Resonance Polynomials of Cata-condensed Hexagonal Systems

Xi Chen

Joint work with Dong Ye \& Xiaoya Zha

Middle Tennessee State University

May 21, 2017

A hexagonal system is a finite 2-connected plane bipartite graph in which each interior face is bounded by a regular hexagon of side length one.

Introduction
Computing polynomials
Algorithm
Experiment results and conclusions

Benzenoid hydrocarbon:

Graphene:

Question: Is there some connections between structures of these molecules and their chemical stability?

Question: Is there some connections between structures of these molecules and their chemical stability?

- Homo-Lumo Gap ($\triangle=\lambda_{H}-\lambda_{L}$, difference between two middle eigenvalues)
- Kekulé count (\# of perfect matchings)

Clar number (the maximum \# of disjoint hexagons)

Question: Is there some connections between structures of these molecules and their chemical stability?

- Homo-Lumo Gap ($\triangle=\lambda_{H}-\lambda_{L}$, difference between two middle eigenvalues)
- Kekulé count (\# of perfect matchings)
- Clar number (the maximum \# of disjoint hexagons)

Question: Is there some connections between structures of these molecules and their chemical stability?

- Homo-Lumo Gap ($\triangle=\lambda_{H}-\lambda_{L}$, difference between two middle eigenvalues)
- Kekulé count (\# of perfect matchings)
- Clar number (the maximum \# of disjoint hexagons)
F. J. Rispoli gave a method to compute Kekulé count (\# of perfect matchings) in hexagonal systems.
- Let $A\left(a_{i j}\right)$ be the biadjacency matrix of a hexagonal system G.

$$
\Phi(G)=|\operatorname{det}(A)| .
$$

Note: $\Phi(G)$ is the number of perfect matchings of G.

G

A hexagonal system is cata-condensed if all vertices appear on its boundary.

- A set of disjoint hexagons \mathcal{H} of a hexagonal system G is a resonant set if a subgraph G^{\prime} consisting of deleting all vertices covered by \mathcal{H} from G has a perfect matching.
- A resonant set is a forcing resonant set if G^{\prime} has a unique perfect matching.

Disjoint hexagonal set: $\{1,4\}$

- A set of disjoint hexagons \mathcal{H} of a hexagonal system G is a resonant set if a subgraph G^{\prime} consisting of deleting all vertices covered by \mathcal{H} from G has a perfect matching.
- A resonant set is a forcing resonant set if G^{\prime} has a unique perfect matching.

Disjoint hexagonal set: $\{1,4\}$

- (Zheng \& Hanse, 1993)

The Clar number problem of hexagonal system can be solved by an integer program.

- (Abeledo \& Atkinson, 2006)

The Clar number problem of hexagonal system can be solved by an linear programming which was conjectured by Zheng \& Hanse.

- (Zheng \& Chen, 1985) A maximum resonant set of a hexagonal system is a forcing resonant set.

The spectrum of forcing resonant set can be defined as: $\operatorname{spec}_{\text {FRS }}(G)=\{|\mathcal{H}|: \mathcal{H}$ is a forcing resonant set of $G\}$

- (Zheng \& Chen, 1985) A maximum resonant set of a hexagonal system is a forcing resonant set.
- The spectrum of forcing resonant set can be defined as: $\operatorname{spec}_{F R S}(G)=\{|\mathcal{H}|: \mathcal{H}$ is a forcing resonant set of $G\}$.

Definition 1

Let G be a cata-condensed hexagonal system. The forcing resonant polynomial $P_{G}(x)$ can be defined as

$$
\begin{equation*}
P_{G}(x)=\sum_{i=0}^{c /(G)} a_{i} x^{i} \tag{1}
\end{equation*}
$$

where a_{i} is the number of forcing resonant sets of size i.

- (Zhang, Chen, Guo \& Gutman, 1991)

A hexagonal system H has $c l(H)=1$ if and only if H is a linear chain.

