# Completing Some Partial Latin Squares 

Jaromy Kuhl

University of West Florida

## Contents

## Contents

(2) Classical Results

## Contents

(2) Classical Results
(3) Recent Results

## Current Section

## (2) Classical Results

## (3) Recent Results

## Partial latin squares

## Definition 1

A partial latin square (PLS) of order $n$ is an $n \times n$ array of $n$ symbols in which each symbol occurs at most once in each row and column.

## Partial latin squares

## Definition 1 <br> A partial latin square (PLS) of order $n$ is an $n \times n$ array of $n$ symbols in which each symbol occurs at most once in each row and column.

## Definition 2

A PLS of order $n$ is called a latin square (LS) of order $n$ if each cell is nonempty.

## Partial latin squares

## Definition 1

A partial latin square (PLS) of order $n$ is an $n \times n$ array of $n$ symbols in which each symbol occurs at most once in each row and column.

## Definition 2

A PLS of order $n$ is called a latin square (LS) of order $n$ if each cell is nonempty.

| 1 |  | 4 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 2 |  |  |  | 3 |
|  | 1 |  | 3 |  |
|  |  | 2 |  | 5 |
| 3 |  |  |  | 1 |


| 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 4 | 1 | 5 | 3 |
| 5 | 1 | 2 | 3 | 4 |
| 4 | 3 | 5 | 1 | 2 |
| 3 | 5 | 4 | 2 | 1 |

## Completing PLS

## Definition 3

A PLS P is called completable if there is a LS of the same order containing $P$.

## Completing PLS

## Definition 3

A PLS P is called completable if there is a LS of the same order containing $P$.

| 1 |  | 3 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 2 |  |  |  | 3 |
|  | 1 |  | 3 |  |
|  |  | 5 |  | 2 |
| 3 |  |  |  | 1 |$\quad$| 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 4 | 1 | 5 | 3 |
| 5 | 1 | 2 | 3 | 4 |
| 4 | 3 | 5 | 1 | 2 |
| 3 | 5 | 4 | 2 | 1 |

## Completing PLS

## When can a PLS be completed?

## Completing PLS

## When can a PLS be completed?

| 1 |  | 3 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 2 |  |  |  | 3 |
|  | 2 | 4 | 3 | 5 |
|  |  | 5 |  | 2 |
| 3 |  |  |  | 1 |

## Completing PLS

When can a PLS be completed?

| 1 |  | 3 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 2 |  |  |  | 3 |
|  | 2 | 4 | 3 | 5 |
|  |  | 5 |  | 2 |
| 3 |  |  |  | 1 |

- The problem of completing PLSs is NP-complete. (Colbourn, 1984)


## Completing PLS

When can a PLS be completed?

| 1 |  | 3 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 2 |  |  |  | 3 |
|  | 2 | 4 | 3 | 5 |
|  |  | 5 |  | 2 |
| 3 |  |  |  | 1 |

- The problem of completing PLSs is NP-complete. (Colbourn, 1984)
- A good characterization of completable partial latin square is unlikely.


## Equivalent Objects

A PLS $P$ of order $n$ is a subset of $[n] \times[n] \times[n]$ in which $(r, c, s) \in P$ if and only if symbol $s$ occurs in cell $(r, c)$.

## Equivalent Objects

A PLS $P$ of order $n$ is a subset of $[n] \times[n] \times[n]$ in which $(r, c, s) \in P$ if and only if symbol $s$ occurs in cell $(r, c)$.

$(2,1,2),(4,3,5) \in P$

## Equivalent Objects

A LS of order $n$ is equivalent to a properly $n$-edge-colored $K_{n, n}$.

## Equivalent Objects

A LS of order $n$ is equivalent to a properly $n$-edge-colored $K_{n, n}$.

$$
L=\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 2 & 3 & 1 \\
\hline 3 & 1 & 2 \\
\hline
\end{array}
$$

## Equivalent Objects

A LS of order $n$ is equivalent to a properly $n$-edge-colored $K_{n, n}$.

$$
L=\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 2 & 3 & 1 \\
\hline 3 & 1 & 2 \\
\hline
\end{array}
$$

Theorem 1
Let $G$ be a bipartite graph with $\Delta(G)=m$. Then $\chi^{\prime}(G)=m$.

## Isotopisms and Congujates

Let $P \in \operatorname{PLS}(n)$ and $S_{n}$ be the symmetric group acting on $[n]$.

## Isotopisms and Congujates

Let $P \in \operatorname{PLS}(n)$ and $S_{n}$ be the symmetric group acting on [ $n$ ]. Let $\theta=(\alpha, \beta, \gamma) \in S_{n} \times S_{n} \times S_{n}$.

## Isotopisms and Congujates

Let $P \in \operatorname{PLS}(n)$ and $S_{n}$ be the symmetric group acting on [ $n$ ].
Let $\theta=(\alpha, \beta, \gamma) \in S_{n} \times S_{n} \times S_{n}$.
The PLS in which the rows, columns, and symbols of $P$ are permuted according to $\alpha, \beta$, and $\gamma$ respectively is $\theta(P) \in \operatorname{PLS}(n)$.

