Strong chromatic index of graphs with maximum degree four

Michael Santana

Joint Work with M. Huang and G. Yu

$$
\text { May } 2017
$$

Definition
Given a graph G, a strong edge-coloring is a coloring of $E(G)$ such that every color class forms an induced matching in G.

Definition

Definition

Given a graph G, a strong edge-coloring is a coloring of $E(G)$ such that every color class forms an induced matching in G.

Definition

Definition

Given a graph G, a strong edge-coloring is a coloring of $E(G)$ such that every color class forms an induced matching in G.

Definition

The strong chromatic index of G, denoted by $\boldsymbol{\chi}_{\boldsymbol{s}}^{\prime}(\boldsymbol{G})$, is the minimum number of colors needed for a strong edge-coloring of G.

Bounds

Proposition

For every graph G with maximum degree Δ,

$$
\Delta \leq \chi^{\prime}(G) \leq \chi_{s}^{\prime}(G)
$$

Bounds

Proposition

For every graph G with maximum degree Δ,

$$
\Delta \leq \chi^{\prime}(G) \leq \chi_{s}^{\prime}(G) \leq 2 \Delta(\Delta-1)+1
$$

Bounds

Proposition

For every graph G with maximum degree Δ,

$$
\Delta \leq \chi_{s}^{\prime}(G) \leq 2 \Delta^{2}
$$

Bounds

Proposition

For every graph G with maximum degree Δ,

$$
\Delta \leq \chi_{s}^{\prime}(G) \leq 2 \Delta^{2}
$$

- The lower bound is best possible due to $K_{1, \Delta}$.

Bounds

Proposition

For every graph G with maximum degree Δ,

$$
\Delta \leq \chi_{s}^{\prime}(G) \leq 2 \Delta^{2} .
$$

- The lower bound is best possible due to $K_{1, \Delta}$.
- The order of magnitude of the upper bound is also best possible as

$$
\chi_{s}^{\prime}\left(K_{\Delta+1}\right)=\binom{\Delta+1}{2} \approx \frac{1}{2} \Delta^{2} .
$$

Conjecture

Conjecture (Erdős-Nešetřil '85)

For any graph G with maximum degree Δ,
$\chi_{s}^{\prime}(G) \leq \begin{cases}\frac{5}{4} \Delta^{2}, & \text { for even } \Delta \\ \frac{5}{4} \Delta^{2}-\frac{1}{2} \Delta+\frac{1}{4}, & \text { for odd } \Delta\end{cases}$

Blow-Up of C_{5}

$5 / 16$

$\chi_{s}^{\prime}\left(\right.$ Blow-up of $\left.C_{5}\right)= \begin{cases}\frac{5}{4} \Delta^{2}, & \text { for even } \Delta \\ \frac{5}{4} \Delta^{2}-\frac{1}{2} \Delta+\frac{1}{4}, & \text { for odd } \Delta\end{cases}$

Blow-Up of C_{5}

$$
\chi_{s}^{\prime}\left(\text { Blow-up of } C_{5}\right)= \begin{cases}\frac{5}{4} \Delta^{2}, & \text { for even } \Delta \\ \frac{5}{4} \Delta^{2}-\frac{1}{2} \Delta+\frac{1}{4}, & \text { for odd } \Delta\end{cases}
$$

- If G is $\left(2 K_{2}\right)$-free, then $\chi_{s}^{\prime}(G)=|E(G)|$.

Blow-Up of C_{5}

$\chi_{s}^{\prime}\left(\right.$ Blow-up of $\left.C_{5}\right)= \begin{cases}\frac{5}{4} \Delta^{2}, & \text { for even } \Delta \\ \frac{5}{4} \Delta^{2}-\frac{1}{2} \Delta+\frac{1}{4}, & \text { for odd } \Delta\end{cases}$

- If G is $\left(2 K_{2}\right)$-free, then $\chi_{s}^{\prime}(G)=|E(G)|$.

