Resonance Polynomials of Cata-condensed Hexagonal Systems

Xi Chen

Joint work with Dong Ye & Xiaoya Zha

Middle Tennessee State University

May 21, 2017
A *hexagonal system* is a finite 2-connected plane bipartite graph in which each interior face is bounded by a regular hexagon of side length one.
Benzenoid hydrocarbon:

Graphene:
Question: Is there some connections between structures of these molecules and their chemical stability?

- Homo-Lumo Gap ($\Delta = \lambda_H - \lambda_L$, difference between two middle eigenvalues)
- Kekulé count (# of perfect matchings)
- Clar number (the maximum # of disjoint hexagons)
Question: Is there some connections between structures of these molecules and their chemical stability?

- Homo-Lumo Gap ($\triangle = \lambda_H - \lambda_L$, difference between two middle eigenvalues)
- Kekulé count (# of perfect matchings)
- Clar number (the maximum # of disjoint hexagons)
Question: Is there some connections between structures of these molecules and their chemical stability?

- Homo-Lumo Gap ($\triangle = \lambda_H - \lambda_L$, difference between two middle eigenvalues)
- Kekulé count (# of perfect matchings)
- Clar number (the maximum # of disjoint hexagons)
Question: Is there some connections between structures of these molecules and their chemical stability?

- Homo-Lumo Gap ($\triangle = \lambda_H - \lambda_L$, difference between two middle eigenvalues)
- Kekulé count (# of perfect matchings)
- Clar number (the maximum # of disjoint hexagons)
F. J. Rispoli gave a method to compute Kekulé count (\# of perfect matchings) in hexagonal systems.

- Let $A(a_{ij})$ be the biadjacency matrix of a hexagonal system G.

- \[\Phi(G) = |\det(A)|. \]

Note: $\Phi(G)$ is the number of perfect matchings of G.

```
\begin{align*}
\text{b}_1 & \quad \text{b}_2 \\
\text{b}_3 & \quad \text{b}_4 \\
\text{b}_5 & \quad \text{b}_6 \\
\text{b}_7 & \quad \text{b}_8
\end{align*}
```

```
\begin{align*}
\text{w}_1 & \quad \text{w}_2 \\
\text{w}_3 & \quad \text{w}_4 \\
\text{w}_5 & \quad \text{w}_6 \\
\text{w}_7 & \quad \text{w}_8
\end{align*}
```
A hexagonal system is *cata-condensed* if all vertices appear on its boundary.
• A set of disjoint hexagons \mathcal{H} of a hexagonal system G is a **resonant set** if a subgraph G' consisting of deleting all vertices covered by \mathcal{H} from G has a perfect matching.

• A resonant set is a **forcing resonant set** if G' has a unique perfect matching.

Disjoint hexagonal set: $\{1,4\}$
- A set of disjoint hexagons \mathcal{H} of a hexagonal system G is a *resonant set* if a subgraph G' consisting of deleting all vertices covered by \mathcal{H} from G has a perfect matching.

- A resonant set is a *forcing resonant set* if G' has a unique perfect matching.

Disjoint hexagonal set: $\{1, 4\}$
• (Zheng & Hanse, 1993) The Clar number problem of hexagonal system can be solved by an integer program.

• (Abeledo & Atkinson, 2006) The Clar number problem of hexagonal system can be solved by an linear programming which was conjectured by Zheng & Hanse.
(Zheng & Chen, 1985)
A maximum resonant set of a hexagonal system is a forcing resonant set.

The spectrum of forcing resonant set can be defined as: $\text{spec}_{\text{FRS}}(G) = \{|H| : H \text{ is a forcing resonant set of } G\}$.
• (Zheng & Chen, 1985) A maximum resonant set of a hexagonal system is a forcing resonant set.

• The *spectrum* of forcing resonant set can be defined as:
\[\text{spec}_{FRS}(G) = \{ |\mathcal{H}| : \mathcal{H} \text{ is a forcing resonant set of } G \}. \]
Definition 1

Let G be a cata-condensed hexagonal system. The forcing resonant polynomial $P_G(x)$ can be defined as

$$P_G(x) = \sum_{i=0}^{cl(G)} a_i x^i \quad (1)$$

where a_i is the number of forcing resonant sets of size i.
- (Zhang, Chen, Guo & Gutman, 1991)
 A hexagonal system H has $cl(H) = 1$ if and only if H is a linear chain.
- $spec_{FRS}(L_k) = \{1\}$
The coefficient vector of G:

$$a = \begin{bmatrix} a_{cl}(G) \\ a_{cl}(G)-1 \\ \vdots \\ a_1 \end{bmatrix}$$

where a_i is the coefficient of x^i in $P_G(x)$, then a is called the the coefficient vector of G.
Proposition 1

