A property on reinforcing edge-disjoint spanning hypertrees in uniform hypergraphs

Xiaofeng Gu
(University of West Georgia)

joint work with Hong-Jian Lai (WVU)

May 21, 2017
A necessary condition for a union of k edge-disjoint spanning trees: $|E(G)| = k(|V(G)| - 1)$.
Motivation

- A necessary condition for a union of k edge-disjoint spanning trees: $|E(G)| = k(|V(G)| - 1)$.
- Obviously, not sufficient.
Motivation

- A necessary condition for a union of k edge-disjoint spanning trees: $|E(G)| = k(|V(G)| - 1)$.
- Obviously, not sufficient.
- Q: for a simple graph with $|E(G)| = k(|V(G)| - 1)$, by edge switching, can we get a union of k edge-disjoint spanning trees? Yes
Motivation

- A necessary condition for a union of \(k \) edge-disjoint spanning trees: \(|E(G)| = k(|V(G)| - 1)\).
- Obviously, not sufficient.
- Q: for a simple graph with \(|E(G)| = k(|V(G)| - 1)\), by edge switching, can we get a union of \(k \) edge-disjoint spanning trees? Yes
- “Dynamic” process
Definition

- G is a simple graph satisfying $|E(G)| = k(|V(G)| - 1)$.

- A k-partition $\pi = (X_1, X_2, \ldots, X_k)$ of $E(G)$ such that $|X_i| = |V(G)| - 1$ for $1 \leq i \leq k$ is a uniform k-partition.

- Let $P_k(G)$ be the collection of uniform k-partitions of $E(G)$.

- Define $\varepsilon(\pi) = \sum_{i=1}^{k} c(G(X_i)) - k \varepsilon(G)$, where $\varepsilon(G) = \min_{\pi \in P_k(G)} \varepsilon(\pi)$.

- By definition, $\varepsilon(G) \geq 0$.

- $\varepsilon(G) = 0$ if and only if for every $1 \leq i \leq k$, $G(X_i)$ is a spanning tree of G.

- Thus $\varepsilon(G) = 0$ if and only if G has k edge-disjoint spanning trees.
Definition

- G is a simple graph satisfying $|E(G)| = k(|V(G)| - 1)$.
- A k-partition $\pi = (X_1, X_2, \cdots, X_k)$ of $E(G)$ such that $|X_i| = |V(G)| - 1$ for $1 \leq i \leq k$ is a uniform k-partition.
Definition

- G is a simple graph satisfying $|E(G)| = k(|V(G)| - 1)$.
- A k-partition $\pi = (X_1, X_2, \cdots, X_k)$ of $E(G)$ such that $|X_i| = |V(G)| - 1$ for $1 \leq i \leq k$ is a uniform k-partition.
- Let $P_k(G)$ be the collection of uniform k-partitions of $E(G)$.
\begin{itemize}
 \item G is a simple graph satisfying $|E(G)| = k(|V(G)| - 1)$.
 \item A k-partition $\pi = (X_1, X_2, \cdots, X_k)$ of $E(G)$ such that $|X_i| = |V(G)| - 1$ for $1 \leq i \leq k$ is a uniform k-partition.
 \item Let $P_k(G)$ be the collection of uniform k-partitions of $E(G)$.
 \item Define $\varepsilon(\pi) = \sum_{i=1}^{k} c(G(X_i)) - k$
\end{itemize}
Definition

- G is a simple graph satisfying $|E(G)| = k(|V(G)| - 1)$.
- A k-partition $\pi = (X_1, X_2, \ldots, X_k)$ of $E(G)$ such that $|X_i| = |V(G)| - 1$ for $1 \leq i \leq k$ is a uniform k-partition.
- Let $P_k(G)$ be the collection of uniform k-partitions of $E(G)$.
- Define $\varepsilon(\pi) = \sum_{i=1}^{k} c(G(X_i)) - k$
- $\varepsilon(G) = \min_{\pi \in P_k(G)} \varepsilon(\pi)$
Definition

- G is a simple graph satisfying $|E(G)| = k(|V(G)| - 1)$.
- A k-partition $\pi = (X_1, X_2, \cdots, X_k)$ of $E(G)$ such that $|X_i| = |V(G)| - 1$ for $1 \leq i \leq k$ is a uniform k-partition.
- Let $P_k(G)$ be the collection of uniform k-partitions of $E(G)$.
- Define $\varepsilon(\pi) = \sum_{i=1}^{k} c(G(X_i)) - k$
- $\varepsilon(G) = \min_{\pi \in P_k(G)} \varepsilon(\pi)$
- By definition, $\varepsilon(G) \geq 0$.
Definition

