G)$.
- All graphs considered have no loops and no multiple edges.
- A graph is t-colorable if there exists a function $c: V(G) \rightarrow\{1, \ldots, t\}$ such that $c(u) \neq c(v)$ for all edges $u v \in E(G)$.
- $\chi(G):=\min \{t: G$ is t-colorable $\}$.
- All graphs considered have no loops and no multiple edges.
- A graph is t-colorable if there exists a function $c: V(G) \rightarrow\{1, \ldots, t\}$ such that $c(u) \neq c(v)$ for all edges $u v \in E(G)$.
- $\chi(G):=\min \{t: G$ is t-colorable $\}$.
- A graph G is t-chromatic if $\chi(G)=t$.
- All graphs considered have no loops and no multiple edges.
- A graph is t-colorable if there exists a function $c: V(G) \rightarrow\{1, \ldots, t\}$ such that $c(u) \neq c(v)$ for all edges $u v \in E(G)$.
- $\chi(G):=\min \{t: G$ is t-colorable $\}$.
- A graph G is t-chromatic if $\chi(G)=t$.
- $\omega(G):=\max \left\{t: K_{t} \subseteq G\right\}$.
- All graphs considered have no loops and no multiple edges.
- A graph is t-colorable if there exists a function $c: V(G) \rightarrow\{1, \ldots, t\}$ such that $c(u) \neq c(v)$ for all edges $u v \in E(G)$.
- $\chi(G):=\min \{t: G$ is t-colorable $\}$.
- A graph G is t-chromatic if $\chi(G)=t$.
- $\omega(G):=\max \left\{t: K_{t} \subseteq G\right\}$.
- $\chi(G) \geq \omega(G)$, and equality holds for many graphs, i.e. perfect graphs.

Question - Erdős (1968)

If $\chi(G)=3 t$, then it is trivial to show G contains t vertex-disjoint odd cycles.
Is it true for $t \geq 2$ that every $(3 t-1)$-chromatic critical graph with sufficiently many vertices contains t vertex-disjoint odd cycles?

Question - Erdős (1968)

If $\chi(G)=3 t$, then it is trivial to show G contains t vertex-disjoint odd cycles.
Is it true for $t \geq 2$ that every $(3 t-1)$-chromatic critical graph with sufficiently many vertices contains t vertex-disjoint odd cycles?

- $(3 t-2)$-chromatic critical graphs may not have t vertex-disjoint odd cycles (Gallai 1968, $t=2$)

Question - Erdős (1968)

If $\chi(G)=3 t$, then it is trivial to show G contains t vertex-disjoint odd cycles.
Is it true for $t \geq 2$ that every $(3 t-1)$-chromatic critical graph with sufficiently many vertices contains t vertex-disjoint odd cycles?

- $(3 t-2)$-chromatic critical graphs may not have t vertex-disjoint odd cycles (Gallai 1968, $t=2$)
- Is it true that every 5-chromatic critical graph with sufficiently many vertices contains two vertex-disjoint odd cycles?

Question - Erdős (1968)

If $\chi(G)=3 t$, then it is trivial to show G contains t vertex-disjoint odd cycles.
Is it true for $t \geq 2$ that every $(3 t-1)$-chromatic critical graph with sufficiently many vertices contains t vertex-disjoint odd cycles?

- $(3 t-2)$-chromatic critical graphs may not have t vertex-disjoint odd cycles (Gallai 1968, $t=2$)
- Is it true that every 5-chromatic critical graph with sufficiently many vertices contains two vertex-disjoint odd cycles?
- If a 5-chromatic graph contains two vertex disjoint odd cycles, then it has two disjoint 3-chromatic subgraphs.

Erdős-Lovász Tihany Conjecture (1968)

Let G be a graph with $\chi(G)>\omega(G)$, and let $s, t \geq 2$ be integers such that $\chi(G)=s+t-1$. Then G contains two disjoint subgraphs H_{1} and H_{2} such that $\chi\left(H_{1}\right) \geq s$ and $\chi\left(H_{2}\right) \geq t$.

Erdős-Lovász Tihany Conjecture (1968)

Let G be a graph with $\chi(G)>\omega(G)$, and let $s, t \geq 2$ be integers such that $\chi(G)=s+t-1$. Then G contains two disjoint subgraphs H_{1} and H_{2} such that $\chi\left(H_{1}\right) \geq s$ and $\chi\left(H_{2}\right) \geq t$.