Theorem (Chung-Gyárfás-Trotter-Tuza '90)

The number of edges in a $\left(2 K_{2}\right)$-free graph with max degree Δ is at most $\begin{cases}\frac{5}{4} \Delta^{2}, & \text { for even } \Delta \\ \frac{5}{4} \Delta^{2}-\frac{1}{2} \Delta+\frac{1}{4}, & \text { for odd } \Delta .\end{cases}$ Additionally, the blow-up of C_{5} is the unique extremal graph.

Conjecture

Conjecture (Erdős-Nešetřil '85)

For any graph G with maximum degree Δ,
$\chi_{s}^{\prime}(G) \leq \begin{cases}\frac{5}{4} \Delta^{2}, & \text { for even } \Delta \\ \frac{5}{4} \Delta^{2}-\frac{1}{2} \Delta+\frac{1}{4}, & \text { for odd } \Delta\end{cases}$

Conjecture

Conjecture (Erdős-Nešetřil '85)

For any graph G with maximum degree Δ,
$\chi_{s}^{\prime}(G) \leq \begin{cases}\frac{5}{4} \Delta^{2}, & \text { for even } \Delta \\ \frac{5}{4} \Delta^{2}-\frac{1}{2} \Delta+\frac{1}{4}, & \text { for odd } \Delta\end{cases}$

- $\chi_{s}^{\prime}(G) \leq 1.998 \Delta^{2}($ Molloy-Reed '97)

Conjecture

Conjecture (Erdős-Nešetřil '85)

For any graph G with maximum degree Δ,
$\chi_{s}^{\prime}(G) \leq \begin{cases}\frac{5}{4} \Delta^{2}, & \text { for even } \Delta \\ \frac{5}{4} \Delta^{2}-\frac{1}{2} \Delta+\frac{1}{4}, & \text { for odd } \Delta\end{cases}$

- $\chi_{s}^{\prime}(G) \leq 1.998 \Delta^{2}$ (Molloy-Reed '97)
- $\chi_{s}^{\prime}(G) \leq 1.93 \Delta^{2}$ (Bruhn-Joos '15)

Conjecture

Conjecture (Erdős-Nešetřil '85)

For any graph G with maximum degree Δ,
$\chi_{s}^{\prime}(G) \leq \begin{cases}\frac{5}{4} \Delta^{2}, & \text { for even } \Delta \\ \frac{5}{4} \Delta^{2}-\frac{1}{2} \Delta+\frac{1}{4}, & \text { for odd } \Delta\end{cases}$

- $\chi_{s}^{\prime}(G) \leq 1.998 \Delta^{2}$ (Molloy-Reed '97)
- $\chi_{s}^{\prime}(G) \leq 1.93 \Delta^{2}$ (Bruhn-Joos '15)
- $\chi_{s}^{\prime}(G) \leq 1.835 \Delta^{2}$ (Bonamy-Perrett-Postle '17)

Conjecture

Conjecture (Erdős-Nešetřil '85)

For any graph G with maximum degree Δ,
$\chi_{s}^{\prime}(G) \leq \begin{cases}\frac{5}{4} \Delta^{2}, & \text { for even } \Delta \\ \frac{5}{4} \Delta^{2}-\frac{1}{2} \Delta+\frac{1}{4}, & \text { for odd } \Delta\end{cases}$

- $\chi_{s}^{\prime}(G) \leq 1.998 \Delta^{2}$ (Molloy-Reed '97)
- $\chi_{s}^{\prime}(G) \leq 1.93 \Delta^{2}$ (Bruhn-Joos '15)
- $\chi_{s}^{\prime}(G) \leq 1.835 \Delta^{2}$ (Bonamy-Perrett-Postle ‘17)
- Proven for $\Delta=3$ (Andersen ‘92, Horák-Qing-Trotter '93)

Conjecture

Conjecture (Erdős-Nešetřil '85)