Let G be a graph of disjoint union of cata-condensed hexagonal systems $G_1, G_2, \ldots G_k$. Then

$$P_G(x) = \prod_{i=1}^{k} P_{G_i}(x).$$

(2)
A pendant chain L:
Lemma 2

Let G be a cata-condensed hexagonal system. Every forcing resonant set of G contains exactly one hexagon of L if L is not a non-pendant chain with two hexagons.
Corollary 3

Every forcing resonant set \mathcal{H} hits every maximal linear hexagonal chain.
Lemma 4
Let G be a cata-condensed hexagonal system. Let A be a hexagon of G. Then,

$$P_G(x) = P_G(x, A^C) + P_G(x, A)$$
Theoretical part
Theorem 5

Let G be a cata-condensed hexagonal system and L be a pendant chain with r hexagons. Let H be the subgraph consisting of all hexagons of G except these in L, and H' be the subgraph of H consisting of all hexagons except these contained in the maximal linear chains of G with a common hexagon with L. Then,

$$P_G(x) = (r - 1)xP_H(x) + xP_{H'}(x)$$

(3)
How to construct the weighted tree:
Steps:

- Start with a pendant chain L. L corresponds with the fist vertex in (T, w).
- The children of a vertex v in (T, w) are defined to be the maximal linear hexagonal chains which share a common hexagon with the corresponding chain of the vertex v.
- Continue to do step 2 until the number of vertices equals the number of maximal linear hexagon chains.

Note that the vertex which corresponds with the initial pendant hexagonal chain L is the root of (T, w).
function cal_poly

if Tree is empty then
 \[P_{tree}(x) = 1; \]
else
 Find left subtree and right subtree of the tree \(T \);
 Find left subtree and right subtree of the left subtree;
 Find left subtree and right subtree of the right subtree;
 Recursive formula;
end
end
G. Brinkmann, G. Caporppssi and P. Hansen proposed a method to construct enumerate fusenes and bezenoids in 2002.

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Cata-condensed benzenzoind systems with six hexagons
Table III

