The Extremal Function and Colin de Verdière Parameter

Rose McCarty

May 20, 2017

Definition

Write $V(G) = \{1, 2, ..., n\}.$

The Colin de Verdière parameter $\mu(G)$ of a connected graph G is the maximum corank of any symmetric real matrix M such that:

- 1. For all $i \neq j$, $M_{i,j} < 0$ if $ij \in E(G)$, and $M_{i,j} = 0$ if $ij \notin E(G)$.
- M has exactly one negative eigenvalue, and it has multiplicity 1.
- 3. There does not exist a non-zero, symmetric, real matrix X such that MX = 0 and $X_{i,j} = 0$ when $ij \in E(G)$ or i = j.

If G has connected components G_1, G_2, \ldots, G_m , then define $\mu(G) := \max_{1 \le i \le m} \mu(G_i)$.

Some Motivation

If H is a minor of a graph G, then $\mu(H) \leq \mu(G)$.

Theorem

- $\mu(G) \leq 1 \iff G$ subgraph of a path
- $\mu(G) \leq 2 \iff G$ outerplanar
- $\mu(G) \leq 3 \iff G$ planar
- $\mu(G) \leq 4 \iff G$ linklessly embeddable in \mathbb{R}^3

[Colin de Verdière 90], [Robertson, Seymour, and Thomas 93,95], [Lovász and Schrijver 98]

Coloring Conjectures

Definition

The Hadwiger number h(G) is the maximum integer s.t. G has $K_{h(G)}$ as a minor.

Observation $\mu(K_t) = t - 1$, so $h(G) - 1 \le \mu(G)$

Hadwiger's Conjecture $\chi(G) \leq h(G)$

CDV's Coloring Conjecture $\chi(G) \le \mu(G) + 1$

How much weaker is CDV coloring conjecture?

Planar graphs are 4-colorable (4CC)

Graphs G with $\mu(G) \leq 3$ have $\chi(G) \leq \mu(G) + 1$

Theorem

 $4CC \implies$ Graphs with no K_5 minor are 4-colorable. [Wagner 37]

 \iff

 $4CC \implies$ Graphs with no K_6 minor are 5-colorable. [Robertson, Seymour, and Thomas 93]

Extremal Function and Hadwiger's Conjecture

As a function of h(G), the best known is:

Theorem

There exists an absolute constant c s.t. $\chi(G) \leq c \cdot h(G) \sqrt{\log h(G)}$.

This is shown by average degree arguments:

Theorem

There exists an absolute constant c_1 such that $|E(G)| \le c_1 \cdot h(G)\sqrt{\log h(G)}|V(G)|.$

Theorem

There exists an absolute constant c_0 such that for every integer t there exists a graph G with $h(G) \ge t$ and $|E(G)| > c_0 \cdot h(G)\sqrt{\log h(G)}|V(G)|$.

[Kostochka 82], [Thomason 84]

Small Hadwiger Number

Theorem For $t \le 5$, if G is a graph with $h(G) \le t + 1$ and $|V(G)| \ge t$, then $|E(G)| \le t |V(G)| - {t+1 \choose 2}$. [Mader 68]

Conjecture

For all $t \in \mathbb{Z}^+$, if G is a graph with $\mu(G) \leq t$ and $|V(G)| \geq t$, then $|E(G)| \leq t|V(G)| - {t+1 \choose 2}$.

The conjecture would imply that for all graphs G, $\chi(G) \leq 2\mu(G)!$

Definition

A graph G is **chordal** if for every cycle C in G of length greater than 3, G[V(C)] is not isomorphic to C.

Main Theorem

If G is a graph such that either

•
$$\mu(G) \leq 7$$
, or

▶
$$\mu(G) \ge |V(G)| - 6$$
, or

- G is chordal, or
- ▶ G is chordal,

then for all $t \in \mathbb{Z}^+$ with $\mu(G) \leq t$ and $|V(G)| \geq t$, $|E(G)| \leq t|V(G)| - {t+1 \choose 2}$.