## Isotopisms and Congujates

Let $P \in \operatorname{PLS}(n)$ and $S_{n}$ be the symmetric group acting on [ $n$ ].
Let $\theta=(\alpha, \beta, \gamma) \in S_{n} \times S_{n} \times S_{n}$.
The PLS in which the rows, columns, and symbols of $P$ are permuted according to $\alpha, \beta$, and $\gamma$ respectively is $\theta(P) \in \operatorname{PLS}(n)$.
The mapping $\theta$ is called an isotopism, and $P$ and $\theta(P)$ are said to be isotopic.

## Isotopisms and Congujates

Let $P \in \operatorname{PLS}(n)$ and $S_{n}$ be the symmetric group acting on [ $n$ ].
Let $\theta=(\alpha, \beta, \gamma) \in S_{n} \times S_{n} \times S_{n}$.
The PLS in which the rows, columns, and symbols of $P$ are permuted according to $\alpha, \beta$, and $\gamma$ respectively is $\theta(P) \in \operatorname{PLS}(n)$.

The mapping $\theta$ is called an isotopism, and $P$ and $\theta(P)$ are said to be isotopic.


## Isotopisms and Congujates

Let $P \in \operatorname{PLS}(n)$ and $S_{n}$ be the symmetric group acting on [ $n$ ].
Let $\theta=(\alpha, \beta, \gamma) \in S_{n} \times S_{n} \times S_{n}$.
The PLS in which the rows, columns, and symbols of $P$ are permuted according to $\alpha, \beta$, and $\gamma$ respectively is $\theta(P) \in \operatorname{PLS}(n)$.

The mapping $\theta$ is called an isotopism, and $P$ and $\theta(P)$ are said to be isotopic.


## Isotopisms and Congujates

The PLS in which the coordinates of each triple of $P$ are uniformly permuted is called a conjugate of $P$.

## Isotopisms and Congujates

The PLS in which the coordinates of each triple of $P$ are uniformly permuted is called a conjugate of $P$.


## Isotopisms and Congujates

The PLS in which the coordinates of each triple of $P$ are uniformly permuted is called a conjugate of $P$.


## Isotopisms and Congujates

## Theorem 2 <br> A PLS P is completable if and only if an isotopism of $P$ is completable.

## Isotopisms and Congujates

## Theorem 2 <br> A PLS P is completable if and only if an isotopism of $P$ is completable.

Theorem 3
A PLS P is completable if and only if a conjugate of $P$ is completable.

## Current Section

## (1) Introduction

## (2) Classical Results

## (3) Recent Results

## Hall's Theorem

Theorem 4 (Hall's Theorem, 1940)
Let $r, n \in \mathbb{Z}$ such that $r \leq n$. Let $P \in \operatorname{PLS}(n)$ with $r$ completed rows and $n-r$ empty rows. Then $P$ can be completed to a LS of order $n$.

## Hall's Theorem

Theorem 4 (Hall's Theorem, 1940)
Let $r, n \in \mathbb{Z}$ such that $r \leq n$. Let $P \in \operatorname{PLS}(n)$ with $r$ completed rows and $n-r$ empty rows. Then $P$ can be completed to a LS of order $n$.

Rows can be replaced with columns or symbols.

## Hall's Theorem

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 6 | 1 | 7 | 3 | 4 | 5 |
| 5 | 1 | 7 | 3 | 4 | 2 | 6 |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

## Hall's Theorem

| 1 | 2 | 3 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 6 | 1 |  |  |  |  |
| 3 | 1 | 7 |  |  |  |  |
| 4 | 5 | 6 |  |  |  |  |
| 5 | 7 | 2 |  |  |  |  |
| 6 | 4 | 5 |  |  |  |  |
| 7 | 3 | 4 |  |  |  |  |

## Hall's Theorem

| 1 | 2 | 3 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 |  | 1 |  |  |  | 3 |
| 3 | 1 | 2 |  |  |  |  |
|  |  |  | 1 | 2 | 3 |  |
|  | 3 |  | 2 | 1 |  |  |
|  |  |  | 3 |  | 1 | 2 |
|  |  |  |  | 3 | 2 | 1 |

## Ryser's Theorem

## Theorem 5 (Ryser's Theorem, 1950)

Let $r, s, n \in \mathbb{Z}$ such that $r, s \leq n$. Let $P \in \operatorname{PLS}(n)$ with a $r \times s$ block of symbols and empty cells elsewhere. Then P can be completed if and only if each symbol occurs $r+s-n$ times in $P$.

## Ryser's Theorem

## Theorem 5 (Ryser's Theorem, 1950)

Let $r, s, n \in \mathbb{Z}$ such that $r, s \leq n$. Let $P \in \operatorname{PLS}(n)$ with a $r \times s$ block of symbols and empty cells elsewhere. Then $P$ can be completed if and only if each symbol occurs $r+s-n$ times in $P$.

| 1 | 2 | 3 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 4 | 5 |  |  |  |  |
| 5 | 1 | 2 |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |


| 1 | 2 | 3 | 7 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 4 | 5 | 6 |  |  |  |
| 5 | 1 | 2 | 4 |  |  |  |
| 3 | 5 | 6 | 1 |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |


| 1 | 2 | 3 | 5 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 4 | 5 | 6 |  |  |  |
| 5 | 1 | 2 | 4 |  |  |  |
| 3 | 5 | 6 | 1 |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

## Evans' Conjecture

Theorem 6
If $P \in \operatorname{PLS}(n)$ with at most $n-1$ non-empty cells, then $P$ can be completed.

