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Weighted Partitions

Def. An integer partition of n is a decomposition of n into a
nonincreasing sequence of positive integers that sums to n.

» Partitions of 4: (4), (3,1), (2,2), (2,1,1), (1,1,1,1)

Def. A weighted partition of n is a partition of n where each
summand of size k belongs to one of by types. The class C of
weighted partitions has the generating function
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(4), (3,1), (3,1), (3,1), (2,2), (2,1,1), (1,1,1,1).

(1,1,3,1,1,...) the weighted partitions of 4 are:
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Weighted Partitions

Example. Bose—Einstein condensation occurs when by = (katz).

C(z) = 12, (1 — 2 (%) = 143241222 43823 + ..

(1+2) b= (%5 ¢5)
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Figure: Young diagrams for n = 3.



Weighted Partitions

Problem. Generate a weighted partition of n uniformly at random.

—

Figure: Random integer partition and weighted partition for n = 10°.
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Boltzmann Samplers

Def. A Boltzmann distribution over the class C parameterized by
0 < A < pc is the probability distribution, for all v € C, defined as

v
Px(v) = 2\()\),

where pc is the radius of convergence of C(z) =" cpz".

Def. A Boltzmann sampler I C()) is an algorithm that generates
objects from C according to the Boltzmann distribution
parameterized by A.

» All objects of size n occur with equal probability.
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Boltzmann Samplers

The size of an object generated by 'C(\) is a random variable
denoted by U with the probability distribution

cp A"

C(A)

PA(U=n) =

Figure: Distribution for integer partitions (n = 500, A = 0.90).
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Boltzmann Samplers

The size of an object generated by 'C(\) is a random variable
denoted by U with the probability distribution

cp A"

C(A)

PA(U=n) =

Figure: Distribution for integer partitions (n = 500, A = 0.91).



Boltzmann Samplers

The size of an object generated by 'C(\) is a random variable
denoted by U with the probability distribution

cp A"

C(A)

PA(U=n) =

Figure: Distribution for integer partitions (n = 500, A = 0.92).
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Boltzmann Samplers

The size of an object generated by 'C(\) is a random variable
denoted by U with the probability distribution

cp A"

C(A)

PA(U=n) =

Figure: Distribution for integer partitions (n = 500, A = 0.93).
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Boltzmann Samplers

The size of an object generated by 'C(\) is a random variable
denoted by U with the probability distribution

cp A"

C(A)

PA(U=n) =

Figure: Distribution for integer partitions (n = 500, A = 0.94).
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Boltzmann Samplers

The size of an object generated by 'C(\) is a random variable
denoted by U with the probability distribution

cp A"

C(A)

PA(U=n) =

Figure: Distribution for integer partitions (n = 500, A = 0.95).

13



Boltzmann Samplers

The size of an object generated by 'C(\) is a random variable
denoted by U with the probability distribution
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Figure: Distribution for integer partitions (n = 500, A € [0.90, 0.95]).



Sampling Algorithm for Weighted Partitions

Def. Let (bk)?2; be a sequence such that by = p(k) for some
polynomial p(x) = ap + aix + - - - + a,x" € R[x]| with deg(p) = r.

» (K33 = Lk +1)(k +2)

Algorithm 1 Sampling algorithm for weighted partitions.

1. procedure RANDOMWEIGHTEDPARTITION(n)

2 An <= Solution to Y7 _; kbyA¥ /(1 = A<)=n > Tuning
3 repeat > Rejection sampling
4: v+ T Ch(An)

5 until |[y| =n

6 return vy

Theorem. Algorithm 1 runs in expected O(n"™1((r + 2)n)3/4)
time and uses O(n) space.

13



Sampling Algorithm for Weighted Partitions

Observation.

)\(# of columns of type by j)k
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gorithm 2 Boltzmann sampler for weighted partitions.
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b:
6
7
8

. procedure 'Cy(N)
v < Empty associative array
for k =1to ndo
for j =1 to by do
m < Geometric(1 — \¥)
if m>1 then
(k)] < m
return y

» The PDF of Geometric(1 — \¥) is P;_,«(m) = A™k(1 —

AF).,
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Tuning the Boltzmann Samplers

The random variable for the size of an object produced is

n b
Un= > kY.

k=1 j=1

where Yy j ~ Geometric(1 — \¥).

Lemma. We have
n Ak
E\[U,] = kb | ——— .
A[U] ; k<1 _)\k>

» Follows from the linearity of expectation and the mean of
geometric random variable

» Strictly increasing so binary search to solve E\[U,] = n

13



Bounding the Rejection Rates

Lemma. The Dirichlet generating series for weighted partitions is
o
=3 - Z (s =
k=1
and has at most r + 1 simple poles on the positive real axis at

positions px = k + 1 with residue Ax = ax if and only if a, # 0.

Proof. The Riemann zeta function converges uniformly and is
analytic on C\ {1}, so

:Z% ao+alk+ -+ a k” —ZakCS—

k=1 k=1

Since ¢(s) = Y %, 1/k® has a simple pole at s = 1 with residue 1,
the claim about the poles of D(s) follows.
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Bounding the Rejection Rates

Theorem [Granovsky and Stark, 2012]. For n sufficiently large,

_1
2(r+2)

Py, (Un = ) > = (Ar(pr+z)<<p,+1)) ((r +2)n) ",

=10
Lemma. For any positive integer sequence of degree r,

%F(Pr +2)¢(pr+1) > 1.
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Bounding the Rejection Rates

Theorem [Granovsky and Stark, 2012]. For n sufficiently large,

1

Py (Up=n)> —

(57 + 200+ 1)+ 20y

Lemma. For any positive integer sequence of degree r,

%F(Pr +2)¢(pr+1) > 1.
Proof. Let .
p) = 3= 279004,
j=0

[Stanley, EC1, Cor 1.93] = A'p(0)€Z = a, =A, > %

Since p, = r+1,

A, 1
ST +2)pr +1) = H(r+2)! > 1.
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Boltzmann Sampler for Bose—Einstein Condensation

Lemma. If by = (k”;iil), for d > 1, then

R (O S | R )|

k=1 k=1

Theorem. We can uniformly sample objects of size nin C in
expected O(n((d + 1)n)3/*) time while using O(n) space.
» Runtime reduced from O(n37%) to O(n*®)
» Columns are sampled from the zero-truncated negative
binomial distribution
» Geometric random variable is a weighted sum of independent
Poisson random variables
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