Erdős-Lovász Tihany Conjecture (1968)

Let G be a graph with $\chi(G)>\omega(G)$, and let $s, t \geq 2$ be integers such that $\chi(G)=s+t-1$. Then G contains two disjoint subgraphs H_{1} and H_{2} such that $\chi\left(H_{1}\right) \geq s$ and $\chi\left(H_{2}\right) \geq t$.

- True for $(s, t)=(2,2) \quad$ (easy)

Erdős-Lovász Tihany Conjecture (1968)

Let G be a graph with $\chi(G)>\omega(G)$, and let $s, t \geq 2$ be integers such that $\chi(G)=s+t-1$. Then G contains two disjoint subgraphs H_{1} and H_{2} such that $\chi\left(H_{1}\right) \geq s$ and $\chi\left(H_{2}\right) \geq t$.

- True for $(s, t)=(2,2) \quad$ (easy)
- True for $(s, t)=(2,3) \quad$ (Brown and Jung 1969)

Erdős-Lovász Tihany Conjecture (1968)

Let G be a graph with $\chi(G)>\omega(G)$, and let $s, t \geq 2$ be integers such that $\chi(G)=s+t-1$. Then G contains two disjoint subgraphs H_{1} and H_{2} such that $\chi\left(H_{1}\right) \geq s$ and $\chi\left(H_{2}\right) \geq t$.

- True for $(s, t)=(2,2) \quad$ (easy)
- True for $(s, t)=(2,3) \quad$ (Brown and Jung 1969)
- True for $(s, t)=(2,4) \quad$ (Mozhan 1987; Stiebitz 1987)

Erdős-Lovász Tihany Conjecture (1968)

Let G be a graph with $\chi(G)>\omega(G)$, and let $s, t \geq 2$ be integers such that $\chi(G)=s+t-1$. Then G contains two disjoint subgraphs H_{1} and H_{2} such that $\chi\left(H_{1}\right) \geq s$ and $\chi\left(H_{2}\right) \geq t$.

- True for $(s, t)=(2,2) \quad$ (easy)
- True for $(s, t)=(2,3) \quad$ (Brown and Jung 1969)
- True for $(s, t)=(2,4) \quad$ (Mozhan 1987; Stiebitz 1987)
- True for $(s, t)=(3,3),(3,4),(3,5) \quad$ (Stiebitz 1987)

Erdős-Lovász Tihany Conjecture (1968)

Let G be a graph with $\chi(G)>\omega(G)$, and let $s, t \geq 2$ be integers such that $\chi(G)=s+t-1$. Then G contains two disjoint subgraphs H_{1} and H_{2} such that $\chi\left(H_{1}\right) \geq s$ and $\chi\left(H_{2}\right) \geq t$.

- True for $(s, t)=(2,2) \quad$ (easy)
- True for $(s, t)=(2,3) \quad$ (Brown and Jung 1969)
- True for $(s, t)=(2,4) \quad$ (Mozhan 1987; Stiebitz 1987)
- True for $(s, t)=(3,3),(3,4),(3,5) \quad$ (Stiebitz 1987)
- True for line graphs (Kostochka and Stiebitz 2008)

Erdős-Lovász Tihany Conjecture (1968)

Let G be a graph with $\chi(G)>\omega(G)$, and let $s, t \geq 2$ be integers such that $\chi(G)=s+t-1$. Then G contains two disjoint subgraphs H_{1} and H_{2} such that $\chi\left(H_{1}\right) \geq s$ and $\chi\left(H_{2}\right) \geq t$.

- True for $(s, t)=(2,2) \quad$ (easy)
- True for $(s, t)=(2,3) \quad$ (Brown and Jung 1969)
- True for $(s, t)=(2,4) \quad$ (Mozhan 1987; Stiebitz 1987)
- True for $(s, t)=(3,3),(3,4),(3,5) \quad$ (Stiebitz 1987)
- True for line graphs (Kostochka and Stiebitz 2008)
- True for quasi-line graphs, and true for graphs with $\alpha(G)=2$ (Balogh, Kostochka, Prince, and Stiebitz 2009)

Erdős-Lovász Tihany Conjecture (1968)

Let G be a graph with $\chi(G)>\omega(G)$, and let $s, t \geq 2$ be integers such that $\chi(G)=s+t-1$. Then G contains two disjoint subgraphs H_{1} and H_{2} such that $\chi\left(H_{1}\right) \geq s$ and $\chi\left(H_{2}\right) \geq t$.