## Evans' Conjecture

## Theorem 6 <br> If $P \in \operatorname{PLS}(n)$ with at most $n-1$ non-empty cells, then $P$ can be completed.

Confirmed independently by:

- Häggkvist (1979) for $n \geq 1111$


## Evans' Conjecture

## Theorem 6

If $P \in \operatorname{PLS}(n)$ with at most $n-1$ non-empty cells, then $P$ can be completed.

Confirmed independently by:

- Häggkvist (1979) for $n \geq 1111$
- Smetaniuk (1981) for all $n$


## Evans' Conjecture

## Theorem 6

If $P \in \operatorname{PLS}(n)$ with at most $n-1$ non-empty cells, then $P$ can be completed.

Confirmed independently by:

- Häggkvist (1979) for $n \geq 1111$
- Smetaniuk (1981) for all $n$
- Andersen and Hilton (1983) for all $n$


## Evans' Conjecture

## Theorem 6

If $P \in \operatorname{PLS}(n)$ with at most $n-1$ non-empty cells, then $P$ can be completed.

Confirmed independently by:

- Häggkvist (1979) for $n \geq 1111$
- Smetaniuk (1981) for all $n$
- Andersen and Hilton (1983) for all $n$


| 1 |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | 5 |  | 4 |  |  |
| 5 |  |  |  |  |  |  |
|  |  |  | 3 |  |  |  |
|  | 1 |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

## Evans' Conjecture

| 1 |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 4 | 5 |  |  |  |  |
| 5 |  |  |  |  |  |  |
|  |  |  | 3 |  |  |  |
|  |  |  |  | 1 |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |


| 1 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | 5 |  | 4 |  |
| 5 |  |  |  |  |  |
|  |  |  |  |  |  |
|  | 1 |  |  |  |  |
|  |  |  |  |  |  |

## Evans' Conjecture

| 1 |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 4 | 5 |  |  |  |  |
| 5 |  |  |  |  |  |  |
|  |  |  | 3 |  |  |  |
|  |  |  |  | 1 |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |


| 1 | 2 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 5 | 1 | 4 | 6 |
| 5 | 4 | 6 | 2 | 7 | 1 |
| 6 | 5 | 1 | 7 | 2 | 4 |
| 7 | 6 | 2 | 4 | 1 | 5 |
| 4 | 1 | 7 | 6 | 5 | 2 |

## Evans' Conjecture

| 1 |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 4 | 5 |  |  |  |  |
| 5 |  |  |  |  |  |  |
|  |  |  | 3 |  |  |  |
|  |  |  |  | 1 |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |


| 1 | 2 | 4 | 5 | 6 | 7 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 5 | 1 | 4 | 6 |  |
| 5 | 4 | 6 | 2 | 7 | 1 |  |
| 6 | 5 | 1 | 7 | 2 | 4 |  |
| 7 | 6 | 2 | 4 | 1 | 5 |  |
| 4 | 1 | 7 | 6 | 5 | 2 |  |
|  |  |  |  |  |  |  |

## Evans' Conjecture

| 1 |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 4 | 5 |  |  |  |  |
| 5 |  |  |  |  |  |  |
|  |  |  | 3 |  |  |  |
|  |  |  |  | 1 |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |


| 1 | 2 | 4 | 5 | 6 | 7 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 5 | 1 | 4 |  | 6 |
| 5 | 4 | 6 | 2 |  | 1 | 7 |
| 6 | 5 | 1 |  | 2 | 4 | 7 |
| 7 | 6 |  | 4 | 1 | 5 | 2 |
| 4 |  | 7 | 6 | 5 | 2 | 1 |
|  |  |  |  |  |  |  |

## Evans' Conjecture

| 1 |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 4 | 5 |  |  |  |  |
| 5 |  |  |  |  |  |  |
|  |  |  | 3 |  |  |  |
|  |  |  |  | 1 |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |


| 1 | 2 | 4 | 5 | 6 | 7 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 5 | 1 | 4 |  | 6 |
| 5 | 4 | 6 | 2 |  | 1 | 7 |
| 6 | 5 | 1 |  | 7 | 4 | 2 |
| 7 | 6 |  | 4 | 1 | 5 | 2 |
| 4 |  | 7 | 6 | 5 | 2 | 1 |
|  |  |  |  |  |  |  |

## Evans' Conjecture

| 1 |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 4 | 5 |  |  |  |  |
| 5 |  |  |  |  |  |  |
|  |  |  | 3 |  |  |  |
|  |  |  |  | 1 |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |


| 1 | 2 | 4 | 5 | 6 | 7 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 5 | 1 | 4 |  | 6 |
| 5 | 4 | 6 | 2 |  | 1 | 7 |
| 6 | 5 | 1 |  | 7 | 4 | 2 |
| 7 | 6 |  | 4 | 2 | 5 | 1 |
| 4 |  | 7 | 6 | 5 | 2 | 1 |
|  |  |  |  |  |  |  |