For any graph G with maximum degree Δ,
$\chi_{s}^{\prime}(G) \leq \begin{cases}\frac{5}{4} \Delta^{2}, & \text { for even } \Delta \\ \frac{5}{4} \Delta^{2}-\frac{1}{2} \Delta+\frac{1}{4}, & \text { for odd } \Delta\end{cases}$

- $\chi_{s}^{\prime}(G) \leq 1.998 \Delta^{2}$ (Molloy-Reed '97)
- $\chi_{s}^{\prime}(G) \leq 1.93 \Delta^{2}$ (Bruhn-Joos '15)
- $\chi_{s}^{\prime}(G) \leq 1.835 \Delta^{2}$ (Bonamy-Perrett-Postle ‘17)
- Proven for $\Delta=3$ (Andersen ‘92, Horák-Qing-Trotter ‘93)
- For $\Delta=4, \chi_{s}^{\prime}(G) \leq 22$ (Cranston ‘06)

Conjecture

Conjecture (Erdős-Nešetřil '85)

For any graph G with maximum degree Δ,
$\chi_{s}^{\prime}(G) \leq \begin{cases}\frac{5}{4} \Delta^{2}, & \text { for even } \Delta \\ \frac{5}{4} \Delta^{2}-\frac{1}{2} \Delta+\frac{1}{4}, & \text { for odd } \Delta\end{cases}$

- $\chi_{s}^{\prime}(G) \leq 1.998 \Delta^{2}$ (Molloy-Reed '97)
- $\chi_{s}^{\prime}(G) \leq 1.93 \Delta^{2}$ (Bruhn-Joos '15)
- $\chi_{s}^{\prime}(G) \leq 1.835 \Delta^{2}$ (Bonamy-Perrett-Postle ‘17)
- Proven for $\Delta=3$ (Andersen ‘92, Horák-Qing-Trotter ‘93)
- For $\Delta=4, \chi_{s}^{\prime}(G) \leq 22$ (Cranston '06)
- For $\Delta=4, \chi_{s}^{\prime}(G) \leq 21$ (Huang-S-Yu ‘17++)

Proof Sketch

Theorem (Huang-S-Yu '17++)
If G is a multigraph with $\Delta(G) \leq 4$, then $\chi_{s}^{\prime}(G) \leq 21$.

Proof Sketch

Theorem (Huang-S-Yu '17++)
If G is a multigraph with $\Delta(G) \leq 4$, then $\chi_{s}^{\prime}(G) \leq 21$.

- Among all counterexamples, choose G so that $|V(G)|+|E(G)|$ is minimized.

Proof Sketch

Theorem (Huang-S-Yu '17++)
If G is a multigraph with $\Delta(G) \leq 4$, then $\chi_{s}^{\prime}(G) \leq 21$.

- Among all counterexamples, choose G so that $|V(G)|+|E(G)|$ is minimized.
- So $\Delta(G) \leq 4$ and $\chi_{s}^{\prime}(G)>21$.

Proof Sketch

Properties of a Minimal Counterexample G

- G is 4-regular, simple, etc.

Proof Sketch

Properties of a Minimal Counterexample G

- G is 4-regular, simple, etc.
- G has girth at least 6 .

Proof Sketch

Properties of a Minimal Counterexample G

- G is 4-regular, simple, etc.
- G has girth at least 6 .
- G has no edge-cut of size at most 3 .

Proof Sketch

Properties of a Minimal Counterexample G

- G is 4-regular, simple, etc.
- G has girth at least 6 .
- G has no edge-cut of size at most 3 .

How to Color the Edges of G

Proof Sketch

Properties of a Minimal Counterexample G

- G is 4-regular, simple, etc.
- G has girth at least 6 .
- G has no edge-cut of size at most 3 .

How to Color the Edges of G

- Partition the vertices of G into three sets (L, M, and R), where M is a cut-set

Proof Sketch

Properties of a Minimal Counterexample G

- G is 4-regular, simple, etc.
- G has girth at least 6 .
- G has no edge-cut of size at most 3 .

