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Weighted Partitions

Def. An integer partition of n is a decomposition of n into a
nonincreasing sequence of positive integers that sums to n.

I Partitions of 4: (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)

Def. A weighted partition of n is a partition of n where each
summand of size k belongs to one of bk types. The class C of
weighted partitions has the generating function

C (z) ≡
∞∑

n=0

cnz
n ≡

∞∏

k=1

(
1− zk

)−bk

=
∞∏

k=1

(
1 + zk + z2k + . . .

)bk
.

I If (bk)∞k=1 = (1, 1, 3, 1, 1, . . . ) the weighted partitions of 4 are:
(4), (3, 1), (3, 1), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).
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Weighted Partitions

Example. Bose–Einstein condensation occurs when bk =
(k+2

2

)
.

I C (z) =
∏∞

k=1(1− zk)−(k+2
2 ) = 1 + 3z + 12z2 + 38z3 + . . .

b1 =
(1+2

2

)
= 3 b2 =

(2+2
2

)
= 6 b3 =

(3+2
2

)
= 10

(3)

(2, 1)

(1, 1, 1)

Figure: Young diagrams for n = 3.
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Weighted Partitions

Problem. Generate a weighted partition of n uniformly at random.

Figure: Random integer partition and weighted partition for n = 105.
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Boltzmann Samplers

Def. A Boltzmann distribution over the class C parameterized by
0 < λ < ρC is the probability distribution, for all γ ∈ C, defined as

Pλ(γ) =
λ|γ|

C (λ)
,

where ρC is the radius of convergence of C (z) =
∑∞

n=0 cnz
n.

Def. A Boltzmann sampler ΓC (λ) is an algorithm that generates
objects from C according to the Boltzmann distribution
parameterized by λ.

I All objects of size n occur with equal probability.
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Boltzmann Samplers

The size of an object generated by ΓC (λ) is a random variable
denoted by U with the probability distribution

Pλ(U = n) =
cnλ

n

C (λ)
.
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Figure: Distribution for integer partitions (n = 500, λ = 0.90).
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Figure: Distribution for integer partitions (n = 500, λ = 0.91).
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Figure: Distribution for integer partitions (n = 500, λ = 0.92).
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Boltzmann Samplers

The size of an object generated by ΓC (λ) is a random variable
denoted by U with the probability distribution

Pλ(U = n) =
cnλ

n

C (λ)
.
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Figure: Distribution for integer partitions (n = 500, λ = 0.93).
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Boltzmann Samplers

The size of an object generated by ΓC (λ) is a random variable
denoted by U with the probability distribution

Pλ(U = n) =
cnλ

n

C (λ)
.
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Figure: Distribution for integer partitions (n = 500, λ = 0.94).

6 / 13



Boltzmann Samplers

The size of an object generated by ΓC (λ) is a random variable
denoted by U with the probability distribution

Pλ(U = n) =
cnλ

n

C (λ)
.
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Figure: Distribution for integer partitions (n = 500, λ = 0.95).
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Boltzmann Samplers

The size of an object generated by ΓC (λ) is a random variable
denoted by U with the probability distribution

Pλ(U = n) =
cnλ

n

C (λ)
.
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Figure: Distribution for integer partitions (n = 500, λ ∈ [0.90, 0.95]).
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Sampling Algorithm for Weighted Partitions

Def. Let (bk)∞k=1 be a sequence such that bk = p(k) for some
polynomial p(x) = a0 + a1x + · · ·+ arx

r ∈ R[x ] with deg(p) = r .

I
(k+2

2

)
= 1

2(k + 1)(k + 2)

Algorithm 1 Sampling algorithm for weighted partitions.

1: procedure RandomWeightedPartition(n)
2: λn ← Solution to

∑n
k=1 kbkλ

k/(1− λk) = n . Tuning
3: repeat . Rejection sampling
4: γ ← ΓCn(λn)
5: until |γ| = n
6: return γ

Theorem. Algorithm 1 runs in expected O(nr+1((r + 2)n)3/4)
time and uses O(n) space.
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Sampling Algorithm for Weighted Partitions

Observation.

Pλ(γ) =
λ|γ|∏n

k=1(1− λk)−bk
=

n∏

k=1

bk∏

j=1

λ(# of columns of type bk,j )k

(1− λk)−1

Algorithm 2 Boltzmann sampler for weighted partitions.

1: procedure ΓCn(λ)
2: γ ← Empty associative array
3: for k = 1 to n do
4: for j = 1 to bk do
5: m← Geometric(1− λk)
6: if m ≥ 1 then
7: γ[(k, j)]← m

8: return γ

I The PDF of Geometric(1− λk) is P1−λk (m) = λmk(1− λk).
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Tuning the Boltzmann Samplers

The random variable for the size of an object produced is

Un =
n∑

k=1

bk∑

j=1

kYk,j ,

where Yk,j ∼ Geometric
(
1− λk

)
.

Lemma. We have

Eλ[Un] =
n∑

k=1

kbk

(
λk

1− λk

)
.

I Follows from the linearity of expectation and the mean of
geometric random variable

I Strictly increasing so binary search to solve Eλ[Un] = n
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Bounding the Rejection Rates

Lemma. The Dirichlet generating series for weighted partitions is

D(s) =
∞∑

k=1

bk
ks

=
r∑

k=0

akζ(s − k),

and has at most r + 1 simple poles on the positive real axis at
positions ρk = k + 1 with residue Ak = ak if and only if ak 6= 0.

Proof. The Riemann zeta function converges uniformly and is
analytic on C \ {1}, so

D(s) =
∞∑

k=1

bk
ks

=
∞∑

k=1

a0 + a1k + · · ·+ ark
r

ks
=

r∑

k=0

akζ(s − k).

Since ζ(s) =
∑∞

k=1 1/ks has a simple pole at s = 1 with residue 1,
the claim about the poles of D(s) follows.
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Bounding the Rejection Rates

Theorem [Granovsky and Stark, 2012]. For n sufficiently large,

Pλn(Un = n) ≥ 1

10

(
Ar

2
Γ(ρr + 2)ζ(ρr + 1)

) 1
2(r+2)

((r + 2)n)−3/4.

Lemma. For any positive integer sequence of degree r ,

Ar

2
Γ(ρr + 2)ζ(ρr + 1) ≥ 1.

Proof. Let

p(k) =
r∑

j=0

∆jp(0)

(
k

j

)
.

[Stanley, EC1, Cor 1.9.3] =⇒ ∆rp(0) ∈ Z =⇒ ar = Ar ≥ 1
r ! .

Since ρr = r + 1,

Ar

2
Γ(ρr + 2)ζ(ρr + 1) ≥ 1

2r !
(r + 2)! ≥ 1.
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Boltzmann Sampler for Bose–Einstein Condensation

Lemma. If bk =
(k+d−1

d−1
)
, for d ≥ 1, then

C (z) =
∞∏

k=1

(
1− zk

)−(k+d−1
d−1 )

=
∞∏

k=1

exp

(
1

k

[(
1− zk

)−d
− 1

])
.

Theorem. We can uniformly sample objects of size n in C in
expected O(n((d + 1)n)3/4) time while using O(n) space.

I Runtime reduced from O(n3.75) to O(n1.75)

I Columns are sampled from the zero-truncated negative
binomial distribution

I Geometric random variable is a weighted sum of independent
Poisson random variables
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