- True for $(s, t)=(2,2) \quad$ (easy)
- True for $(s, t)=(2,3) \quad$ (Brown and Jung 1969)
- True for $(s, t)=(2,4) \quad$ (Mozhan 1987; Stiebitz 1987)
- True for $(s, t)=(3,3),(3,4),(3,5) \quad$ (Stiebitz 1987)
- True for line graphs (Kostochka and Stiebitz 2008)
- True for quasi-line graphs, and true for graphs with $\alpha(G)=2$ (Balogh, Kostochka, Prince, and Stiebitz 2009)
- Otherwise fairly wide open

Erdős-Lovász Tihany Conjecture (1968)

Let G be a graph with $\chi(G)>\omega(G)$, and let $s, t \geq 2$ be integers such that $\chi(G)=s+t-1$. Then G contains two disjoint subgraphs H_{1} and H_{2} such that $\chi\left(H_{1}\right) \geq s$ and $\chi\left(H_{2}\right) \geq t$.

- If we fix $s=2$, the conjecture claims there exists an edge $u v$ such that $\chi(G-u-v) \geq \chi(G)-1$.

Erdős-Lovász Tihany Conjecture (1968)

Let G be a graph with $\chi(G)>\omega(G)$, and let $s, t \geq 2$ be integers such that $\chi(G)=s+t-1$. Then G contains two disjoint subgraphs H_{1} and H_{2} such that $\chi\left(H_{1}\right) \geq s$ and $\chi\left(H_{2}\right) \geq t$.

- If we fix $s=2$, the conjecture claims there exists an edge $u v$ such that $\chi(G-u-v) \geq \chi(G)-1$.
- A connected graph G is double-critical if for every edge $u v \in E(G), \chi(G-u-v)=\chi(G)-2$.

Erdős-Lovász Tihany Conjecture (1968)

Let G be a graph with $\chi(G)>\omega(G)$, and let $s, t \geq 2$ be integers such that $\chi(G)=s+t-1$. Then G contains two disjoint subgraphs H_{1} and H_{2} such that $\chi\left(H_{1}\right) \geq s$ and $\chi\left(H_{2}\right) \geq t$.

- If we fix $s=2$, the conjecture claims there exists an edge $u v$ such that $\chi(G-u-v) \geq \chi(G)-1$.
- A connected graph G is double-critical if for every edge $u v \in E(G), \chi(G-u-v)=\chi(G)-2$.

Double-Critical Graph Conjecture (Erdős and Lovász 1968)

For every $t \geq 1$, the only double-critical, t-chromatic graph is K_{t}.

Double-Critical Graph Conjecture (Erdős and Lovász 1968)

For every $t \geq 1$, the only double-critical, t-chromatic graph is K_{t}.

- Special case $s=2$ of Erdős-Lovász Tihany Conjecture.

Double-Critical Graph Conjecture (Erdős and Lovász 1968)

For every $t \geq 1$, the only double-critical, t-chromatic graph is K_{t}.

- Special case $s=2$ of Erdős-Lovász Tihany Conjecture.
- True for line graphs, quasi-line graphs, and true for graphs with $\alpha(G)=2$ (Kostochka and Stiebitz 2008; Balogh, Kostochka, Prince, and Stiebitz 2009)

Double-Critical Graph Conjecture (Erdős and Lovász 1968)

For every $t \geq 1$, the only double-critical, t-chromatic graph is K_{t}.

- Special case $s=2$ of Erdős-Lovász Tihany Conjecture.
- True for line graphs, quasi-line graphs, and true for graphs with $\alpha(G)=2$ (Kostochka and Stiebitz 2008; Balogh, Kostochka, Prince, and Stiebitz 2009)
- True for $t \leq 5$ (Brown and Jung 1969; Mozhan 1987; Stiebitz 1987)

Double-Critical Graph Conjecture (Erdős and Lovász 1968)

For every $t \geq 1$, the only double-critical, t-chromatic graph is K_{t}.