- \(G \) is a simple graph satisfying \(|E(G)| = k(|V(G)| - 1)\).
- A \(k \)-partition \(\pi = (X_1, X_2, \ldots, X_k) \) of \(E(G) \) such that \(|X_i| = |V(G)| - 1\) for \(1 \leq i \leq k \) is a uniform \(k \)-partition.
- Let \(P_k(G) \) be the collection of uniform \(k \)-partitions of \(E(G) \).
- Define \(\varepsilon(\pi) = \sum_{i=1}^{k} c(G(X_i)) - k \)
- \(\varepsilon(G) = \min_{\pi \in P_k(G)} \varepsilon(\pi) \)
- By definition, \(\varepsilon(G) \geq 0 \).
- \(\varepsilon(G) = 0 \) if and only if for every \(1 \leq i \leq k \), \(G(X_i) \) is a spanning tree of \(G \).
Definition

- G is a simple graph satisfying $|E(G)| = k(|V(G)| - 1)$.
- A k-partition $\pi = (X_1, X_2, \cdots, X_k)$ of $E(G)$ such that $|X_i| = |V(G)| - 1$ for $1 \leq i \leq k$ is a uniform k-partition.
- Let $P_k(G)$ be the collection of uniform k-partitions of $E(G)$.
- Define $\varepsilon(\pi) = \sum_{i=1}^{k} c(G(X_i)) - k$
- $\varepsilon(G) = \min_{\pi \in P_k(G)} \varepsilon(\pi)$
- By definition, $\varepsilon(G) \geq 0$.
- $\varepsilon(G) = 0$ if and only if for every $1 \leq i \leq k$, $G(X_i)$ is a spanning tree of G.
- Thus $\varepsilon(G) = 0$ if and only if G has k edge-disjoint spanning trees.
Reinforce edge-disjoint spanning trees

The following theorem was conjectured by Payan in 1986 and proved by Lai, Lai and Payan in 1996.

Theorem

If G is a simple graph with $|E(G)| = k(|V(G)| - 1)$ and $\varepsilon(G) > 0$, then there exist $e \in E(G)$ and $e' \in E(G^c)$ such that $\varepsilon(G - e + e') < \varepsilon(G)$.
Reinforce edge-disjoint spanning trees

The following theorem was conjectured by Payan in 1986 and proved by Lai, Lai and Payan in 1996.

Theorem

If G is a simple graph with $|E(G)| = k(|V(G)| - 1)$ and $\varepsilon(G) > 0$, then there exist $e \in E(G)$ and $e' \in E(G^c)$ such that $\varepsilon(G - e + e') < \varepsilon(G)$.

$\varepsilon(G)$ can be considered as a measure that how close G is from a union of k edge-disjoint spanning trees.
The following theorem was conjectured by Payan in 1986 and proved by Lai, Lai and Payan in 1996.

Theorem

If G is a simple graph with $|E(G)| = k(|V(G)| - 1)$ and $\varepsilon(G) > 0$, then there exist $e \in E(G)$ and $e' \in E(G^c)$ such that $\varepsilon(G - e + e') < \varepsilon(G)$.

$\varepsilon(G)$ can be considered as a measure that how close G is from a union of k edge-disjoint spanning trees.

The theorem iteratively defines a finite ε-decreasing sequence of simple graphs G, G_1, G_2, \cdots, G_m such that G_m is a union of k edge-disjoint spanning trees and any two consecutive graphs in the sequence differ by exactly one edge.
A hypergraph $H = (V, E)$

A hyperforest is a hypergraph H such that for every nonempty subset $U \subseteq V(H)$, $|E(H[U])| \leq |U| - 1$.

If in addition, $|E(H)| = |V(H)| - 1$, then H is a hypertree.
Definitions for hypergraphs

- A hypergraph $H = (V, E)$
- A hyperforest is a hypergraph H such that for every nonempty subset $U \subseteq V(H)$, $|E(H[U])| \leq |U| - 1$.

 If in addition, $|E(H)| = |V(H)| - 1$, then H is a hypertree.
A hypergraph $H = (V, E)$

A hyperforest is a hypergraph H such that for every nonempty subset $U \subseteq V(H)$, $|E(H[U])| \leq |U| - 1$.
Definitions for hypergraphs

- A hypergraph $H = (V, E)$
- A hyperforest is a hypergraph H such that for every nonempty subset $U \subseteq V(H)$, $|E(H[U])| \leq |U| - 1$.