## Evans' Conjecture

| 1 |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 4 | 5 |  |  |  |  |
| 5 |  |  |  |  |  |  |
|  |  |  | 3 |  |  |  |
|  |  |  |  | 1 |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |


| 1 | 2 | 4 | 5 | 6 | 7 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 5 | 1 | 4 |  | 6 |
| 5 | 4 | 6 | 2 |  | 1 | 7 |
| 6 | 5 | 1 |  | 7 | 4 | 2 |
| 7 | 6 |  | 4 | 2 | 5 | 1 |
| 4 |  | 7 | 6 | 1 | 2 | 5 |
|  |  |  |  |  |  |  |

## Evans' Conjecture

| 1 |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 4 | 5 |  |  |  |  |
| 5 |  |  |  |  |  |  |
|  |  |  | 3 |  |  |  |
|  |  |  |  | 1 |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |


| 1 | 2 | 4 | 5 | 6 | 7 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 5 | 1 | 4 | 3 | 6 |
| 5 | 4 | 6 | 2 | 3 | 1 | 7 |
| 6 | 5 | 1 | 3 | 7 | 4 | 2 |
| 7 | 6 | 3 | 4 | 2 | 5 | 1 |
| 4 | 3 | 7 | 6 | 1 | 2 | 5 |
|  |  |  |  |  |  |  |

There are incompletable PLSs of order $n$ with $n$ non-empty cells.

There are incompletable PLSs of order $n$ with $n$ non-empty cells.

| 1 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 2 |  |  |  |  |
| 3 |  |  |  |  |
| 4 |  |  |  |  |
|  | 5 |  |  |  |


| 1 | 2 | 3 | 4 |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  | 5 |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |


| 1 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | 1 |  |  |  |
|  |  | 1 |  |  |
|  |  |  | 1 |  |
|  |  |  |  | 2 |

There are incompletable PLSs of order $n$ with $n$ non-empty cells.

| 1 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 2 |  |  |  |  |
| 3 |  |  |  |  |
| 4 |  |  |  |  |
|  | 5 |  |  |  |


| 1 | 2 | 3 | 4 |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  | 5 |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |


| 1 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | 1 |  |  |  |
|  |  | 1 |  |  |
|  |  |  | 1 |  |
|  |  |  |  | 2 |


| 1 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 2 |  |  |  |  |
| 3 |  |  |  |  |
|  | 4 | 5 |  |  |
|  |  |  |  |  |


| 1 | 2 | 3 |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  | 4 |  |
|  |  |  | 5 |  |
|  |  |  |  |  |
|  |  |  |  |  |


| 1 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | 1 |  |  |  |
|  |  | 1 |  |  |
|  |  |  | 2 |  |
|  |  |  | 3 |  |

There are incompletable PLSs of order $n$ with $n$ non-empty cells.

| 1 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 2 |  |  |  |  |
| 3 |  |  |  |  |
| 4 |  |  |  |  |
|  | 5 |  |  |  |


| 1 | 2 | 3 | 4 |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  | 5 |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |


| 1 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | 1 |  |  |  |
|  |  | 1 |  |  |
|  |  |  | 1 |  |
|  |  |  |  | 2 |


| 1 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 2 |  |  |  |  |
| 3 |  |  |  |  |
|  | 4 | 5 |  |  |
|  |  |  |  |  |


| 1 | 2 | 3 |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  | 4 |  |
|  |  |  | 5 |  |
|  |  |  |  |  |
|  |  |  |  |  |


| 1 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | 1 |  |  |  |
|  |  | 1 |  |  |
|  |  |  | 2 |  |
|  |  |  | 3 |  |

Let $B_{k, n} \in \operatorname{PLS}(n)$ with symbol 1 in the first $k$ diagonal cells and symbols $2,3, \ldots, n-k+1$ in the last $n-k$ cells of column $k+1$.

Theorem 7 (Andersen and Hilton, 1983)
Let $P \in \operatorname{PLS}(n)$ with exactly $n$ non-empty cells. Then $P$ can be completed if and only if $P$ is not a species of $B_{k, n}$ for each $k<n$.

## Current Section

## (1) Introduction

## (2) Classical Results

## Completed Rows and Columns

When can a PLS with exactly a rows and $b$ columns be completed?

## Completed Rows and Columns

When can a PLS with exactly a rows and $b$ columns be completed?

| 1 | 2 | 4 | 5 | 6 | 7 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 5 | 1 | 3 | 6 | 4 |
| 5 | 4 |  |  |  |  |  |
| 6 | 5 |  |  |  |  |  |
| 3 | 6 |  |  |  |  |  |
| 4 | 1 |  |  |  |  |  |
| 7 | 3 |  |  |  |  |  |

## Completed Rows and Columns

When can a PLS with exactly a rows and $b$ columns be completed?

| 1 | 2 | 4 | 5 | 6 | 7 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 5 | 1 | 3 | 6 | 4 |
| 5 | 4 |  |  |  |  |  |
| 6 | 5 |  |  |  |  |  |
| 3 | 6 |  |  |  |  |  |
| 4 | 1 |  |  |  |  |  |
| 7 | 3 |  |  |  |  |  |

