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Finding the Expected Value of Random Quantities

I Finding the expected value of random quantities is often
non-trivial!

I This occurs when the quantity in question is unexpectedly
nuanced;

I For example, if we have two binary strings of length n, then it
is natural to ask what can be said about the length Ln of their
longest common subsequence.

I This could be of biological relevance in the case of two DNA
strings.

I Subadditivity arguments are easy to apply to prove that
L = limn→∞

E(Ln)
n exists.
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More on the LCS and LIS problems

I The value of the limit L, however, is still not known!

I The best known bounds are, roughly, 0.78 ≤ L ≤ 0.82.

I The variance is of order n and in 2014, Houdré proved a CLT

I More was known earlier about the length of the longest
increasing subsequence of a random permutation, the study of
which culminated in the celebrated paper of Baik, Deift, and
Johansson.

I But even here, calculation of the expected value was
non-trivial.

I The combined results of Vershik and Kerov; Logan and Shepp
from the 1970’s gave

lim
ELn√

n
= 2.
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Tracy Widom Distribution

This was followed by concentration results—due to Bollobas and
Janson; Kim; and Frieze among others—that revealed that the
standard deviation of the size of the longest monotone subsequence
(LMS) is of order Θ(n1/6), and culminated with the work of Baik,
Deift and Johansson that exhibited the limiting law of a normalized
version of the LMS. This is often cited as one of the crowning
achievements of Probability/Analysis of the 20th Century. An AMS
Notices article of Aldous and Diaconis gives a great summary.
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The Two Examples and our Problem

I The above two examples are of two problems about which a
lot is known after a slow start.

I We consider a random binary string and ask how many
subsequences are embedded in it. We will make the slow start.

I For example the string 11111 has 5 subsequences, namely 1,
11, 111, 1111, and 11111, whereas

I The string 10110 contains the subsequences 0, 1, 01, 10, 11,
00, 100, 101, 110, 111, 011, 010, 1011, 1010, 1110, 0110,
and 10110.

I What is the average case behavior?
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Existence

In our submitted paper, we proved

Theorem
Let s1, s2, . . . be a sequence of independent and identically
distributed random variables with
Pr(s1 = j) = αj , j = 1, 2, . . . , d ,

∑
j αj = 1. Set α = (α1, . . . , αd).

Let φ(Sn) be the number of distinct subsequences in
Sn = (s1, . . . , sn). Let ψ(n) = E (φ(Sn)). Then there exists
c = cd ,α ≥ 1 such that

ψ(n)1/n → c; n→∞,

where c = 1 iff d ≥ 1 and maxj αj = 1.
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Discussion

I The above theorem is hardly surprising, but raises other
questions, namely as to whether the “true” numbers contain,
additionally, polynomial factors as do several Stanley-Wilf
limits in the theory of pattern avoidance (note that there are
no polynomial factors in our next result with d = 2) Also, in
general the existence of limits is not automatic, as seen by the
following example:

I Assume that n balls are independently thrown into an infinite
array of boxes so that box j is hit with probability 1/2j for
j = 1, 2, . . .. Let πn be the probability that the largest
occupied box has a single ball in it. Then, as proved by
several people in the 1990’s, limn→∞ πn does not exist, and
lim supn→∞ πn and lim infn→∞ πn differ in the fourth decimal
place! Such behavior does not however occur in our context,
as the theorem states.
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The case of d = 2

Theorem
Suppose Pr[si = 1] = α ∈ [0, 1] for all 1 ≤ i ≤ n, and
Pr[si = 0] = 1− α, α 6= 0, 1. Then we have

φ(Sn) =
A + B

2
√
α(1− α)

,

where

A =
(
1− 2

√
α(1− α)

)(
1−

(
1−

√
α(1− α)

)n)
and

B =
(
1 + 2

√
α(1− α)

)((
1 +

√
α(1− α)

)n − 1
)
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Result was Previously Known for α = 0.5

It was shown in a 2004 EJC paper of Flaxman et al.that when
Pr[si = 1] = .5 then E [φ(Sn)] ∼ k(32)n for a constant k . Later,
Collins improved this result by finding that E [φ(Sn)] = 2(32)n − 1.
We generalized this in the previous theorem to non-uniform letter
generation. Moreover, our method for finding this formula is very
different from that used by Collins. We defined a new property of a
string - the number of new distinct subsequences - and then use
these numbers as the entries in a binary tree. Our formula is then
given as a weighted sum of the entries in this tree. This procedure
is a modification of a 2008 method due to Elzinga, Rahmann, and
Wang.
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Arbitrary d and Two-state Markov Chains

We are done with strings on a binary alphabet generated by a
random process in which the probability that any given element
was 1 was fixed at α. In the paper, we generalized this in two ways.
First, we considered strings on the alphabet {1, 2, ..., d} = [d ]
where each letter is independently j with probability αj for all
j ∈ [d ]. After that, we returned to binary strings, but those
generated according to a two-state Markov chain; in particular, if a
letter follows a 1, then it is 1 with probability α, but if it follows a
0, then it is 1 with probability β. In both these cases, we found
recurrences for the expected new weight contributed by the nth

letter, which led to explicit matrix equations for that expected new
weight. Unfortunately, we have not yet been able able to find a
closed-form formula for the total expected number of subsequences
like we did for d = 2 (independent case). But we know that in the
first of these two generalizations, the limit exists!
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Open Problem 1

One of the central questions in the Permutation Patterns
community is that of packing patterns and words in larger
ensembles; see, e.g., a paper by Burstein et al. In a similar vein, we
have the question of superpatterns, i.e., strings that contain all the
patterns or words of a smaller size; see, e.g., the same paper. A
distinguished question in this area is the one posed by Alon, who

conjectured that a random permutation on [n] =
[
k2

4 (1 + o(1))
]

contains all the permutations of length k with probability
asymptotic to 1 as n→∞. In the present context, a similar
question might be: What is the largest k so that each element of
{0, 1}k appears as a subsequence of a binary random string with
high probability?
Also, the basic question studied in this paper appears to not have
been considered in the context of permutations; i.e., one might
ask: What is the expected number of patterns present in a random
permutation on [n]?
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Open Question 2

In the baseline case of binary equiprobable letter generation, we
have that E (φ(Sn)) ∼ 2(1.5)n, which implies that the average
number of occurrence of a subsequence is 1

22n/(1.5)n = 1
2(4/3)n.

Now a subsequence such as 1 occurs “just” around n/2 times, and
the sequence 11 . . . 1 with n/2 ones occurs an average of( n
n/2

)
· 1
2n/2

times, which simplifies, via Stirling’s formula, to around
√

2
n
, ignoring constants and polynomial factors. The same is true

of any sequence of length n/2; it is, on average, over-represented.
We might ask, however, what length sequences occur more-or-less
an average number (1.33)n of times. We can parametrize by
setting k = xn and equating the expected number of occurrences
of a k-long sequence to (1.33)n. We seek, in other words, the
solution to the equation(

n

xn

)
1

2xn
= (1.33)n.
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Ignoring non-exponential terms and employing Stirling’s
approximation, the above reduces to

2xxx(1− x)1−x = 0.75,

which, via Wolfram Alpha, yields the solutions x = .123 . . . and
x = .570 . . .!
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