- Special case $s=2$ of Erdős-Lovász Tihany Conjecture.
- True for line graphs, quasi-line graphs, and true for graphs with $\alpha(G)=2$ (Kostochka and Stiebitz 2008; Balogh, Kostochka, Prince, and Stiebitz 2009)
- True for $t \leq 5$ (Brown and Jung 1969; Mozhan 1987; Stiebitz 1987)
- Open for $t \geq 6$.

Double-Critical Graph Conjecture (Erdős and Lovász 1968)

For every $t \geq 1$, the only double-critical, t-chromatic graph is K_{t}.

- Special case $s=2$ of Erdős-Lovász Tihany Conjecture.
- True for line graphs, quasi-line graphs, and true for graphs with $\alpha(G)=2$ (Kostochka and Stiebitz 2008; Balogh, Kostochka, Prince, and Stiebitz 2009)
- True for $t \leq 5$ (Brown and Jung 1969; Mozhan 1987; Stiebitz 1987)
- Open for $t \geq 6$.
- Not yet known if a double critical, t-chromatic graph $G \neq K_{t}$ contains a K_{4} subgraph for $t \geq 6$.
- A graph is claw-free if it does not contain $K_{1,3}$ as an induced subgraph.

- A graph is claw-free if it does not contain $K_{1,3}$ as an induced subgraph.

Theorem - Huang and Yu (2016+)

If G is a claw-free, double-critical, 6 -chromatic graph, then $G=K_{6}$.

- A graph is claw-free if it does not contain $K_{1,3}$ as an induced subgraph.

Theorem - Huang and Yu (2016+)

If G is a claw-free, double-critical, 6-chromatic graph, then $G=K_{6}$.

Theorem - R. and Song (2017)

For $t \in\{6,7,8\}$, if G is a claw-free, double-critical, t-chromatic graph, then $G=K_{t}$.

- A graph is claw-free if it does not contain $K_{1,3}$ as an induced subgraph.

Theorem - Huang and Yu (2016+)

If G is a claw-free, double-critical, 6 -chromatic graph, then $G=K_{6}$.

Theorem - R. and Song (2017)

For $t \in\{6,7,8\}$, if G is a claw-free, double-critical, t-chromatic graph, then $G=K_{t}$.

- For $t=6$, our proof is different and shorter.

Proposition (Kawarabayashi, Pedersen, and Toft 2011)

Suppose G is a non-complete, double-critical, t-chromatic graph. Then the following are true:

- $\delta(G) \geq t+1$.
- Every edge belongs to at least $t-2$ triangles.
- If $x \in V(G)$ such that $d(x)<|V(G)|-1$, then
$\chi(G[N(x)]) \leq t-3$.
- If $d(x)=t+1$, then $\overline{G[N(x)]}$ consists only of isolated vertices and/or disjoint cycles of length at least 5 .

Theorem - Kawarabayashi, Pedersen, and Toft (2010)

If G is a non-complete, double-critical, t-chromatic graph, then no two vertices of degree $t+1$ are adjacent.

Theorem - Kawarabayashi, Pedersen, and Toft (2010)

If G is a non-complete, double-critical, t-chromatic graph, then no two vertices of degree $t+1$ are adjacent.

Theorem - R. and Song (2017)

If G is a non-complete, double-critical, t-chromatic graph, then no vertex of degree $t+1$ is adjacent to any vertex of degree $\leq t+3$.

Proposition - R. and Song (2017)

If G is a non-complete, double-critical, t-chromatic claw-free graph, then for any $x \in V(G), d(x) \leq 2 t-4$. Furthermore, if $d(x)<|V(G)|-1$, then $d(x) \leq 2 t-6$.

Proposition - R. and Song (2017)

If G is a non-complete, double-critical, t-chromatic claw-free graph, then for any $x \in V(G), d(x) \leq 2 t-4$. Furthermore, if $d(x)<|V(G)|-1$, then $d(x) \leq 2 t-6$.

Theorem (R. and Song 2017)

If G is a claw-free, double-critical, t-chromatic graph for $t \in\{6,7,8\}$, then $G=K_{t}$.

Proof sketch.

Theorem (R. and Song 2017)

If G is a claw-free, double-critical, t-chromatic graph for $t \in\{6,7,8\}$, then $G=K_{t}$.

