Strong chromatic index of graphs with maximum degree four

Michael Santana

Joint Work with M. Huang and G. Yu

May 2017

Definition

Definition

Given a graph G, a **strong edge-coloring** is a coloring of E(G) such that every color class forms an induced matching in G.

Definition

Definition

Given a graph G, a **strong edge-coloring** is a coloring of E(G) such that every color class forms an induced matching in G.

Definition

Given a graph G, a **strong edge-coloring** is a coloring of E(G) such that every color class forms an induced matching in G.

Definition

The **strong chromatic index** of *G*, denoted by $\chi'_{s}(G)$, is the minimum number of colors needed for a strong edge-coloring of *G*.

Proposition

For every graph G with maximum degree Δ ,

$$\Delta \le \chi'(G) \le \chi'_s(G)$$

Proposition

For every graph G with maximum degree Δ ,

$$\Delta \leq \chi'(G) \leq \chi'_{s}(G) \leq 2\Delta(\Delta-1)+1.$$

Proposition

For every graph G with maximum degree Δ ,

 $\Delta \leq \chi_s'(G) \leq 2\Delta^2.$

Proposition

For every graph G with maximum degree Δ ,

 $\Delta \leq \chi_s'(G) \leq 2\Delta^2.$

• The lower bound is best possible due to $K_{1,\Delta}$.

Proposition

For every graph G with maximum degree Δ ,

$$\Delta \le \chi'_s(G) \le 2\Delta^2.$$

- The lower bound is best possible due to $K_{1,\Delta}$.
- The order of magnitude of the upper bound is also best possible as

$$\chi'_{s}(K_{\Delta+1}) = {\Delta+1 \choose 2} \approx \frac{1}{2} \Delta^{2}.$$

$$\chi'_{s}(\text{Blow-up of } C_{5}) = \begin{cases} \frac{5}{4}\Delta^{2}, & \text{for even } \Delta \\ \frac{5}{4}\Delta^{2} - \frac{1}{2}\Delta + \frac{1}{4}, & \text{for odd } \Delta \end{cases}$$

$$\chi'_{s}(\text{Blow-up of } C_{5}) = \begin{cases} \frac{5}{4}\Delta^{2}, & \text{for even } \Delta \\ \frac{5}{4}\Delta^{2} - \frac{1}{2}\Delta + \frac{1}{4}, & \text{for odd } \Delta \end{cases}$$

• If G is $(2K_2)$ -free, then $\chi'_s(G) = |E(G)|$.

$$\chi'_{s}(\text{Blow-up of } C_{5}) = \begin{cases} \frac{5}{4}\Delta^{2}, & \text{for even } \Delta \\ \frac{5}{4}\Delta^{2} - \frac{1}{2}\Delta + \frac{1}{4}, & \text{for odd } \Delta \end{cases}$$

• If G is $(2K_2)$ -free, then $\chi'_s(G) = |E(G)|$.

Theorem (Chung-Gyárfás-Trotter-Tuza '90)

The number of edges in a $(2K_2)$ -free graph with max degree Δ is at most $\begin{cases} \frac{5}{4}\Delta^2, & \text{for even }\Delta\\ \frac{5}{4}\Delta^2 - \frac{1}{2}\Delta + \frac{1}{4}, & \text{for odd }\Delta. \end{cases}$ Additionally, the blow-up of C_5 is the unique extremal graph.

For any graph *G* with maximum degree Δ , $\chi'_{s}(G) \leq \begin{cases} \frac{5}{4}\Delta^{2}, & \text{for even } \Delta \\ \frac{5}{4}\Delta^{2} - \frac{1}{2}\Delta + \frac{1}{4}, & \text{for odd } \Delta \end{cases}$

• $\chi'_{s}(G) \leq 1.998\Delta^2$ (Molloy-Reed '97)

- $\chi'_{s}(G) \leq 1.998\Delta^2$ (Molloy-Reed '97)
- $\chi'_{s}(G) \leq 1.93\Delta^2$ (Bruhn-Joos '15)

- $\chi'_{s}(G) \leq 1.998\Delta^2$ (Molloy-Reed '97)
- $\chi'_{s}(G) \leq 1.93\Delta^2$ (Bruhn-Joos '15)
- $\chi'_{s}(G) \leq 1.835 \Delta^{2}$ (Bonamy-Perrett-Postle '17)

- $\chi'_{s}(G) \leq 1.998\Delta^2$ (Molloy-Reed '97)
- $\chi'_{s}(G) \leq 1.93\Delta^2$ (Bruhn-Joos '15)
- $\chi'_{s}(G) \leq 1.835 \Delta^{2}$ (Bonamy-Perrett-Postle '17)
- Proven for $\Delta = 3$ (Andersen '92, Horák-Qing-Trotter '93)

- $\chi'_{s}(G) \leq 1.998\Delta^2$ (Molloy-Reed '97)
- $\chi'_{s}(G) \leq 1.93\Delta^2$ (Bruhn-Joos '15)
- $\chi'_{s}(G) \leq 1.835 \Delta^{2}$ (Bonamy-Perrett-Postle '17)
- Proven for $\Delta = 3$ (Andersen '92, Horák-Qing-Trotter '93)
- For $\Delta = 4$, $\chi'_{s}(G) \leq 22$ (Cranston '06)

- $\chi'_{s}(G) \leq 1.998\Delta^2$ (Molloy-Reed '97)
- $\chi'_{s}(G) \leq 1.93\Delta^2$ (Bruhn-Joos '15)
- $\chi'_{s}(G) \leq 1.835 \Delta^{2}$ (Bonamy-Perrett-Postle '17)
- Proven for $\Delta = 3$ (Andersen '92, Horák-Qing-Trotter '93)
- For $\Delta = 4$, $\chi'_{s}(G) \leq 22$ (Cranston '06)
- For $\Delta = 4$, $\chi'_{s}(G) \leq 21$ (Huang-S-Yu '17++)

Theorem (Huang-S-Yu '17++)

If G is a multigraph with $\Delta(G) \leq 4$, then $\chi'_{s}(G) \leq 21$.