- $\operatorname{spec}_{F R S}\left(L_{k}\right)=\{1\}$

G_{1}

G_{2}

The coefficient vector of G :

$$
a=\left[\begin{array}{c}
a_{c l(}(G) \\
a_{c l}(G)-1 \\
\vdots \\
a_{1}
\end{array}\right]
$$

where a_{i} is the coefficient of x^{i} in $P_{G}(x)$, then a is called the the coefficient vector of G.

Proposition 1

Let G be a graph of disjoint union of cata-condensed hexagonal systems $G_{1}, G_{2}, \ldots G_{k}$. Then

$$
\begin{equation*}
P_{G}(x)=\prod_{i=1}^{k} P_{G_{i}}(x) . \tag{2}
\end{equation*}
$$

A pendant chain L :

Lemma 2
Let G be a cata-condensed hexagonal system. Every forcing resonant set of G contains exactly one hexagon of L if L is not a non-pendant chain with two hexagons.

Corollary 3

Every forcing resonant set \mathcal{H} hits every maximal linear hexagonal chain.

Lemma 4
Let G be a cata-condensed hexagonal system. Let A be a hexagon of G. Then,

$$
P_{G}(x)=P_{G}\left(x, A^{C}\right)+P_{G}(x, A)
$$

Theorem 5

Let G be a cata-condensed hexagonal system and L be a pendant chain with r hexagons. Let H be the subgraph consisting of all hexagons of G except these in L, and H^{\prime} be the subgraph of H consisting of all hexagons except these contained in the maximal linear chains of G with a common hexagon with L. Then,

$$
\begin{equation*}
P_{G}(x)=(r-1) x P_{H}(x)+x P_{H^{\prime}}(x) \tag{3}
\end{equation*}
$$

How to construct the weighted tree:

Steps:

- Start with a pendant chain L. L corresponds with the fist vertex in ($T, w)$.
- The children of a vertex v in (T, w) are defined to be the maximal linear hexagonal chains which share a common hexagon with the corresponding chain of the vertex v.
- Continue to do step 2 until the number of vertices equals the number of maximal linear hexagon chains.
Note that the vertex which corresponds with the initial pendant hexagonal chain L is the root of (T, w).
function cal_poly
if Tree is empty then $P_{\text {tree }}(x)=1$;
else
Find left subtree and right subtree of the tree T; Find left subtree and right subtree of the left subtree; Find left subtree and right subtree of the right subtree; Recursive formula;
end
end

Introduction
Computing polynomials
Algorithm
Experiment results and conclusions

Results

Conclusions
G. Brinkmann, G. Caporppssi and P. Hansen proposed a method to construct enumerate fusenes and bezenoids in 2002.

