Efficient Boltzmann Samplers for Weighted Partitions and Selections

Megan Bernstein, Matthew Fahrbach and Dana Randall Georgia Institute of Technology

Shanks Workshop: 29th Cumberland Conference on Combinatorics, Graph Theory and Computing May 20, 2017

Weighted Partitions

Def. An integer partition of n is a decomposition of n into a nonincreasing sequence of positive integers that sums to n.

- Partitions of 4: (4), $(3,1),(2,2),(2,1,1),(1,1,1,1)$

Def. A weighted partition of n is a partition of n where each summand of size k belongs to one of b_{k} types. The class \mathcal{C} of weighted partitions has the generating function

$$
\begin{aligned}
C(z) \equiv \sum_{n=0}^{\infty} c_{n} z^{n} & \equiv \prod_{k=1}^{\infty}\left(1-z^{k}\right)^{-b_{k}} \\
& =\prod_{k=1}^{\infty}\left(1+z^{k}+z^{2 k}+\ldots\right)^{b_{k}}
\end{aligned}
$$

- If $\left(b_{k}\right)_{k=1}^{\infty}=(1,1,3,1,1, \ldots)$ the weighted partitions of 4 are: $(4),(3,1),(3,1),(3,1),(2,2),(2,1,1),(1,1,1,1)$.

Weighted Partitions

Example. Bose-Einstein condensation occurs when $b_{k}=\binom{k+2}{2}$.

- $C(z)=\prod_{k=1}^{\infty}\left(1-z^{k}\right)^{-\binom{k+2}{2}}=1+3 z+12 z^{2}+38 z^{3}+\ldots$

| |ll!
(3)

$(1,1,1)$
Figure: Young diagrams for $n=3$.

Weighted Partitions

Problem. Generate a weighted partition of n uniformly at random.

Figure: Random integer partition and weighted partition for $n=10^{5}$.

Boltzmann Samplers

Def. A Boltzmann distribution over the class \mathcal{C} parameterized by $0<\lambda<\rho_{\mathcal{C}}$ is the probability distribution, for all $\gamma \in \mathcal{C}$, defined as

$$
\mathbb{P}_{\lambda}(\gamma)=\frac{\lambda^{|\gamma|}}{C(\lambda)}
$$

where ρ_{C} is the radius of convergence of $C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$.

Def. A Boltzmann sampler $\Gamma C(\lambda)$ is an algorithm that generates objects from \mathcal{C} according to the Boltzmann distribution parameterized by λ.

- All objects of size n occur with equal probability.

Boltzmann Samplers

The size of an object generated by $\Gamma C(\lambda)$ is a random variable denoted by U with the probability distribution

$$
\mathbb{P}_{\lambda}(U=n)=\frac{c_{n} \lambda^{n}}{C(\lambda)}
$$

Figure: Distribution for integer partitions ($n=500, \lambda=0.90$).

Boltzmann Samplers

The size of an object generated by $\Gamma C(\lambda)$ is a random variable denoted by U with the probability distribution

$$
\mathbb{P}_{\lambda}(U=n)=\frac{c_{n} \lambda^{n}}{C(\lambda)}
$$

Figure: Distribution for integer partitions ($n=500, \lambda=0.91$).

Boltzmann Samplers

The size of an object generated by $\Gamma C(\lambda)$ is a random variable denoted by U with the probability distribution

$$
\mathbb{P}_{\lambda}(U=n)=\frac{c_{n} \lambda^{n}}{C(\lambda)}
$$

Figure: Distribution for integer partitions ($n=500, \lambda=0.92$).

Boltzmann Samplers

The size of an object generated by $\Gamma C(\lambda)$ is a random variable denoted by U with the probability distribution

$$
\mathbb{P}_{\lambda}(U=n)=\frac{c_{n} \lambda^{n}}{C(\lambda)}
$$

Figure: Distribution for integer partitions ($n=500, \lambda=0.93$).

Boltzmann Samplers

The size of an object generated by $\Gamma C(\lambda)$ is a random variable denoted by U with the probability distribution

$$
\mathbb{P}_{\lambda}(U=n)=\frac{c_{n} \lambda^{n}}{C(\lambda)}
$$

Figure: Distribution for integer partitions ($n=500, \lambda=0.94$).