- Buchanan found all such PLSs for $a=b=2$ in a 100 page dissertation (2007)


## Completed Rows and Columns

When can a PLS with exactly a rows and $b$ columns be completed?

| 1 | 2 | 4 | 5 | 6 | 7 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 5 | 1 | 3 | 6 | 4 |
| 5 | 4 |  |  |  |  |  |
| 6 | 5 |  |  |  |  |  |
| 3 | 6 |  |  |  |  |  |
| 4 | 1 |  |  |  |  |  |
| 7 | 3 |  |  |  |  |  |

- Buchanan found all such PLSs for $a=b=2$ in a 100 page dissertation (2007)
- Adam, Bryant, and Buchanan shortened Buchanan's case analysis to 25 pages (2008)


## Completed Rows and Columns

When can a PLS with exactly a rows and $b$ columns be completed?

| 1 | 2 | 4 | 5 | 6 | 7 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 5 | 1 | 3 | 6 | 4 |
| 5 | 4 |  |  |  |  |  |
| 6 | 5 |  |  |  |  |  |
| 3 | 6 |  |  |  |  |  |
| 4 | 1 |  |  |  |  |  |
| 7 | 3 |  |  |  |  |  |

- Buchanan found all such PLSs for $a=b=2$ in a 100 page dissertation (2007)
- Adam, Bryant, and Buchanan shortened Buchanan's case analysis to 25 pages (2008)
- Kuhl and McGinn proved the same result and more (2017)


## Completed Rows and Columns

$$
Y=\begin{array}{|l|l|l|l|}
\hline 1 & 2 & 3 & 4 \\
\hline 3 & 4 & 2 & 1 \\
\hline 2 & 3 & & \\
\hline 4 & 1 & & \\
\hline
\end{array}
$$

$Z=$| 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 1 | 2 | 5 | 4 |
| 2 | 3 |  |  |  |
| 4 | 5 |  |  |  |
| 5 | 4 |  |  |  |

## Completed Rows and Columns

$$
Y=\begin{array}{|l|l|l|l|}
\hline 1 & 2 & 3 & 4 \\
\hline 3 & 4 & 2 & 1 \\
\hline 2 & 3 & & \\
\hline 4 & 1 & & \\
\hline
\end{array}
$$

$Z=$| 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 1 | 2 | 5 | 4 |
| 2 | 3 |  |  |  |
| 4 | 5 |  |  |  |
| 5 | 4 |  |  |  |

Let $\Gamma$ denote the set of all isotopisms of $Y$ and $Z$.

## Theorem 8

Let $n \geq 2$ and $A \in \operatorname{PLS}(2,2 ; n)$. The partial latin square $A$ can be completed if and only if $A \notin \Gamma$.

## Completed Rows and Columns

Suppose there is a filled cell of $A \in \operatorname{PLS}(2,2 ; n)$ not in an intercalate.

## Completed Rows and Columns

Suppose there is a filled cell of $A \in \operatorname{PLS}(2,2 ; n)$ not in an intercalate.

| 1 | 2 | 4 | 5 | 6 | 7 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 5 | 1 | 3 | 6 | 4 |
| 5 | 4 |  |  |  |  |  |
| 6 | 5 |  |  |  |  |  |
| 3 | 6 |  |  |  |  |  |
| 4 | 1 |  |  |  |  |  |
| 7 | 3 |  |  |  |  |  |


| 1 | 2 | 5 | 6 | 7 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 1 | 3 | 6 | 4 | 5 |
| 7 | 3 |  |  |  |  |  |
| 6 | 5 |  |  |  |  |  |
| 3 | 6 |  |  |  |  |  |
| 5 | 4 |  |  |  |  |  |
| 4 | 1 |  |  |  |  |  |

## Completed Rows and Columns

| 1 | 2 | 5 | 6 | 7 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 1 | 3 | 6 | 4 | 5 |
| 7 | 3 |  |  |  |  |  |
| 6 | 5 |  |  |  |  |  |
| 3 | 6 |  |  |  |  |  |
| 5 | 4 |  |  |  |  |  |
| 4 | 1 |  |  |  |  |  |


| 1 | 2 | 5 | 6 | 7 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 1 | 3 | 6 | 5 |
| 7 | 3 |  |  |  |  |
| 6 | 5 |  |  |  |  |
| 3 | 6 |  |  |  |  |
| 5 | 1 |  |  |  |  |

## Completed Rows and Columns

| 1 | 2 | 5 | 6 | 7 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 1 | 3 | 6 | 4 | 5 |
| 7 | 3 |  |  |  |  |  |
| 6 | 5 |  |  |  |  |  |
| 3 | 6 |  |  |  |  |  |
| 5 | 4 |  |  |  |  |  |
| 4 | 1 |  |  |  |  |  |


| 1 | 2 | 5 | 6 | 7 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 1 | 3 | 6 | 5 |
| 7 | 3 | 2 | 1 | 5 | 6 |
| 6 | 5 | 3 | 7 | 2 | 1 |
| 3 | 6 | 7 | 5 | 1 | 2 |
| 5 | 1 | 6 | 2 | 3 | 7 |