OMONO

Introduction Computing polynomials Algorithm

Results

Conclusions

Experiment results and conclusions

Table III
Cata-condensed Benzenoid System with 6 hexagons

Graph number	Polynomial	Clar number	Coefficient vector	x coordinate	HOMO-LUMO gap	$\Phi(G)$
1	$x^{4}+2 x^{3}$	4	$\left[\begin{array}{llll}1 & 2 & 0 & 0\end{array}\right]$	15	1.0229	24
2	$x^{4}+x^{3}+2 x^{2}$	4	$\left[\begin{array}{llll}1 & 1 & 2 & 0\end{array}\right]$	14	1.0901	23
3	$x^{4}+x^{3}+2 x^{2}$	4	$\left[\begin{array}{llll}1 & 1 & 2 & 0\end{array}\right]$	14	1.0727	23
4	$x^{4}+x^{3}+x^{2}$	4	$\left[\begin{array}{llll}1 & 1 & 1 & 0\end{array}\right]$	13	1.0449	22
5	$5 x^{3}$	3	$\left[\begin{array}{llll}0 & 5 & 0 & 0\end{array}\right]$	12	1.0929	22
6	$5 x^{3}$	3	$\left[\begin{array}{llll}0 & 5 & 0 & 0\end{array}\right]$	12	1.0083	22
7	$5 x^{3}$	3	$\left[\begin{array}{llll}0 & 5 & 0 & 0\end{array}\right]$	12	0.9411	22
8	$4 x^{3}+x^{2}$	3	$\left[\begin{array}{llll}0 & 4 & 1 & 0\end{array}\right]$	11	1.0785	21
9	$4 x^{3}+x^{2}$	3	$\left[\begin{array}{llll}0 & 4 & 1 & 0\end{array}\right]$	11	1.0133	21
10	$4 x^{3}+x^{2}$	3	$[0.4110]$	11	1.0044	21
11	$4 x^{3}+x^{2}$	3	[0410]	11	0.9969	21
12	$4 x^{3}+x^{2}$	3	[0410]	11	0.9428	21
13	$4 x^{3}+x^{2}$	3	$\left[\begin{array}{llll}0 & 4 & 1 & 0\end{array}\right]$	11	0.8933	20
14	$4 x^{3}+x^{2}$	3	[0410]	11	0.8902	20
15	$4 x^{3}+x$	3	[04 0 1]	10	1.0115	19
16	$3 x^{3}+2 x^{2}$	3	$\left[\begin{array}{llll}0 & 3 & 2 & 0\end{array}\right]$	9	0.9013	19
17	$3 x^{3}+2 x^{2}$	3	$\left[\begin{array}{llll}0 & 3 & 2 & 0\end{array}\right]$	9	0.9011	19
18	$3 x^{3}+2 x^{2}$	3	$\left[\begin{array}{llll}0 & 3 & 2 & 0\end{array}\right]$	9	0.8755	19
19	$3 x^{3}+2 x^{2}$	3	$\left[\begin{array}{llll}0 & 3 & 2 & 0\end{array}\right]$	9	0.8571	19
20	$3 x^{3}+2 x^{2}$	3	$\left[\begin{array}{llll}0 & 3 & 2 & 0\end{array}\right]$	9	0.7910	19
21	$3 x^{3}+x$	3	$\left[\begin{array}{llll}0 & 3 & 0 & 1\end{array}\right]$	8	0.7114	17
22	$2 x^{3}+4 x^{2}$	3	$\left[\begin{array}{llll}0 & 2 & 4 & 0\end{array}\right]$	7	0.8528	18
23	$2 x^{3}+4 x^{2}$	3	$\left[\begin{array}{lll}0 & 2 & 4\end{array}\right]$	7	0.8400	18
24	$2 x^{3}+4 x^{2}$	3	$\left[\begin{array}{llll}0 & 2 & 4 & 0\end{array}\right]$	7	0.8387	18
25	$2 x^{3}+3 x^{2}$	3	$\left[\begin{array}{llll}0 & 2 & 3 & 0\end{array}\right]$	6	0.8969	17
26	$2 x^{3}+3 x^{2}$	3	$\left[\begin{array}{llll}0 & 2 & 3 & 0\end{array}\right]$	6	0.8575	17
27	$2 x^{3}+2 x^{2}$	3	$\left[\begin{array}{llll}0 & 2 & 2 & 0\end{array}\right]$	5	0.7213	16
28	$2 x^{3}+2 x^{2}$	3	$\left[\begin{array}{llll}0 & 2 & 2 & 0\end{array}\right]$	5	0.7168	16
29	$7 x^{2}$	2	$\left[\begin{array}{llll}0 & 0 & 7 & 0\end{array}\right]$	4	0.6142	14
30	$7 x^{2}$	2	$\left[\begin{array}{llll}0 & 0 & 7 & 0\end{array}\right]$	4	0.6066	14
31	$6 x^{2}+x$	2	$\left[\begin{array}{llll}0 & 0 & 6 & 1\end{array}\right]$	3	0.6715	13
32	$4 x^{2}+x$	2	$\left[\begin{array}{llll}0 & 0 & 4 & 1\end{array}\right]$	2	0.4872	11
33	$6 x$	1	$\left[\begin{array}{llll}0 & 0 & 0 & 6\end{array}\right]$	1	0.3387	7

Figure 2: Using least square method to fit the data points from tab 3

We obtain the following conclusions by comparing the experiment results:

- The coefficient vector we proposed increases as the HOMO-LUOM gap increases.
- The stability of G is relative with the coefficient vector. The one that has larger coefficient vector has better stability.
- The coefficient vector we proposed is a refined indicator than the existing method, Clar number, to predict the stability of G.

Thanks!

