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Definition

Definition
Given a graph G, a strong edge-coloring is a coloring
of E(G) such that every color class forms an induced
matching in G.
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Definition

Definition
Given a graph G, a strong edge-coloring is a coloring
of E(G) such that every color class forms an induced
matching in G.

Definition
The strong chromatic index of G, denoted by χ′s(G),
is the minimum number of colors needed for a strong
edge-coloring of G.
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Bounds

Proposition

For every graph G with maximum degree ∆,

∆ ≤ χ′(G) ≤ χ′
s
(G)

The lower bound is best possible due to K1,∆.
The order of magnitude of the upper bound is also
best possible as

χ′
s
(K∆+1) =

�

∆ + 1

2

�

≈
1

2
∆2.
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Conjecture

Conjecture (Erdős-Nešetřil ‘85)

For any graph G with maximum degree ∆,

χ′
s
(G) ≤

¨5
4∆2, for even ∆
5
4∆2 − 1

2∆ + 1
4 , for odd ∆
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Blow-Up of C5
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Blow-Up of C5

χ′
s
(Blow-up of C5) =

¨5
4∆2, for even ∆
5
4∆2 − 1

2∆ + 1
4 , for odd ∆

If G is (2K2)-free, then χ′
s
(G) = |E(G)|.

Theorem (Chung-Gyárfás-Trotter-Tuza ‘90)

The number of edges in a (2K2)-free graph with max

degree ∆ is at most

¨5
4∆2, for even ∆
5
4∆2 − 1

2∆ + 1
4 , for odd ∆.

Additionally, the blow-up of C5 is the unique extremal
graph.
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Conjecture

Conjecture (Erdős-Nešetřil ‘85)

For any graph G with maximum degree ∆,

χ′
s
(G) ≤

¨5
4∆2, for even ∆
5
4∆2 − 1

2∆ + 1
4 , for odd ∆

χ′
s
(G) ≤ 1.998∆2 (Molloy-Reed ‘97)

χ′
s
(G) ≤ 1.93∆2 (Bruhn-Joos ‘15)

χ′
s
(G) ≤ 1.835∆2 (Bonamy-Perrett-Postle ‘17)

Proven for ∆ = 3 (Andersen ‘92, Horák-Qing-Trotter
‘93)
For ∆ = 4, χ′

s
(G) ≤ 22 (Cranston ‘06)

For ∆ = 4, χ′
s
(G) ≤ 21 (Huang-S-Yu ‘17++)
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Proof Sketch

Theorem (Huang-S-Yu ‘17++)

If G is a multigraph with ∆(G) ≤ 4, then χ′
s
(G) ≤ 21.

Among all counterexamples, choose G so that
|V(G)|+ |E(G)| is minimized.
So ∆(G) ≤ 4 and χ′

s
(G) > 21.
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Proof Sketch

Properties of a Minimal Counterexample G

G is 4-regular, simple, etc.

G has girth at least 6.
G has no edge-cut of size at most 3.

Partition the vertices of G into three sets (L,M, and
R), where M is a cut-set
Show that M contains some special vertices.
Case analysis and color.
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Open Problems

Conjecture (Erdős-Nešetřil ‘85)

If ∆(G) ≤ 4, then χ′
s
(G) ≤ 20.

Conjecture (Faudree-Gyárfás-Schelp-Tuza ‘90)

Suppose G is a bipartite graph with maximum degree ∆.

1 χ′
s
(G) ≤ ∆2.

2 If ∆ ≤ 3 and G has girth at least six, then χ′
s
(G) ≤ 7

3 If ∆ ≤ 3 and G has ‘large’ girth, then χ′
s
(G) ≤ 5

Theorem (Faudree et al. ‘90)
If G is a planar graph with maximum degree ∆, then

4∆− 4 ≤ χ′
s
(G) ≤ 4∆ + 4.
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If ∆(G) ≤ 4, then χ′
s
(G) ≤ 20.

Conjecture (Faudree-Gyárfás-Schelp-Tuza ‘90)

Suppose G is a bipartite graph with maximum degree ∆.

1 χ′
s
(G) ≤ ∆2.

2 If ∆ ≤ 3 and G has girth at least six, then χ′
s
(G) ≤ 7

3 If ∆ ≤ 3 and G has ‘large’ girth, then χ′
s
(G) ≤ 5

Theorem (Faudree et al. ‘90)
If G is a planar graph with maximum degree ∆, then

4∆− 4 ≤ χ′
s
(G) ≤ 4∆ + 4.

13 / 16



Open Problems

Conjecture (Erdős-Nešetřil ‘85)
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Thanks for your
attention!

15 / 16



Strong chromatic index of graphs with
maximum degree four

Michael Santana

Joint Work with M. Huang and G. Yu

May 2017

16 / 16


