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@ “Dynamic” process
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Definition

@ G is a simple graph satisfying |E(G)| = k(|V(G)| — 1).

@ A k-partition 7 = (X1, Xo,--- , Xi) of E(G) such that

|X;| = |V(G)| —1for1 < i< kis a uniform k-partition.

Let P.(G) be the collection of uniform k-partitions of E(G).

Define e(r) = Y% | ¢(G(X))) — k

e(G) = mingcp, (@) ()

By definition, ¢(G) > 0.

e(G) =0ifand only if forevery 1 <i < k, G(X;) is a

spanning tree of G.

@ Thus ¢(G) = 0if and only if G has k edge-disjoint spanning
trees.
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Reinfore edge-disjoint spanning trees

The following theorem was conjectured by Payan in 1986 and
proved by Lai, Lai and Payan in 1996.

@ Theorem
If G is a simple graph with |[E(G)| = k(]V(G)| — 1) and
e(G@) > 0, then there exist e € E(G) and ¢/ € E(G*) such
that (G — e + ¢') < e(G).

@ £(@) can be consider as a measure that how close G is
from a union of k£ edge-disjoint spanning trees.

@ The theorem iteratively defines a finite =-decreasing
sequence of simple graphs G, G4, Gs, - - - , Gy, such that
G, is a union of k£ edge-disjoint spanning trees and any
two consecutive graphs in the sequence differ by exactly
one edge.
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Definitions for hypergraphs

@ A hypergraph H = (V, E)
@ A hyperforest is a hypergraph H such that for every
nonempty subset U C V(H), |E(H[U])| < |U| — 1.

7 N

A hyperforest NOT a hyperforest
@ If in addition, |E(H)| = |V(H)| — 1, then H is a hypertree.
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Definition

@ A hypergraph H is k-partition-connected if e(w) > k(|| —1)
for every partition = of V(H), where e(7) denotes the
number of edges intersecting at least 2 parts of .

@ k = 1: partition-connected.

@ c(H) denotes the number of maximal partition-connected
components in H.
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@ Theorem (Nash-Williams, Tutte, independently, 1961)
For a graph, k-partition-connectedness is equivalent to &
edge-disjoint spanning trees.

@ Theorem (Frank, Kiraly and Kriesell, 2003)

A hypergraph H is k-partition-connected if and only if H
has k edge-disjoint spanning hypertrees.
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@ By definition, e(H) > 0.

@ ¢(H)=0ifand only if forevery 1 <i < k, H(X;) isa
spanning hypertree of H.

@ Thus ¢(H) = 0 if and only if H has k edge-disjoint
spanning hypertrees.
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@ The theorem iteratively defines a finite e-decreasing
sequence of uniform hypergraphs H, Hy, Hs, - - - , H,, such
that H,,, is a union of k£ edge-disjoint spanning trees and
any two consecutive hypergraphs in the sequence differ by
exactly one hyperedge.
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Sketch of the proof

@ Let P/(H) be the collection of all k-partitions of E(H), and
define &'(H) = min e(m).
mEP](H)
@ Lemma For any uniform hypergraph H with
|E(H)| =k(|V(H)| — 1), we have e(H) = ¢'(H).
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Sketch of the proof

@ Find a sub-hypergraph S of H that contains k edge-disjoint
spanning hypertrees, i.e., there is a partition
(Y1,Ya, -, Yy) of E(S) such that each part induces a
partition-connected sub-hypergraph.

@ The partition (Y1, Ys, -+, Yy) of E(S) can be extended to a
partition = of E(H) to realize the minimum ¢(H).

@ Find an “non-necessary” edge e in some Y; and an edge ¢’
which is not in H; to construct a hypergraph F' = H —e+¢€'.

@ The corresponding partition of E(F') from 7 is denoted by
7'. Show (F) < e(H).
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