[RM 2017+]

Main Theorem

If G is a graph such that either

- $\mu(G) \leq 7$, or
- ▶ $\mu(G) \ge |V(G)| 6$, or
- G is chordal, or
- ▶ G is chordal,

then for all $t \in \mathbb{Z}^+$ with $\mu(G) \le t$ and $|V(G)| \ge t$, $|E(G)| \le t|V(G)| - {t+1 \choose 2}$.

[RM 2017+]

Observation

False for Hadwiger number: $K_{2,2,2,2,2}$ and $K_{r,r}$ for large enough r.

Nordhaus-Gaddum Problems

Graph complement conjecture for CDV Parameter:

Conjecture $\mu(G) + \mu(\overline{G}) \ge |V(G)| - 2$

Theorem True if G planar. [Kotlov, Lovász, and Vempala 97]

Theorem True if G chordal. [Mitchell and Yengulalp 16]

Nordhaus-Gaddum Problems

Lemma

If G is a graph on n vertices, and $t \in \mathbb{Z}^+$ with $t \le n$, then: $|E(G)| \le tn - {t+1 \choose 2} \iff |E(\overline{G})| \ge {n-t \choose 2}.$

Theorem

For every graph G, either $|E(G)| \ge {\binom{\mu(G)+1}{2}}$, or $G \cong K_{3,3}$. [Pendavingh 98]

Observation

If the GCC for CDV parameter is true, then for every graph G and every $t \in \mathbb{Z}^+$ with $t \leq |V(G)|$ and $\mu(G) \leq t$, $|E(G)| \leq (t+1)|V(G)| - {t+2 \choose 2}$.

Proof when $\mu(G) \leq 7$

Theorem Let G be a graph so that $\mu(G) \le 3$. Then $\mu(G) + \mu(\overline{G}) \ge |V(G)| - 2$. [Kotlov, Lovász, and Vempala 97] Observation $h(G) \le \mu(G) + 1$

Proof.

Then $\mu(K_{2,2,2,2,2}) \ge 7$, $\mu(K_{2,2,2,3,3}) \ge 8$, and $\mu(K_{1,2,2,2,2,2}) \ge 8$. *Case:* $\mu(G) \le 5$. Then $h(G) \le \mu(G) + 1$. *Case:* $\mu(G) = 6$. Then G has no $K_{2,2,2,2,2}$ minor. *Case:* $\mu(G) = 7$. Then G has no $K_{2,2,2,3,3}$ or $K_{1,2,2,2,2,2}$ minor.

Definition

G is a **pure** *k*-sum of G_1 and G_2 if *G* can be formed by identifying a *k*-clique in G_1 with a *k*-clique in G_2 .

Theorem

Let G be a graph with $h(G) \le 7$, $|V(G)| \ge 6$, and |E(G)| > 6|V(G)| - 21. Then |E(G)| = 6|V(G)| - 20, and G can be built by pure 5-sums of $K_{2,2,2,2,2}$.

[Jørgensen 94]

Theorem

Let G be a graph with $h(G) \leq 8$, $|V(G)| \geq 7$, and |E(G)| > 7|V(G)| - 28. Then |E(G)| = 7|V(G)| - 27, and either either G is isomorphic to $K_{2,2,2,3,3}$, or G can be built by pure 6-sums of $K_{1,2,2,2,2,2}$.

[Song and Thomas 06]

Overview

Conjecture

For all $t \in \mathbb{Z}^+$, if G is a graph with $\mu(G) \leq t$ and $|V(G)| \geq t$, then $|E(G)| \leq t|V(G)| - {t+1 \choose 2}$.

Observation

Implies a weakening of Hadwiger's Conjecture that is as strong as the 4CC to within a factor of 2. That is, that $\chi(G) \leq 2\mu(G)$.

Email rmccarty3@gatech.edu

Future Work

- ► If the edge upper bound conjecture is true for G₁ and G₂, is it true for their join?
- If G satisfies µ(G) + µ(G) ≥ |V(G)| − 2, then does a subdivision of G? What about a graph obtained from G by a ΔY-transform?

Email rmccarty3@gatech.edu