A hyperforest
Definitions for hypergraphs

- A hypergraph $H = (V, E)$
- A **hyperforest** is a hypergraph H such that for every nonempty subset $U \subseteq V(H)$, $|E(H[U])| \leq |U| - 1$.

![A hyperforest](image1)
![NOT a hyperforest](image2)
Definitions for hypergraphs

- A hypergraph $H = (V, E)$
- A **hyperforest** is a hypergraph H such that for every nonempty subset $U \subseteq V(H)$, $|E(H[U])| \leq |U| - 1$.

![A hyperforest](image1)

- If in addition, $|E(H)| = |V(H)| - 1$, then H is a **hypertree**.

![Not a hyperforest](image2)
Definition

A hypergraph H is k-partition-connected if $e(\pi) \geq k(|\pi| - 1)$ for every partition π of $V(H)$, where $e(\pi)$ denotes the number of edges intersecting at least 2 parts of π.
A hypergraph H is k-partition-connected if $e(\pi) \geq k(|\pi| - 1)$ for every partition π of $V(H)$, where $e(\pi)$ denotes the number of edges intersecting at least 2 parts of π.

$k = 1$: partition-connected.
A hypergraph H is k-partition-connected if $e(\pi) \geq k(|\pi| - 1)$ for every partition π of $V(H)$, where $e(\pi)$ denotes the number of edges intersecting at least 2 parts of π.

$k = 1$: partition-connected.

c(H) denotes the number of maximal partition-connected components in H.
Packing spanning hypertrees

- **Theorem** (Nash-Williams, Tutte, independently, 1961)
 For a graph, k-partition-connectedness is equivalent to k edge-disjoint spanning trees.
Packing spanning hypertrees

- **Theorem** (Nash-Williams, Tutte, independently, 1961)
 For a graph, k-partition-connectedness is equivalent to k edge-disjoint spanning trees.

- **Theorem** (Frank, Király and Kriesell, 2003)
 A hypergraph H is k-partition-connected if and only if H has k edge-disjoint spanning hypertrees.
Definition

Suppose that H is a simple uniform hypergraph satisfying

$$|E(H)| = k(|V(H)| - 1).$$
Definition

- Suppose that H is a simple uniform hypergraph satisfying $|E(H)| = k(|V(H)| - 1)$.
- A k-partition $\pi = (X_1, X_2, \cdots, X_k)$ of $E(H)$ such that $|X_i| = |V(H)| - 1$ for $1 \leq i \leq k$ is a uniform k-partition.
Definition

- Suppose that H is a simple uniform hypergraph satisfying $|E(H)| = k(|V(H)| - 1)$.
- A k-partition $\pi = (X_1, X_2, \ldots, X_k)$ of $E(H)$ such that $|X_i| = |V(H)| - 1$ for $1 \leq i \leq k$ is a uniform k-partition.
- Let $P_k(H)$ be the collection of all uniform k-partitions of $E(H)$.
We define

\[\varepsilon(\pi) = \sum_{i=1}^{k} c(H(X_i)) - k, \]

\[\varepsilon(H) = \min_{\pi \in P_k(H)} \varepsilon(\pi) \]

By definition, \(\varepsilon(H) \geq 0 \).

\(\varepsilon(H) = 0 \) if and only if for every \(1 \leq i \leq k \), \(H(X_i) \) is a spanning hypertree of \(H \).

Thus \(\varepsilon(H) = 0 \) if and only if \(H \) has \(k \) edge-disjoint spanning hypertrees.
We define

\[\varepsilon(\pi) = \sum_{i=1}^{k} c(H(X_i)) - k, \]
\[\varepsilon(H) = \min_{\pi \in P_k(H)} \varepsilon(\pi) \]

By definition, \(\varepsilon(H) \geq 0 \).
We define

\[\varepsilon(\pi) = \sum_{i=1}^{k} c(H(X_i)) - k, \]

\[\varepsilon(H) = \min_{\pi \in P_k(H)} \varepsilon(\pi) \]

By definition, \(\varepsilon(H) \geq 0 \).