## Completed Rows and Columns

| 1 | 2 | 5 | 6 | 7 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 1 | 3 | 6 | 4 | 5 |
| 7 | 3 |  |  |  |  |  |
| 6 | 5 |  |  |  |  |  |
| 3 | 6 |  |  |  |  |  |
| 5 | 4 |  |  |  |  |  |
| 4 | 1 |  |  |  |  |  |


| 1 | 2 | 5 | 6 | 7 | 3 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 1 | 3 | 6 | 5 |  |
| 7 | 3 | 2 | 1 | 5 | 6 |  |
| 6 | 5 | 3 | 7 | 2 | 1 |  |
| 3 | 6 | 7 | 5 | 1 | 2 |  |
| 5 | 1 | 6 | 2 | 3 | 7 |  |
|  |  |  |  |  |  |  |

## Completed Rows and Columns

| 1 | 2 | 5 | 6 | 7 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 1 | 3 | 6 | 4 | 5 |
| 7 | 3 |  |  |  |  |  |
| 6 | 5 |  |  |  |  |  |
| 3 | 6 |  |  |  |  |  |
| 5 | 4 |  |  |  |  |  |
| 4 | 1 |  |  |  |  |  |


| 1 | 2 | 5 | 6 | 7 | 3 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 1 | 3 | 6 |  | 5 |
| 7 | 3 | 2 | 1 |  | 6 | 5 |
| 6 | 5 | 3 |  | 2 | 1 | 7 |
| 3 | 6 |  | 5 | 1 | 2 | 7 |
| 5 |  | 6 | 2 | 3 | 7 | 1 |
|  |  |  |  |  |  |  |

## Completed Rows and Columns

| 1 | 2 | 5 | 6 | 7 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 1 | 3 | 6 | 4 | 5 |
| 7 | 3 |  |  |  |  |  |
| 6 | 5 |  |  |  |  |  |
| 3 | 6 |  |  |  |  |  |
| 5 | 4 |  |  |  |  |  |
| 4 | 1 |  |  |  |  |  |


| 1 | 2 | 5 | 6 | 7 | 3 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 1 | 3 | 6 |  | 5 |
| 7 | 3 | 2 | 1 |  | 5 | 6 |
| 6 | 5 | 3 |  | 2 | 1 | 7 |
| 3 | 6 |  | 7 | 5 | 2 | 1 |
| 5 |  | 6 | 2 | 1 | 7 | 3 |
|  |  |  |  |  |  |  |

## Completed Rows and Columns

| 1 | 2 | 5 | 6 | 7 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 1 | 3 | 6 | 4 | 5 |
| 7 | 3 |  |  |  |  |  |
| 6 | 5 |  |  |  |  |  |
| 3 | 6 |  |  |  |  |  |
| 5 | 4 |  |  |  |  |  |
| 4 | 1 |  |  |  |  |  |


| 1 | 2 | 5 | 6 | 7 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 1 | 3 | 6 | 4 | 5 |
| 7 | 3 | 2 | 1 | 4 | 5 | 6 |
| 6 | 5 | 3 | 4 | 2 | 1 | 7 |
| 3 | 6 | 4 | 7 | 5 | 2 | 1 |
| 5 | 4 | 6 | 2 | 1 | 7 | 3 |
|  |  |  |  |  |  |  |

## Completed Rows and Columns

| 1 | 2 | 5 | 6 | 7 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 1 | 3 | 6 | 4 | 5 |
| 7 | 3 |  |  |  |  |  |
| 6 | 5 |  |  |  |  |  |
| 3 | 6 |  |  |  |  |  |
| 5 | 4 |  |  |  |  |  |
| 4 | 1 |  |  |  |  |  |


| 1 | 2 | 5 | 6 | 7 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 7 | 1 | 3 | 6 | 4 | 5 |
| 7 | 3 | 2 | 1 | 4 | 5 | 6 |
| 6 | 5 | 3 | 4 | 2 | 1 | 7 |
| 3 | 6 | 4 | 7 | 5 | 2 | 1 |
| 5 | 4 | 6 | 2 | 1 | 7 | 3 |
| 4 | 1 | 7 | 5 | 3 | 6 | 2 |

## Completed Rows and Columns

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 3 | 1 | 5 | 4 | 7 | 6 |
| 3 | 1 |  |  |  |  |  |
| 6 | 4 |  |  |  |  |  |
| 4 | 6 |  |  |  |  |  |
| 5 | 7 |  |  |  |  |  |
| 7 | 5 |  |  |  |  |  |


| 1 | 2 | 4 | 3 | 7 | 6 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 4 | 2 | 1 | 6 | 7 | 5 | 4 |
| 4 | 3 |  |  |  |  |  |  |
| 2 | 1 |  |  |  |  |  |  |
| 7 | 6 |  |  |  |  |  |  |
| 6 | 7 |  |  |  |  |  |  |
| 4 | 5 |  |  |  |  |  |  |
| 5 | 4 |  |  |  |  |  |  |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 3 | 1 | 5 | 4 | 7 | 6 |
| 3 | 1 |  |  |  |  |  |
| 6 | 4 |  |  |  |  |  |
| 4 | 6 |  |  |  |  |  |
| 5 | 7 |  |  |  |  |  |
| 7 | 5 |  |  |  |  |  |


