The Extremal Function and Colin de Verdière Parameter

Rose McCarty

May 20, 2017

Definition

Write $V(G)=\{1,2, \ldots, n\}$.
The Colin de Verdière parameter $\mu(G)$ of a connected graph G is the maximum corank of any symmetric real matrix M such that:

1. For all $i \neq j, M_{i, j}<0$ if $i j \in E(G)$, and $M_{i, j}=0$ if $i j \notin E(G)$.
2. M has exactly one negative eigenvalue, and it has multiplicity 1.
3. There does not exist a non-zero, symmetric, real matrix X such that $M X=0$ and $X_{i, j}=0$ when $i j \in E(G)$ or $i=j$.

If G has connected components $G_{1}, G_{2}, \ldots, G_{m}$, then define $\mu(G):=\max _{1 \leq i \leq m} \mu\left(G_{i}\right)$.

Some Motivation

If H is a minor of a graph G, then $\mu(H) \leq \mu(G)$.

Theorem

- $\mu(G) \leq 1 \Longleftrightarrow G$ subgraph of a path
- $\mu(G) \leq 2 \Longleftrightarrow G$ outerplanar
- $\mu(G) \leq 3 \Longleftrightarrow G$ planar
- $\mu(G) \leq 4 \Longleftrightarrow G$ linklessly embeddable in \mathbb{R}^{3}
[Colin de Verdière 90], [Robertson, Seymour, and Thomas 93,95], [Lovász and Schrijver 98]

Coloring Conjectures

Definition
The Hadwiger number $h(G)$ is the maximum integer s.t. G has $K_{h(G)}$ as a minor.

Observation
$\mu\left(K_{t}\right)=t-1$, so $h(G)-1 \leq \mu(G)$

Hadwiger's Conjecture
$\chi(G) \leq h(G)$

CDV's Coloring Conjecture
$\chi(G) \leq \mu(G)+1$

How much weaker is CDV coloring conjecture?

Planar graphs are 4-colorable (4CC)

Graphs G with $\mu(G) \leq 3$ have $\chi(G) \leq \mu(G)+1$

Theorem $4 C C \Longrightarrow$ Graphs with no K_{5} minor are 4-colorable. [Wagner 37] $4 C C \Longrightarrow$ Graphs with no K_{6} minor are 5-colorable. [Robertson, Seymour, and Thomas 93]

Extremal Function and Hadwiger's Conjecture

As a function of $h(G)$, the best known is:
Theorem
There exists an absolute constant c s.t.
$\chi(G) \leq c \cdot h(G) \sqrt{\log h(G)}$.
This is shown by average degree arguments:
Theorem
There exists an absolute constant c_{1} such that
$|E(G)| \leq c_{1} \cdot h(G) \sqrt{\log h(G)}|V(G)|$.
Theorem
There exists an absolute constant c_{0} such that for every integer t there exists a graph G with $h(G) \geq t$ and
$|E(G)|>c_{0} \cdot h(G) \sqrt{\log h(G)}|V(G)|$.
[Kostochka 82], [Thomason 84]

Small Hadwiger Number

Theorem
For $t \leq 5$, if G is a graph with $h(G) \leq t+1$ and $|V(G)| \geq t$, then $|E(G)| \leq t|V(G)|-\binom{t+1}{2}$.
[Mader 68]

Conjecture

For all $t \in \mathbb{Z}^{+}$, if G is a graph with $\mu(G) \leq t$ and $|V(G)| \geq t$, then $|E(G)| \leq t|V(G)|-\binom{t+1}{2}$.

The conjecture would imply that for all graphs $G, \chi(G) \leq 2 \mu(G)$!

Definition

A graph G is chordal if for every cycle C in G of length greater than $3, G[V(C)]$ is not isomorphic to C.