How to Color the Edges of G

- Partition the vertices of G into three sets (L, M, and R), where M is a cut-set
- Show that M contains some special vertices.

Proof Sketch

Properties of a Minimal Counterexample G

- G is 4-regular, simple, etc.
- G has girth at least 6 .
- G has no edge-cut of size at most 3 .

How to Color the Edges of G

- Partition the vertices of G into three sets (L, M, and R), where M is a cut-set
- Show that M contains some special vertices.
- Case analysis and color.

$$
00
$$

$$
\theta 0
$$

$$
00
$$

$$
00
$$

Open Problems

Conjecture (Erdős-Nešetřil '85)

If $\Delta(G) \leq 4$, then $\chi_{s}^{\prime}(G) \leq 20$.

Open Problems

Conjecture (Erdős-Nešetřil '85)
If $\Delta(G) \leq 4$, then $\chi_{s}^{\prime}(G) \leq 20$.

Conjecture (Faudree-Gyárfás-Schelp-Tuza '90)

Suppose G is a bipartite graph with maximum degree Δ.

Open Problems

Conjecture (Erdős-Nešetřil '85)
If $\Delta(G) \leq 4$, then $\chi_{s}^{\prime}(G) \leq 20$.

Conjecture (Faudree-Gyárfás-Schelp-Tuza '90)

Suppose G is a bipartite graph with maximum degree Δ.
(1) $\chi_{s}^{\prime}(G) \leq \Delta^{2}$.

Open Problems

Conjecture (Erdős-Nešetřil '85)
If $\Delta(G) \leq 4$, then $\chi_{s}^{\prime}(G) \leq 20$.

Conjecture (Faudree-Gyárfás-Schelp-Tuza '90)

Suppose G is a bipartite graph with maximum degree Δ.
(1) $\chi_{s}^{\prime}(G) \leq \Delta^{2}$.
(2) If $\Delta \leq 3$ and G has girth at least six, then $\chi_{s}^{\prime}(G) \leq 7$

Open Problems

Conjecture (Erdős-Nešetřil '85)

If $\Delta(G) \leq 4$, then $\chi_{s}^{\prime}(G) \leq 20$.

Conjecture (Faudree-Gyárfás-Schelp-Tuza '90)

Suppose G is a bipartite graph with maximum degree Δ.
(1) $\chi_{s}^{\prime}(G) \leq \Delta^{2}$.
(2) If $\Delta \leq 3$ and G has girth at least six, then $\chi_{s}^{\prime}(G) \leq 7$
(3) If $\Delta \leq 3$ and G has 'large' girth, then $\chi_{s}^{\prime}(G) \leq 5$

Open Problems

Conjecture (Erdős-Nešetřil '85)

If $\Delta(G) \leq 4$, then $\chi_{s}^{\prime}(G) \leq 20$.

Conjecture (Faudree-Gyárfás-Schelp-Tuza '90)

Suppose G is a bipartite graph with maximum degree Δ.
(1) $\chi_{s}^{\prime}(G) \leq \Delta^{2}$.
(2) If $\Delta \leq 3$ and G has girth at least six, then $\chi_{s}^{\prime}(G) \leq 7$
(3) If $\Delta \leq 3$ and G has 'large' girth, then $\chi_{s}^{\prime}(G) \leq 5$

Theorem (Faudree et al. '90)

If G is a planar graph with maximum degree Δ, then

$$
4 \Delta-4 \leq \chi_{s}^{\prime}(G) \leq 4 \Delta+4
$$

MIGHTY LVIII

Grand Valley State University
 October 6-7, 2017

Plenary Speakers:
Doug West David Galvin
www.gvsu.edu/math/mighty-Iviii MIGHTY_LVIII@ gvsu.edu

Thanks for your attention!

Strong chromatic index of graphs with maximum degree four

Michael Santana

Joint Work with M. Huang and G. Yu

$$
\text { May } 2017
$$