| 1 | 2 | 3 | 4 | 6 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 3 | 1 | 5 | 4 | 6 |
| 3 | 1 |  |  |  |  |
| 6 | 4 |  |  |  |  |
| 5 | 6 |  |  |  |  |
| 4 | 5 |  |  |  |  |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 3 | 1 | 5 | 4 | 7 | 6 |
| 3 | 1 |  |  |  |  |  |
| 6 | 4 |  |  |  |  |  |
| 4 | 6 |  |  |  |  |  |
| 5 | 7 |  |  |  |  |  |
| 7 | 5 |  |  |  |  |  |


| 1 | 2 | 3 | 4 | 6 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 3 | 1 | 5 | 4 | 6 |
| 3 | 1 | 4 | 6 | 5 | 2 |
| 6 | 4 | 5 | 1 | 2 | 3 |
| 5 | 6 | 2 | 3 | 1 | 4 |
| 4 | 5 | 6 | 2 | 3 | 1 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 3 | 1 | 5 | 4 | 7 | 6 |
| 3 | 1 |  |  |  |  |  |
| 6 | 4 |  |  |  |  |  |
| 4 | 6 |  |  |  |  |  |
| 5 | 7 |  |  |  |  |  |
| 7 | 5 |  |  |  |  |  |


| 4 | 3 | 1 | 6 | 5 | 2 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 1 | 2 | 4 | 6 | 5 |  |
| 1 | 2 | 3 | 5 | 4 | 6 |  |
| 5 | 6 | 4 | 1 | 2 | 3 |  |
| 2 | 5 | 6 | 3 | 1 | 4 |  |
| 6 | 4 | 5 | 2 | 3 | 1 |  |
|  |  |  |  |  |  |  |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 3 | 1 | 5 | 4 | 7 | 6 |
| 3 | 1 |  |  |  |  |  |
| 6 | 4 |  |  |  |  |  |
| 4 | 6 |  |  |  |  |  |
| 5 | 7 |  |  |  |  |  |
| 7 | 5 |  |  |  |  |  |


| 4 | 3 | 1 | 6 | 5 | 2 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 1 | 2 | 4 | 6 |  | 5 |
| 1 | 2 | 3 | 5 |  | 6 | 4 |
| 5 | 6 | 4 |  | 2 | 3 | 1 |
| 2 | 5 |  | 3 | 1 | 4 | 6 |
| 6 |  | 5 | 2 | 3 | 1 | 4 |
|  |  |  |  |  |  |  |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 3 | 1 | 5 | 4 | 7 | 6 |
| 3 | 1 |  |  |  |  |  |
| 6 | 4 |  |  |  |  |  |
| 4 | 6 |  |  |  |  |  |
| 5 | 7 |  |  |  |  |  |
| 7 | 5 |  |  |  |  |  |


| 4 | 3 | 1 | 6 | 5 | 2 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 1 | 2 | 4 | 6 |  | 5 |
| 1 | 2 | 3 | 5 |  | 6 | 4 |
| 5 | 6 | 4 |  | 2 | 3 | 1 |
| 2 | 5 |  | 3 | 1 | 4 | 6 |
| 6 |  | 5 | 2 | 4 | 1 | 3 |
|  |  |  |  |  |  |  |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 3 | 1 | 5 | 4 | 7 | 6 |
| 3 | 1 |  |  |  |  |  |
| 6 | 4 |  |  |  |  |  |
| 4 | 6 |  |  |  |  |  |
| 5 | 7 |  |  |  |  |  |
| 7 | 5 |  |  |  |  |  |


| 4 | 3 | 1 | 6 | 5 | 2 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1 | 2 | 4 | 6 | 7 | 5 |
| 1 | 2 | 3 | 5 | 7 | 6 | 4 |
| 5 | 6 | 4 | 7 | 2 | 3 | 1 |
| 2 | 5 | 7 | 3 | 1 | 4 | 6 |
| 6 | 7 | 5 | 2 | 4 | 1 | 3 |
| 7 | 4 | 6 | 1 | 3 | 5 | 2 |

Theorem 9 (Kuhl and McGinn, 2017)
Let $A \in \operatorname{PLS}(2, b ; n)$ and cells $[2] \times[b]$ consist only of symbols from $[b]$. If $n \geq 2 b^{2}-2 b+5$ and $\sigma_{A}([n] \backslash[b])$ contains a cycle of length at least $\frac{n+3}{2}$, then A can be completed.

Theorem 9 (Kuhl and McGinn, 2017)
Let $A \in \operatorname{PLS}(2, b ; n)$ and cells $[2] \times[b]$ consist only of symbols from $[b]$. If $n \geq 2 b^{2}-2 b+5$ and $\sigma_{A}([n] \backslash[b])$ contains a cycle of length at least $\frac{n+3}{2}$, then A can be completed.

Conjecture 1
Let $A \in \operatorname{PLS}(2, b ; n)$. If $n \geq 2 b+2$, then $A$ can be completed.