Boltzmann Samplers

The size of an object generated by $\Gamma C(\lambda)$ is a random variable denoted by U with the probability distribution

$$
\mathbb{P}_{\lambda}(U=n)=\frac{c_{n} \lambda^{n}}{C(\lambda)}
$$

Figure: Distribution for integer partitions ($n=500, \lambda=0.95$).

Boltzmann Samplers

The size of an object generated by $\Gamma C(\lambda)$ is a random variable denoted by U with the probability distribution

$$
\mathbb{P}_{\lambda}(U=n)=\frac{c_{n} \lambda^{n}}{C(\lambda)}
$$

Figure: Distribution for integer partitions ($n=500, \lambda \in[0.90,0.95]$).

Sampling Algorithm for Weighted Partitions

Def. Let $\left(b_{k}\right)_{k=1}^{\infty}$ be a sequence such that $b_{k}=p(k)$ for some polynomial $p(x)=a_{0}+a_{1} x+\cdots+a_{r} x^{r} \in \mathbb{R}[x]$ with $\operatorname{deg}(p)=r$.

- $\binom{k+2}{2}=\frac{1}{2}(k+1)(k+2)$

Algorithm 1 Sampling algorithm for weighted partitions.
1: procedure RandomWeightedPartition (n)
2: $\quad \lambda_{n} \leftarrow$ Solution to $\sum_{k=1}^{n} k b_{k} \lambda^{k} /\left(1-\lambda^{k}\right)=n \quad \triangleright$ Tuning
3: repeat
\triangleright Rejection sampling
$\begin{array}{ll}\text { 4: } & \quad \gamma \leftarrow \Gamma C_{n}\left(\lambda_{n}\right) \\ \text { 5: } & \text { until }|\gamma|=n \\ \text { 6: } & \text { return } \gamma\end{array}$

Theorem. Algorithm 1 runs in expected $O\left(n^{r+1}((r+2) n)^{3 / 4}\right)$ time and uses $O(n)$ space.

Sampling Algorithm for Weighted Partitions

Observation.

$$
\mathbb{P}_{\lambda}(\gamma)=\frac{\lambda^{|\gamma|}}{\prod_{k=1}^{n}\left(1-\lambda^{k}\right)^{-b_{k}}}=\prod_{k=1}^{n} \prod_{j=1}^{b_{k}} \frac{\lambda^{\left(\# \text { of columns of type } b_{k, j}\right) k}}{\left(1-\lambda^{k}\right)^{-1}}
$$

Algorithm 2 Boltzmann sampler for weighted partitions.
1: procedure $\Gamma C_{n}(\lambda)$
2: $\quad \gamma \leftarrow$ Empty associative array
3: \quad for $k=1$ to n do
4: \quad for $j=1$ to b_{k} do
5: $\quad m \leftarrow$ Geometric $\left(1-\lambda^{k}\right)$
6: \quad if $m \geq 1$ then
$7:$

$$
\gamma[(k, j)] \leftarrow m
$$

8: \quad return γ

- The PDF of Geometric $\left(1-\lambda^{k}\right)$ is $\mathbb{P}_{1-\lambda^{k}}(m)=\lambda^{m k}\left(1-\lambda^{k}\right)$.

Tuning the Boltzmann Samplers

The random variable for the size of an object produced is

$$
U_{n}=\sum_{k=1}^{n} \sum_{j=1}^{b_{k}} k Y_{k, j}
$$

where $Y_{k, j} \sim \operatorname{Geometric}\left(1-\lambda^{k}\right)$.

Lemma. We have

$$
\mathbb{E}_{\lambda}\left[U_{n}\right]=\sum_{k=1}^{n} k b_{k}\left(\frac{\lambda^{k}}{1-\lambda^{k}}\right)
$$

- Follows from the linearity of expectation and the mean of geometric random variable
- Strictly increasing so binary search to solve $\mathbb{E}_{\lambda}\left[U_{n}\right]=n$

Bounding the Rejection Rates

Lemma. The Dirichlet generating series for weighted partitions is

$$
D(s)=\sum_{k=1}^{\infty} \frac{b_{k}}{k^{s}}=\sum_{k=0}^{r} a_{k} \zeta(s-k)
$$

and has at most $r+1$ simple poles on the positive real axis at positions $\rho_{k}=k+1$ with residue $A_{k}=a_{k}$ if and only if $a_{k} \neq 0$.