Main Theorem

If G is a graph such that either

- $\mu(G) \leq 7$, or
- $\mu(G) \geq|V(G)|-6$, or
- G is chordal, or
- \bar{G} is chordal,
then for all $t \in \mathbb{Z}^{+}$with $\mu(G) \leq t$ and $|V(G)| \geq t$, $|E(G)| \leq t|V(G)|-\binom{t+1}{2}$.
[RM 2017+]

Main Theorem

If G is a graph such that either

- $\mu(G) \leq 7$, or
- $\mu(G) \geq|V(G)|-6$, or
- G is chordal, or
- \bar{G} is chordal,
then for all $t \in \mathbb{Z}^{+}$with $\mu(G) \leq t$ and $|V(G)| \geq t$, $|E(G)| \leq t|V(G)|-\binom{t+1}{2}$.
[RM 2017+]
Observation
False for Hadwiger number: $K_{2,2,2,2,2}$ and $K_{r, r}$ for large enough r.

Nordhaus-Gaddum Problems

Graph complement conjecture for CDV Parameter:
Conjecture
$\mu(G)+\mu(\bar{G}) \geq|V(G)|-2$
Theorem
True if G planar.
[Kotlov, Lovász, and Vempala 97]
Theorem
True if G chordal.
[Mitchell and Yengulalp 16]

Nordhaus-Gaddum Problems

Lemma

If G is a graph on n vertices, and $t \in \mathbb{Z}^{+}$with $t \leq n$, then:
$|E(G)| \leq t n-\binom{t+1}{2} \Longleftrightarrow|E(\bar{G})| \geq\binom{ n-t}{2}$.

Theorem

For every graph G, either $|E(G)| \geq\binom{\mu(G)+1}{2}$, or $G \cong K_{3,3}$.
[Pendavingh 98]
Observation
If the GCC for CDV parameter is true, then for every graph G and every $t \in \mathbb{Z}^{+}$with $t \leq|V(G)|$ and $\mu(G) \leq t$,
$|E(G)| \leq(t+1)|V(G)|-\binom{t+2}{2}$.

Proof when $\mu(G) \leq 7$

Theorem
Let G be a graph so that $\mu(G) \leq 3$. Then
$\mu(G)+\mu(\bar{G}) \geq|V(G)|-2$.
[Kotlov, Lovász, and Vempala 97]
Observation
$h(G) \leq \mu(G)+1$
Proof.
Then $\mu\left(K_{2,2,2,2,2}\right) \geq 7, \mu\left(K_{2,2,2,3,3}\right) \geq 8$, and $\mu\left(K_{1,2,2,2,2,2}\right) \geq 8$.
Case: $\mu(G) \leq 5$. Then $h(G) \leq \mu(G)+1$.
Case: $\mu(G)=6$. Then G has no $K_{2,2,2,2,2}$ minor.
Case: $\mu(G)=7$. Then G has no $K_{2,2,2,3,3}$ or $K_{1,2,2,2,2,2}$ minor.

Definition

G is a pure k-sum of G_{1} and G_{2} if G can be formed by identifying a k-clique in G_{1} with a k-clique in G_{2}.

Theorem
Let G be a graph with $h(G) \leq 7,|V(G)| \geq 6$, and
$|E(G)|>6|V(G)|-21$. Then $|E(G)|=6|V(G)|-20$, and G can be built by pure 5 -sums of $K_{2,2,2,2,2}$.
[Jørgensen 94]

Theorem

Let G be a graph with $h(G) \leq 8,|V(G)| \geq 7$, and
$|E(G)|>7|V(G)|-28$. Then $|E(G)|=7|V(G)|-27$, and either either G is isomorphic to $K_{2,2,2,3,3}$, or G can be built by pure 6 -sums of $K_{1,2,2,2,2,2}$.
[Song and Thomas 06]

Overview

Conjecture

For all $t \in \mathbb{Z}^{+}$, if G is a graph with $\mu(G) \leq t$ and $|V(G)| \geq t$, then $|E(G)| \leq t|V(G)|-\binom{t+1}{2}$.

Observation

Implies a weakening of Hadwiger's Conjecture that is as strong as the 4CC to within a factor of 2 . That is, that $\chi(G) \leq 2 \mu(G)$.

Email
rmccarty3@gatech.edu

Future Work

- If the edge upper bound conjecture is true for G_{1} and G_{2}, is it true for their join?
- If G satisfies $\mu(G)+\mu(\bar{G}) \geq|V(G)|-2$, then does a subdivision of G ? What about a graph obtained from G by a ΔY-transform?

Email

rmccarty3@gatech.edu