## One Nonempty Row, Column, and Symbol

Theorem 10 (Kuhl and Schroeder, 2016)<br>Let $r, c, s \in\{1,2, \ldots, n\}$ and let $P \in \operatorname{PLS}(n)$ in which each nonempty cell lies in row $r$, column $c$, or contains symbol s. If $n \notin\{3,4,5\}$ and row $r$, column $c$, and symbol s can be completed in $P$, then a completion of $P$ exists.

## One Nonempty Row, Column, and Symbol

## Theorem 10 (Kuhl and Schroeder, 2016)

Let $r, c, s \in\{1,2, \ldots, n\}$ and let $P \in \operatorname{PLS}(n)$ in which each nonempty cell lies in row $r$, column $c$, or contains symbol s. If $n \notin\{3,4,5\}$ and row $r$, column $c$, and symbol $s$ can be completed in $P$, then a completion of $P$ exists.

| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 2 | 1 |  |
| 3 |  | 1 |



| 2 | 3 |  | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- |
|  | 1 |  |  |  |
| 3 |  | 1 |  |  |
| 4 |  |  | 1 |  |
| 5 |  |  |  | 1 |

## One Nonempty Row, Column, and Symbol

| 1 | 5 | 2 | 6 | 7 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 |  |  |  |  |  |
| 3 |  | 1 |  |  |  |  |
| 4 |  |  | 1 |  |  |  |
| 5 |  |  |  | 1 |  |  |
| 6 |  |  |  |  | 1 |  |
| 7 |  |  |  |  |  | 1 |


| 1 | 5 | 7 | 2 | 6 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 |  |  |  |  |  |
| 5 |  | 1 |  |  |  |  |
| 3 |  |  | 1 |  |  |  |
| 4 |  |  |  | 1 |  |  |
| 6 |  |  |  |  | 1 |  |
| 7 |  |  |  |  |  | 1 |

## One Nonempty Row, Column, and Symbol

| 1 | 5 | 2 | 6 | 7 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 |  |  |  |  |  |
| 3 |  | 1 |  |  |  |  |
| 4 |  |  | 1 |  |  |  |
| 5 |  |  |  | 1 |  |  |
| 6 |  |  |  |  | 1 |  |
| 7 |  |  |  |  |  | 1 |


| 1 | 5 | 2 | 7 | 6 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 |  |  |  |  |  |
| 5 |  |  | 1 |  |  |  |
| 3 |  | 1 |  |  |  |  |
| 4 |  |  |  | 1 |  |  |
| 6 |  |  |  |  | 1 |  |
| 7 |  |  |  |  |  | 1 |

## One Nonempty Row, Column, and Symbol

| 1 | 5 | 2 | 6 | 7 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 |  |  |  |  |  |
| 3 |  | 1 |  |  |  |  |
| 4 |  |  | 1 |  |  |  |
| 5 |  |  |  | 1 |  |  |
| 6 |  |  |  |  | 1 |  |
| 7 |  |  |  |  |  | 1 |


| 1 | 5 | 2 | 7 | 6 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 |  |  |  |  |  |
| 5 |  | 1 |  |  |  |  |
| 3 |  |  | 1 |  |  |  |
| 4 |  |  |  | 1 |  |  |
| 6 |  |  |  |  | 1 |  |
| 7 |  |  |  |  |  | 1 |

## One Nonempty Row, Column, and Symbol

| 1 | 5 | 2 | 6 | 7 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 |  |  |  |  |  |
| 3 |  | 1 |  |  |  |  |
| 4 |  |  | 1 |  |  |  |
| 5 |  |  |  | 1 |  |  |
| 6 |  |  |  |  | 1 |  |
| 7 |  |  |  |  |  | 1 |


| 1 | 5 | 2 | 7 | 6 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 |  |  |  |  |  |
| 5 |  | 1 | 4 |  |  |  |
| 3 |  | 4 | 1 |  |  |  |
| 4 |  |  |  | 1 |  |  |
| 6 |  |  |  |  | 1 |  |
| 7 |  |  |  |  |  | 1 |

## One Nonempty Row, Column, and Symbol

| 1 | 5 | 2 | 6 | 7 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 |  |  |  |  |  |
| 3 |  | 1 |  |  |  |  |
| 4 |  |  | 1 |  |  |  |
| 5 |  |  |  | 1 |  |  |
| 6 |  |  |  |  | 1 |  |
| 7 |  |  |  |  |  | 1 |


| 1 | 5 | 2 | 7 | 6 | 3 | 4 |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| 2 | 1 |  |  |  |  |  |
| 5 |  | 1 | 4 |  |  |  |
| 3 |  | 4 | 1 |  |  | 7 |
| 4 |  |  |  | 1 | 6 |  |
| 6 |  |  |  | 4 | 1 |  |
| 7 |  |  | 3 |  |  | 1 |

## One Nonempty Row, Column, and Symbol

| 4 | 5 | 2 | 6 | 7 | 3 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 |  |  |  |  | 1 |  |
| 3 |  |  |  | 1 |  |  |
| 7 |  |  | 1 |  |  |  |
| 5 |  | 1 |  |  |  |  |
| 6 | 1 |  |  |  |  |  |
| 1 |  |  |  |  |  |  |

