Arc Graphs

Intro

Posete

Arc Graphs and Posets 29th Cumberland Conference, Vanderbilt U.

Danny Rorabaugh

Queen's University

2017 May 20

Coauthors, Royal Military College of Canada

Arc Graphs

Intro Chromatic Posets

Claude Tardif

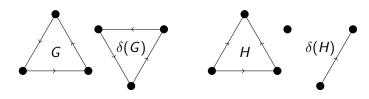
David Wehlau

Imed Zaguia

What is an arc graph?

Arc Graphs

Intro


Arc graphs are line graphs of directed graphs.

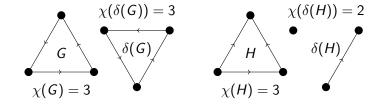
Definition

The arc graph $\delta(G)$ of digraph G is the digraph with

$$V(\delta(G)) = A(G);$$

$$A(\delta(G)) = \{uvw \mid uv, vw \in A(G)\}.$$

Examples:



Chromatic number of a digraph

Arc Graphs

Chromatic

A proper coloring of a digraph is indifferent to arc direction.

Theorem (Entringer-Harner, 1972)

(i) If $\chi(\delta(G)) \leq n$, then $\chi(G) \leq 2^n$. (ii) If $\chi(G) \leq {n \choose \lfloor n/2 \rfloor}$, then $\chi(\delta(G)) \leq n$.

Arc graph of symmetric graphs

Arc Graphs

Intro

Chromatic Posets Something nice happens in the case of symmetric digraphs:

Theorem (Poljak-Rödl, 1981)

If G is an undirected graph, then

$$\chi(\delta(G)) = \min\left\{n \mid \chi(G) \le \binom{n}{\lfloor n/2 \rfloor}\right\}$$

For undirected G, $\chi(\delta(G))$ depends only on $\chi(G)$ and not on the structure of G. What about $\chi(\delta(\delta(G)))$?

What about $\delta^{\ell}(G)$?

Arc Graphs

Chromatic

We show that $\chi(\delta^{\ell}(G))$ only depends on $\chi(G)$ for all ℓ when G is symmetric.

To do this, view δ as a digraph functor and define a "right adjoint" δ_R such that:

 $(\exists \text{ homom. } \delta(G) \rightarrow H) \iff (\exists \text{ homom. } G \rightarrow \delta_R(H)).$

Once we define δ_R ,

 $\delta^{\ell}(G)$ is *n*-colorable \updownarrow there exists a homomorphism $\delta^{\ell}(G) \to K_n$ \updownarrow there exists a homomorphism $G \to \delta^{\ell}_R(K_n)$.

Transitive digraphs

Arc Graphs

Posets

How can we deal with $\delta_R^{\ell}(K_n)$?

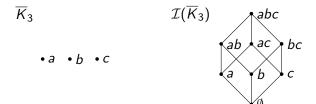
Posets!

 K_n is the nondomination digraph $\mathcal{N}(\overline{K_n})$ of the *n*-element antichain.

Definition

The nondomination digraph $\mathcal{N}(P)$ of poset P has

 $V(\mathcal{N}(G)) = V(P);$ $A(\mathcal{N}(G)) = \{uv \mid u \geq v \text{ in } P\}.$


Get down with the posets

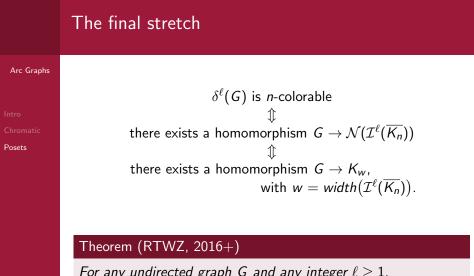
Arc Graphs

Posets

How do we deal with $\delta_R^{\ell}(\mathcal{N}(\overline{K_n}))$?

 $\mathcal{I}(P)$ is the poset of ideals/downsets of P, ordered by inclusion. For example:

Lemma (RTWZ, 2016+)

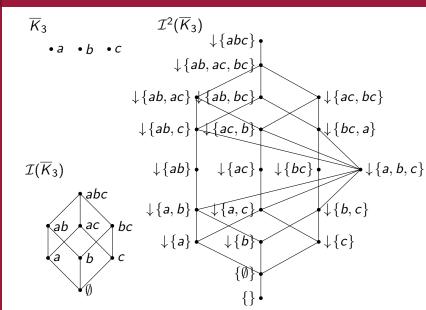

For any poset P, there exist homomorphisms $\delta_R(\mathcal{N}(P)) \longleftrightarrow \mathcal{N}(\mathcal{I}(P)).$

	Almost there
Arc Graphs	
	$\delta^\ell(G)$ is <i>n</i> -colorable
Intro	\$
Chromatic	there exists a homomorphism ${\mathcal G} o \delta^\ell_R({\mathcal K}_n)$
Posets	\$
	there exists a homomorphism $\mathcal{G} o \mathcal{N}(\mathcal{I}^{\ell}(\overline{K_n}))$.
	If digraph G is symmetric, we need only consider the symmetric is a symmetric of the sym

If digraph G is symmetric, we need only consider the symmetric edges of $\mathcal{N}(\mathcal{I}^{\ell}(\overline{K_c}))$.

Lemma

For poset P, there exist homomorphisms between $(\mathcal{N}(P) \text{ restricted to its symmetric edges})$ and $(K_w \text{ with } w \text{ the width of } P)$.



$$\chi(\delta^{\ell}(G)) = \min\left\{n \mid \chi(G) \leq width(\mathcal{I}^{\ell}(\overline{K_n}))\right\}.$$

Examples of $\mathcal{I}^{\ell}(\overline{K_n})$

Arc Graphs

Intro Chromat Posets