Theorem (Huang-S-Yu '17++)

If G is a multigraph with $\Delta(G) \leq 4$, then $\chi'_{s}(G) \leq 21$.

• Among all counterexamples, choose G so that |V(G)| + |E(G)| is minimized.

Theorem (Huang-S-Yu '17++)

If G is a multigraph with $\Delta(G) \leq 4$, then $\chi'_{s}(G) \leq 21$.

• Among all counterexamples, choose G so that |V(G)| + |E(G)| is minimized.

• So
$$\Delta(G) \leq 4$$
 and $\chi'_s(G) > 21$.

Properties of a Minimal Counterexample G

• *G* is 4-regular, simple, etc.

Properties of a Minimal Counterexample G

- *G* is 4-regular, simple, etc.
- G has girth at least 6.

Properties of a Minimal Counterexample G

- *G* is 4-regular, simple, etc.
- G has girth at least 6.
- G has no edge-cut of size at most 3.

Properties of a Minimal Counterexample G

- *G* is 4-regular, simple, etc.
- G has girth at least 6.
- G has no edge-cut of size at most 3.

How to Color the Edges of G

Proof Sketch

Properties of a Minimal Counterexample G

- *G* is 4-regular, simple, etc.
- G has girth at least 6.
- G has no edge-cut of size at most 3.

How to Color the Edges of G

• Partition the vertices of *G* into three sets (*L*, *M*, and *R*), where *M* is a cut-set

Proof Sketch

Properties of a Minimal Counterexample G

- *G* is 4-regular, simple, etc.
- G has girth at least 6.
- G has no edge-cut of size at most 3.

How to Color the Edges of G

- Partition the vertices of *G* into three sets (*L*, *M*, and *R*), where *M* is a cut-set
- Show that *M* contains some special vertices.

Proof Sketch

Properties of a Minimal Counterexample G

- *G* is 4-regular, simple, etc.
- G has girth at least 6.
- G has no edge-cut of size at most 3.

How to Color the Edges of G

- Partition the vertices of *G* into three sets (*L*, *M*, and *R*), where *M* is a cut-set
- Show that *M* contains some special vertices.
- Case analysis and color.

Conjecture (Erdős-Nešetřil '85)

If $\Delta(G) \leq 4$, then $\chi'_{s}(G) \leq 20$.

Conjecture (Erdős-Nešetřil '85)

If $\Delta(G) \leq 4$, then $\chi'_{s}(G) \leq 20$.

Conjecture (Faudree-Gyárfás-Schelp-Tuza '90)

Suppose *G* is a bipartite graph with maximum degree Δ .

Conjecture (Erdős-Nešetřil '85)

If $\Delta(G) \leq 4$, then $\chi'_{s}(G) \leq 20$.

Conjecture (Faudree-Gyárfás-Schelp-Tuza '90)

Suppose G is a bipartite graph with maximum degree Δ .

$$\chi'_{s}(G) \leq \Delta^{2}.$$

Conjecture (Erdős-Nešetřil '85)

If $\Delta(G) \leq 4$, then $\chi'_{s}(G) \leq 20$.

Conjecture (Faudree-Gyárfás-Schelp-Tuza '90)

Suppose G is a bipartite graph with maximum degree Δ .

$$\chi_{s}'(G) \leq \Delta^{2}.$$

② If $\Delta \leq 3$ and G has girth at least six, then $\chi'_{s}(G) \leq 7$

Conjecture (Erdős-Nešetřil '85)

If $\Delta(G) \leq 4$, then $\chi'_{s}(G) \leq 20$.

Conjecture (Faudree-Gyárfás-Schelp-Tuza '90)

Suppose G is a bipartite graph with maximum degree Δ .

$$\chi_{\varsigma}'(G) \leq \Delta^2.$$

- ② If $\Delta ≤ 3$ and G has girth at least six, then $\chi'_{s}(G) ≤ 7$
- If $\Delta \leq 3$ and G has 'large' girth, then $\chi'_{s}(G) \leq 5$

Conjecture (Erdős-Nešetřil '85)

If $\Delta(G) \leq 4$, then $\chi'_{s}(G) \leq 20$.

Conjecture (Faudree-Gyárfás-Schelp-Tuza '90)

Suppose G is a bipartite graph with maximum degree Δ .

$$\chi'_{s}(G) \leq \Delta^{2}.$$

- ② If $\Delta ≤ 3$ and G has girth at least six, then $\chi'_{s}(G) ≤ 7$
- If $\Delta \leq 3$ and G has 'large' girth, then $\chi'_{s}(G) \leq 5$

Theorem (Faudree et al. '90)

If G is a planar graph with maximum degree Δ , then

$$4\Delta - 4 \leq \chi'_s(G) \leq 4\Delta + 4.$$

14/16

14/16

MIGHTY LVIII

Grand Valley State University October 6-7, 2017

Plenary Speakers: Doug West David Galvin

www.gvsu.edu/math/mighty-lviii MIGHTY_LVIII@ gvsu.edu

Thanks for your attention!

Strong chromatic index of graphs with maximum degree four

Michael Santana

Joint Work with M. Huang and G. Yu

May 2017