CATA-condensed Benzenoid System with 6 Hexagons

<table>
<thead>
<tr>
<th>Graph number</th>
<th>Polynomial</th>
<th>Clar number</th>
<th>Coefficient vector</th>
<th>x coordinate</th>
<th>HOMO-LUMO gap</th>
<th>(\Phi(G))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(x^2 + 2x^3)</td>
<td>4</td>
<td>[1 2 0 0]</td>
<td>15</td>
<td>1.0229</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>(x^2 + x^3 + 2x^2)</td>
<td>4</td>
<td>[1 1 2 0]</td>
<td>14</td>
<td>1.0901</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>(x^2 + x^3 + 2x^2)</td>
<td>4</td>
<td>[1 1 2 0]</td>
<td>14</td>
<td>1.0727</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>(x^4 + x^3 + x^2)</td>
<td>4</td>
<td>[1 1 1 0]</td>
<td>13</td>
<td>1.0449</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>(5x^2)</td>
<td>3</td>
<td>[0 5 0 0]</td>
<td>12</td>
<td>1.0929</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>(5x^2)</td>
<td>3</td>
<td>[0 5 0 0]</td>
<td>12</td>
<td>1.0083</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>(5x^2)</td>
<td>3</td>
<td>[0 5 0 0]</td>
<td>12</td>
<td>0.9411</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>(4x^3 + x^2)</td>
<td>3</td>
<td>[0 4 1 0]</td>
<td>11</td>
<td>1.0785</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>(4x^3 + x^2)</td>
<td>3</td>
<td>[0 4 1 0]</td>
<td>11</td>
<td>1.0133</td>
<td>21</td>
</tr>
<tr>
<td>10</td>
<td>(4x^3 + x^2)</td>
<td>3</td>
<td>[0 4 1 0]</td>
<td>11</td>
<td>1.0044</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>(4x^3 + x^2)</td>
<td>3</td>
<td>[0 4 1 0]</td>
<td>11</td>
<td>0.9969</td>
<td>21</td>
</tr>
<tr>
<td>12</td>
<td>(4x^3 + x^2)</td>
<td>3</td>
<td>[0 4 1 0]</td>
<td>11</td>
<td>0.9428</td>
<td>21</td>
</tr>
<tr>
<td>13</td>
<td>(4x^3 + x^2)</td>
<td>3</td>
<td>[0 4 1 0]</td>
<td>11</td>
<td>0.8933</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>(4x^3 + x^2)</td>
<td>3</td>
<td>[0 4 1 0]</td>
<td>11</td>
<td>0.8902</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>(4x^3 + x)</td>
<td>3</td>
<td>[0 4 0 1]</td>
<td>10</td>
<td>1.0115</td>
<td>19</td>
</tr>
<tr>
<td>16</td>
<td>(3x^3 + 2x^2)</td>
<td>3</td>
<td>[0 3 2 0]</td>
<td>9</td>
<td>0.9013</td>
<td>19</td>
</tr>
<tr>
<td>17</td>
<td>(3x^3 + 2x^2)</td>
<td>3</td>
<td>[0 3 2 0]</td>
<td>9</td>
<td>0.9011</td>
<td>19</td>
</tr>
<tr>
<td>18</td>
<td>(3x^3 + 2x^2)</td>
<td>3</td>
<td>[0 3 2 0]</td>
<td>9</td>
<td>0.8755</td>
<td>19</td>
</tr>
<tr>
<td>19</td>
<td>(3x^3 + 2x^2)</td>
<td>3</td>
<td>[0 3 2 0]</td>
<td>9</td>
<td>0.8571</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>(3x^3 + 2x^2)</td>
<td>3</td>
<td>[0 3 2 0]</td>
<td>9</td>
<td>0.7910</td>
<td>19</td>
</tr>
<tr>
<td>21</td>
<td>(3x^3 + x)</td>
<td>3</td>
<td>[0 3 0 1]</td>
<td>8</td>
<td>0.7114</td>
<td>17</td>
</tr>
<tr>
<td>22</td>
<td>(2x^3 + 4x^2)</td>
<td>3</td>
<td>[0 2 4 0]</td>
<td>7</td>
<td>0.8528</td>
<td>18</td>
</tr>
<tr>
<td>23</td>
<td>(2x^3 + 4x^2)</td>
<td>3</td>
<td>[0 2 4 0]</td>
<td>7</td>
<td>0.8400</td>
<td>18</td>
</tr>
<tr>
<td>24</td>
<td>(2x^3 + 4x^2)</td>
<td>3</td>
<td>[0 2 4 0]</td>
<td>7</td>
<td>0.8387</td>
<td>18</td>
</tr>
<tr>
<td>25</td>
<td>(2x^3 + 3x^2)</td>
<td>3</td>
<td>[0 2 3 0]</td>
<td>6</td>
<td>0.8969</td>
<td>17</td>
</tr>
<tr>
<td>26</td>
<td>(2x^3 + 3x^2)</td>
<td>3</td>
<td>[0 2 3 0]</td>
<td>6</td>
<td>0.8575</td>
<td>17</td>
</tr>
<tr>
<td>27</td>
<td>(2x^3 + 2x^2)</td>
<td>3</td>
<td>[0 2 2 0]</td>
<td>5</td>
<td>0.7213</td>
<td>16</td>
</tr>
<tr>
<td>28</td>
<td>(2x^3 + 2x^2)</td>
<td>3</td>
<td>[0 2 2 0]</td>
<td>5</td>
<td>0.7168</td>
<td>16</td>
</tr>
<tr>
<td>29</td>
<td>(7x^2)</td>
<td>2</td>
<td>[0 0 7 0]</td>
<td>4</td>
<td>0.6142</td>
<td>14</td>
</tr>
<tr>
<td>30</td>
<td>(7x^2)</td>
<td>2</td>
<td>[0 0 7 0]</td>
<td>4</td>
<td>0.6066</td>
<td>14</td>
</tr>
<tr>
<td>31</td>
<td>(6x^2 + x)</td>
<td>2</td>
<td>[0 0 6 1]</td>
<td>3</td>
<td>0.6715</td>
<td>13</td>
</tr>
<tr>
<td>32</td>
<td>(4x^2 + x)</td>
<td>2</td>
<td>[0 0 4 1]</td>
<td>2</td>
<td>0.4872</td>
<td>11</td>
</tr>
<tr>
<td>33</td>
<td>(6x)</td>
<td>1</td>
<td>[0 0 0 6]</td>
<td>1</td>
<td>0.3387</td>
<td>7</td>
</tr>
</tbody>
</table>
Figure 2: Using least square method to fit the data points from tab 3
We obtain the following conclusions by comparing the experiment results:

- The coefficient vector we proposed increases as the HOMO-LUOM gap increases.
- The stability of G is relative with the coefficient vector. The one that has larger coefficient vector has better stability.
- The coefficient vector we proposed is a refined indicator than the existing method, Clar number, to predict the stability of G.
Thanks!