Resonance Polynomials of Cata-condensed Hexagonal Systems

Xi Chen

Joint work with Dong Ye & Xiaoya Zha

Middle Tennessee State University

May 21, 2017

A *hexagonal system* is a finite 2-connected plane bipartite graph in which each interior face is bounded by a regular hexagon of side length one.

Backgrouds Kekulé count Definitions in Graph Theory

Benzenoid hydrocarbon:

Graphene:

Backgrouds Kekulé count Definitions in Graph Theory

- Homo-Lumo Gap (Δ = λ_H − λ_L, difference between two middle eigenvalues)
- Kekulé count (# of perfect matchings)
- Clar number (the maximum # of disjoint hexagons).

- Homo-Lumo Gap (△ = λ_H − λ_L, difference between two middle eigenvalues)
- Kekulé count (# of perfect matchings)
- Clar number (the maximum # of disjoint hexagons)

- Homo-Lumo Gap (△ = λ_H − λ_L, difference between two middle eigenvalues)
- Kekulé count (# of perfect matchings)
- Clar number (the maximum # of disjoint hexagons)

- Homo-Lumo Gap (△ = λ_H − λ_L, difference between two middle eigenvalues)
- Kekulé count (# of perfect matchings)
- Clar number (the maximum # of disjoint hexagons)

F. J. Rispoli gave a method to compute Kekulé count (# of perfect matchings) in hexagonal systems.

• Let $A(a_{ij})$ be the biadjacency matrix of a hexagonal system *G*.

$$\Phi(G) = |det(A)|.$$

Note: $\Phi(G)$ is the number of perfect matchings of G.

Backgrouds Kekulé count Definitions in Graph Theory

A hexagonal system is *cata-condensed* if all vertices appear on its boundary.

Backgrouds Kekulé count Definitions in Graph Theory

- A set of disjoint hexagons \mathcal{H} of a hexagonal system *G* is a *resonant set* if a subgraph *G'* consisting of deleting all vertices covered by \mathcal{H} from *G* has a perfect matching.
- A resonant set is a *forcing resonant set* if G' has a unique perfect matching.

Disjoint hexagonal set: {1,4}

- A set of disjoint hexagons H of a hexagonal system G is a resonant set if a subgraph G' consisting of deleting all vertices covered by H from G has a perfect matching.
- A resonant set is a *forcing resonant set* if G' has a unique perfect matching.

Disjoint hexagonal set: {1,4}

- (Zheng & Hanse, 1993)
 - The Clar number problem of hexagonal system can be solved by an integer program.
- (Abeledo & Atkinson, 2006) The Clar number problem of hexagonal system can be solved by an linear programming which was conjectured by Zheng & Hanse.

- (Zheng & Chen, 1985)
 A maximum resonant set of a hexagonal system is a forcing resonant set.
- The *spectrum* of forcing resonant set can be defined as: *spec_{FRS}(G)* = {|*H*| : *H* is a forcing resonant set of *G*}.

- (Zheng & Chen, 1985)
 A maximum resonant set of a hexagonal system is a forcing resonant set.
- The spectrum of forcing resonant set can be defined as: spec_{FRS}(G) = {|H| : H is a forcing resonant set of G}.

Backgrouds Kekulé count Definitions in Graph Theory

Definition 1

Let G be a cata-condensed hexagonal system. The forcing resonant polynomial $P_G(x)$ can be defined as

$$P_G(x) = \sum_{i=0}^{cl(G)} a_i x^i \tag{1}$$

where a_i is the number of forcing resonant sets of size *i*.

- (Zhang, Chen, Guo & Gutman, 1991)
 A hexagonal system *H* has *cl*(*H*) = 1 if and only if *H* is a linear chain.
- $spec_{FRS}(L_k) = \{1\}$

Backgrouds Kekulé count Definitions in Graph Theory

The coefficient vector of G:

$$a = egin{bmatrix} a_{cl(G)} \ a_{cl(G)-1} \ dots \ a_{1} \end{bmatrix}$$

where a_i is the coefficient of x^i in $P_G(x)$, then *a* is called the the *coefficient vector* of *G*.

Proposition 1

Let G be a graph of disjoint union of cata-condensed hexagonal systems $G_1, G_2, ..., G_k$. Then

$$P_G(x) = \prod_{i=1}^k P_{G_i}(x).$$
 (2)

A pendant chain L:

Theoretical part

Lemma 2

Let G be a cata-condensed hexagonal system. Every forcing resonant set of G contains exactly one hexagon of L if L is not a non-pendant chain with two hexagons.

Theoretical part

Corollary 3

Every forcing resonant set \mathcal{H} hits every maximal linear hexagonal chain.