Proof sketch.

- Suppose G is claw-free, double-critical, t-chromatic and $G \neq K_{t}$, and let $x \in V(G)$ such that $d(x)=\delta(x)$.

Theorem (R. and Song 2017)

If G is a claw-free, double-critical, t-chromatic graph for $t \in\{6,7,8\}$, then $G=K_{t}$.

Proof sketch.

- Suppose G is claw-free, double-critical, t-chromatic and $G \neq K_{t}$, and let $x \in V(G)$ such that $d(x)=\delta(x)$.
- $t+1 \leq d(x) \leq 2 t-6$, and so $t \geq 7$.

Theorem (R. and Song 2017)

If G is a claw-free, double-critical, t-chromatic graph for $t \in\{6,7,8\}$, then $G=K_{t}$.

Proof sketch.

- Suppose G is claw-free, double-critical, t-chromatic and $G \neq K_{t}$, and let $x \in V(G)$ such that $d(x)=\delta(x)$.
- $t+1 \leq d(x) \leq 2 t-6$, and so $t \geq 7$.
- If $t=7$, then G is 8 -regular, contradicting that vertices of degree $t+1$ are not adjacent.

Theorem (R. and Song 2017)

If G is a claw-free, double-critical, t-chromatic graph for $t \in\{6,7,8\}$, then $G=K_{t}$.

Proof sketch.

- Suppose G is claw-free, double-critical, t-chromatic and $G \neq K_{t}$, and let $x \in V(G)$ such that $d(x)=\delta(x)$.
- $t+1 \leq d(x) \leq 2 t-6$, and so $t \geq 7$.
- If $t=7$, then G is 8 -regular, contradicting that vertices of degree $t+1$ are not adjacent.
- If $t=8$, then no vertex of degree 9 is adjacent to a vertex of degree 9 or 10 . Hence, G is 10 -regular.

Theorem (R. and Song 2017)

If G is a claw-free, double-critical, t-chromatic graph for $t \in\{6,7,8\}$, then $G=K_{t}$.

Proof sketch.

- Suppose G is claw-free, double-critical, t-chromatic and $G \neq K_{t}$, and let $x \in V(G)$ such that $d(x)=\delta(x)$.
- $t+1 \leq d(x) \leq 2 t-6$, and so $t \geq 7$.
- If $t=7$, then G is 8 -regular, contradicting that vertices of degree $t+1$ are not adjacent.
- If $t=8$, then no vertex of degree 9 is adjacent to a vertex of degree 9 or 10 . Hence, G is 10 -regular.
- By examining the structure of $N(x)$, we find a claw.

Question

Is it true that the only claw-free, double-critical, 9-chromatic graph is K_{9} ? Is it true that any claw-free, double-critical, t-chromatic graph is K_{t} for all t ?

Question

Is it true that the only claw-free, double-critical, 9-chromatic graph is K_{9} ? Is it true that any claw-free, double-critical, t-chromatic graph is K_{t} for all t ?

- For the case $t=9$, our results show that any such graph G must contain only of vertices of degrees 11 and 12 .

Question

Is it true that the only claw-free, double-critical, 9-chromatic graph is K_{9} ? Is it true that any claw-free, double-critical, t-chromatic graph is K_{t} for all t ?

- For the case $t=9$, our results show that any such graph G must contain only of vertices of degrees 11 and 12 .

Question

In a double-critical, t chromatic graph, no vertex of degree $t+i$ is adjacent to a vertex of $t+j$ for $(i, j) \in\{(1,1),(1,2),(1,3)\}$. Can any other pairs be found? $(2,2)$? $(2,3)$?

Question

Is it true that the only claw-free, double-critical, 9-chromatic graph is K_{9} ? Is it true that any claw-free, double-critical, t-chromatic graph is K_{t} for all t ?

- For the case $t=9$, our results show that any such graph G must contain only of vertices of degrees 11 and 12 .

Question

In a double-critical, t chromatic graph, no vertex of degree $t+i$ is adjacent to a vertex of $t+j$ for $(i, j) \in\{(1,1),(1,2),(1,3)\}$. Can any other pairs be found? $(2,2)$? $(2,3)$?

Question

Is it true that the only double-critical, 6-chromatic graph is K_{6} ?

Thank you!