\(\varepsilon(H) = 0 \) if and only if for every \(1 \leq i \leq k \), \(H(X_i) \) is a spanning hypertree of \(H \).
Definition

- We define

\[\varepsilon(\pi) = \sum_{i=1}^{k} c(H(X_i)) - k, \]

\[\varepsilon(H) = \min_{\pi \in P_k(H)} \varepsilon(\pi) \]

- By definition, \(\varepsilon(H) \geq 0 \).
- \(\varepsilon(H) = 0 \) if and only if for every \(1 \leq i \leq k \), \(H(X_i) \) is a spanning hypertree of \(H \).
- Thus \(\varepsilon(H) = 0 \) if and only if \(H \) has \(k \) edge-disjoint spanning hypertrees.
Theorem (G. and Lai 2017+)
If H is a simple uniform hypergraph with $|E(H)| = k(|V(H)| - 1)$ and $\varepsilon(H) > 0$, then there exist $e \in E(H)$ and $e' \in E(H^c)$ such that $\varepsilon(H - e + e') < \varepsilon(H)$. $\varepsilon(H)$ can be considered as a measure of how close H is from a union of k edge-disjoint spanning hypertrees. The theorem iteratively defines a finite ε-decreasing sequence of uniform hypergraphs H, H_1, H_2, \ldots, H_m such that H_m is a union of k edge-disjoint spanning trees and any two consecutive hypergraphs in the sequence differ by exactly one hyperedge.
Theorem (G. and Lai 2017+)
If H is a simple uniform hypergraph with $|E(H)| = k(|V(H)| - 1)$ and $\varepsilon(H) > 0$, then there exist $e \in E(H)$ and $e' \in E(H^c)$ such that $\varepsilon(H - e + e') < \varepsilon(H)$.

$\varepsilon(H)$ can be consider as a measure that how close H is from a union of k edge-disjoint spanning hypertrees.
Theorem (G. and Lai 2017+)
If \(H \) is a simple uniform hypergraph with
\[|E(H)| = k(|V(H)| - 1) \] and \(\varepsilon(H) > 0 \), then there exist
\(e \in E(H) \) and \(e' \in E(H^c) \) such that
\[\varepsilon(H - e + e') < \varepsilon(H) \].

\(\varepsilon(H) \) can be consider as a measure that how close \(H \) is
from a union of \(k \) edge-disjoint spanning hypertrees.

The theorem iteratively defines a finite \(\varepsilon \)-decreasing
sequence of uniform hypergraphs \(H, H_1, H_2, \cdots, H_m \) such
that \(H_m \) is a union of \(k \) edge-disjoint spanning trees and any two consecutive hypergraphs in the sequence differ by exactly one hyperedge.
Sketch of the proof

Let \(P'_k(H) \) be the collection of all \(k \)-partitions of \(E(H) \), and define \(\varepsilon'(H) = \min_{\pi \in P'_k(H)} \varepsilon(\pi) \).
Let $P'_{k}(H)$ be the collection of all k-partitions of $E(H)$, and define $\varepsilon'(H) = \min_{\pi \in P'_{k}(H)} \varepsilon(\pi)$.

Lemma For any uniform hypergraph H with $|E(H)| = k(|V(H)| - 1)$, we have $\varepsilon(H) = \varepsilon'(H)$.
Sketch of the proof

- Find a sub-hypergraph S of H that contains k edge-disjoint spanning hypertrees, i.e., there is a partition (Y_1, Y_2, \cdots, Y_k) of $E(S)$ such that each part induces a partition-connected sub-hypergraph.
Sketch of the proof

- Find a sub-hypergraph S of H that contains k edge-disjoint spanning hypertrees, i.e., there is a partition (Y_1, Y_2, \cdots, Y_k) of $E(S)$ such that each part induces a partition-connected sub-hypergraph.

- The partition (Y_1, Y_2, \cdots, Y_k) of $E(S)$ can be extended to a partition π of $E(H)$ to realize the minimum $\varepsilon(H)$.
Sketch of the proof

- Find a sub-hypergraph S of H that contains k edge-disjoint spanning hypertrees, i.e., there is a partition (Y_1, Y_2, \cdots, Y_k) of $E(S)$ such that each part induces a partition-connected sub-hypergraph.

- The partition (Y_1, Y_2, \cdots, Y_k) of $E(S)$ can be extended to a partition π of $E(H)$ to realize the minimum $\varepsilon(H)$.

- Find an “non-necessary” edge e in some Y_i and an edge e' which is not in H; to construct a hypergraph $F = H - e + e'$.
Sketch of the proof

- Find a sub-hypergraph S of H that contains k edge-disjoint spanning hypertrees, i.e., there is a partition (Y_1, Y_2, \cdots, Y_k) of $E(S)$ such that each part induces a partition-connected sub-hypergraph.

- The partition (Y_1, Y_2, \cdots, Y_k) of $E(S)$ can be extended to a partition π of $E(H)$ to realize the minimum $\varepsilon(H)$.

- Find an “non-necessary” edge e in some Y_i and an edge e' which is not in H; to construct a hypergraph $F = H - e + e'$.

- The corresponding partition of $E(F)$ from π is denoted by π'. Show $\varepsilon(F) < \varepsilon(H)$.
Thanks