Lemma 4

Let G be a cata-condensed hexagonal system. Let A be a hexagon of G. Then,

$$P_G(x) = P_G(x, A^C) + P_G(x, A)$$

Theoretical part

H'

H,

Theorem 5

Let G be a cata-condensed hexagonal system and L be a pendant chain with r hexagons. Let H be the subgraph consisting of all hexagons of G except these in L, and H' be the subgraph of H consisting of all hexagons except these contained in the maximal linear chains of G with a common hexagon with L. Then,

$$P_G(x) = (r-1)xP_H(x) + xP_{H'}(x)$$
(3)

Algorithm

How to construct the weighted tree:

Steps:

• Start with a pendant chain *L*. *L* corresponds with the fist vertex in (*T*, *w*).

Algorithm

- The children of a vertex *v* in (*T*, *w*) are defined to be the maximal linear hexagonal chains which share a common hexagon with the corresponding chain of the vertex *v*.
- Continue to do step 2 until the number of vertices equals the number of maximal linear hexagon chains.

Note that the vertex which corresponds with the initial pendant hexagonal chain *L* is the root of (T, w).

function cal_poly

if Tree is empty then

$$P_{tree}(x) = 1;$$

else

Find left subtree and right subtree of the tree T; Find left subtree and right subtree of the left subtree; Find left subtree and right subtree of the right subtree; Recursive formula;

Algorithm

end

end

G. Brinkmann, G. Caporppssi and P. Hansen proposed a method to construct enumerate fusenes and bezenoids in 2002.

00000

Introduction Computing polynomials

olynomials Results Algorithm Conclus

Experiment results and conclusions

Graph number	Polynomial	Clar number	Coefficient vector	x coordinate	HOMO-LUMO gap	$\Phi(G)$
1	$x^4 + 2x^3$	4	[1 2 0 0]	15	1.0229	24
2	$x^4 + x^3 + 2x^2$	4	[1 1 2 0]	14	1.0901	23
3	$x^4 + x^3 + 2x^2$	4	[1 1 2 0]	14	1.0727	23
4	$x^4 + x^3 + x^2$	4	[1 1 1 0]	13	1.0449	22
5	$5x^3$	3	[0 5 0 0]	12	1.0929	22
6	$5x^3$	3	[0 5 0 0]	12	1.0083	22
7	$5x^3$	3	[0 5 0 0]	12	0.9411	22
8	$4x^3 + x^2$	3	[0 4 1 0]	11	1.0785	21
9	$4x^3 + x^2$	3	[0 4 1 0]	11	1.0133	21
10	$4x^3 + x^2$	3	[0 4 1 0]	11	1.0044	21
11	$4x^3 + x^2$	3	[0 4 1 0]	11	0.9969	21
12	$4x^3 + x^2$	3	[0 4 1 0]	11	0.9428	21
13	$4x^3 + x^2$	3	[0 4 1 0]	11	0.8933	20
14	$4x^3 + x^2$	3	[0 4 1 0]	11	0.8902	20
15	$4x^3 + x$	3	[0 4 0 1]	10	1.0115	19
16	$3x^3 + 2x^2$	3	[0 3 2 0]	9	0.9013	19
17	$3x^3 + 2x^2$	3	[0 3 2 0]	9	0.9011	19
18	$3x^3 + 2x^2$	3	[0 3 2 0]	9	0.8755	19
19	$3x^3 + 2x^2$	3	[0 3 2 0]	9	0.8571	19
20	$3x^3 + 2x^2$	3	[0 3 2 0]	9	0.7910	19
21	$3x^3 + x$	3	[0 3 0 1]	8	0.7114	17
22	$2x^3 + 4x^2$	3	[0 2 4 0]	7	0.8528	18
23	$2x^3 + 4x^2$	3	[0 2 4 0]	7	0.8400	18
24	$2x^3 + 4x^2$	3	[0 2 4 0]	7	0.8387	18
25	$2x^3 + 3x^2$	3	[0 2 3 0]	6	0.8969	17
26	$2x^3 + 3x^2$	3	[0 2 3 0]	6	0.8575	17
27	$2x^3 + 2x^2$	3	[0 2 2 0]	5	0.7213	16
28	$2x^3 + 2x^2$	3	[0 2 2 0]	5	0.7168	16
29	$7x^2$	2	[0 0 7 0]	4	0.6142	14
30	$7x^2$	2	[0 0 7 0]	4	0.6066	14
31	$6x^2 + x$	2	[0 0 6 1]	3	0.6715	13
32	$4x^2 + x$	2	[0 0 4 1]	2	0.4872	11
33	6x	1	[0 0 0 6]	1	0.3387	7

Table III CATA-CONDENSED BENZENOID SYSTEM WITH 6 HEXAGONS

Results Conclusions

Figure 2: Using least square method to fit the data points from tab 3

We obtain the following conclusions by comparing the experiment results:

- The coefficient vector we proposed increases as the HOMO-LUOM gap increases.
- The stability of *G* is relative with the coefficient vector. The one that has larger coefficient vector has better stability.
- The coefficient vector we proposed is a refined indicator than the existing method, Clar number, to predict the stability of *G*.

Results Conclusions

Thanks!