Proof. The Riemann zeta function converges uniformly and is analytic on $\mathbb{C} \backslash\{1\}$, so

$$
D(s)=\sum_{k=1}^{\infty} \frac{b_{k}}{k^{s}}=\sum_{k=1}^{\infty} \frac{a_{0}+a_{1} k+\cdots+a_{r} k^{r}}{k^{s}}=\sum_{k=0}^{r} a_{k} \zeta(s-k) .
$$

Since $\zeta(s)=\sum_{k=1}^{\infty} 1 / k^{s}$ has a simple pole at $s=1$ with residue 1 , the claim about the poles of $D(s)$ follows.

Bounding the Rejection Rates

Theorem [Granovsky and Stark, 2012]. For n sufficiently large,

$$
\mathbb{P}_{\lambda_{n}}\left(U_{n}=n\right) \geq \frac{1}{10}\left(\frac{A_{r}}{2} \Gamma\left(\rho_{r}+2\right) \zeta\left(\rho_{r}+1\right)\right)^{\frac{1}{2(r+2)}}((r+2) n)^{-3 / 4}
$$

Lemma. For any positive integer sequence of degree r,

$$
\frac{A_{r}}{2} \Gamma\left(\rho_{r}+2\right) \zeta\left(\rho_{r}+1\right) \geq 1
$$

Bounding the Rejection Rates

Theorem [Granovsky and Stark, 2012]. For n sufficiently large,

$$
\mathbb{P}_{\lambda_{n}}\left(U_{n}=n\right) \geq \frac{1}{10}\left(\frac{A_{r}}{2} \Gamma\left(\rho_{r}+2\right) \zeta\left(\rho_{r}+1\right)\right)^{\frac{1}{2(r+2)}}((r+2) n)^{-3 / 4}
$$

Lemma. For any positive integer sequence of degree r,

$$
\frac{A_{r}}{2} \Gamma\left(\rho_{r}+2\right) \zeta\left(\rho_{r}+1\right) \geq 1
$$

Proof. Let

$$
p(k)=\sum_{j=0}^{r} \Delta^{j} p(0)\binom{k}{j}
$$

[Stanley, EC1, Cor 1.9.3] $\Longrightarrow \Delta^{r} p(0) \in \mathbb{Z} \quad \Longrightarrow \quad a_{r}=A_{r} \geq \frac{1}{r!}$. Since $\rho_{r}=r+1$,

$$
\frac{A_{r}}{2} \Gamma\left(\rho_{r}+2\right) \zeta\left(\rho_{r}+1\right) \geq \frac{1}{2 r!}(r+2)!\geq 1
$$

Boltzmann Sampler for Bose-Einstein Condensation

Lemma. If $b_{k}=\binom{k+d-1}{d-1}$, for $d \geq 1$, then

$$
C(z)=\prod_{k=1}^{\infty}\left(1-z^{k}\right)^{-\binom{k+d-1}{d-1}}=\prod_{k=1}^{\infty} \exp \left(\frac{1}{k}\left[\left(1-z^{k}\right)^{-d}-1\right]\right)
$$

Theorem. We can uniformly sample objects of size n in \mathcal{C} in expected $O\left(n((d+1) n)^{3 / 4}\right)$ time while using $O(n)$ space.

- Runtime reduced from $O\left(n^{3.75}\right)$ to $O\left(n^{1.75}\right)$
- Columns are sampled from the zero-truncated negative binomial distribution
- Geometric random variable is a weighted sum of independent Poisson random variables

References

1. Megan Bernstein, Matthew Fahrbach, and Dana Randall. Efficient Boltzmann samplers for weighted partitions and selections. Submitted.
2. Philippe Flajolet, Eric Fusy, and Carine Pivoteau. Boltzmann sampling of unlabelled structures. In Proceedings of the Fourth Workshop on Analytic Algorithms and Combinatorics (ANALCO), pages 201-211. SIAM, 2007.
3. Boris L. Granovsky and Dudley Stark. A Meinardus theorem with multiple singularities. Communications in Mathematical Physics, 314(2):329-350, 2012.
4. Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.
