Planar graphs with girth at least 5 are (3, 4)-colorable

Xia Zhang
pandarhz@sina.com

Shandong Normal University, China

Coauthors: Ilkyoo Choi and Gexin Yu
May 20, 2017

Introduction

- A proper r-coloring of graph is a coloring of the graph with r colors so that each color class forms an independent set.

Introduction

- A proper r-coloring of graph is a coloring of the graph with r colors so that each color class forms an independent set.
- On proper coloring of planar graphs, a famous example is the Four Color Theorem.

Introduction

- A proper r-coloring of graph is a coloring of the graph with r colors so that each color class forms an independent set.
- On proper coloring of planar graphs, a famous example is the Four Color Theorem.
- We may relax the requirement by allowing some edges in each color class.

Introduction-1

- A graph G is called $\left(d_{1}, d_{2}, \ldots, d_{r}\right)$-colorable, if its vertex set can be partitioned into r nonempty subsets so that the subgraph induced by the i th part has maximum degree at most d_{i} for each $i \in\{1, \ldots, r\}$, where d_{i} s are non-negative integers.

Introduction-1

- A graph G is called $\left(d_{1}, d_{2}, \ldots, d_{r}\right)$-colorable, if its vertex set can be partitioned into r nonempty subsets so that the subgraph induced by the i th part has maximum degree at most d_{i} for each $i \in\{1, \ldots, r\}$, where d_{i} s are non-negative integers.
- Improper colorings have then been considered for planar graphs with large girth or graphs with low maximum average degree. (See Montassier and Ochem, Near-colorings: non-colorable graphs and NP-completeness, the electronic journal of combinatorics 22(1) (2015), \#P1.57)

Introduction-1

- A graph G is called $\left(d_{1}, d_{2}, \ldots, d_{r}\right)$-colorable, if its vertex set can be partitioned into r nonempty subsets so that the subgraph induced by the i th part has maximum degree at most d_{i} for each $i \in\{1, \ldots, r\}$, where d_{i} s are non-negative integers.

Introduction-1

- A graph G is called $\left(d_{1}, d_{2}, \ldots, d_{r}\right)$-colorable, if its vertex set can be partitioned into r nonempty subsets so that the subgraph induced by the i th part has maximum degree at most d_{i} for each $i \in\{1, \ldots, r\}$, where d_{i} s are non-negative integers.
- The Four Color Theorem says that every planar graph is ($0,0,0,0$)-colorable.

Introduction-1

- A graph G is called $\left(d_{1}, d_{2}, \ldots, d_{r}\right)$-colorable, if its vertex set can be partitioned into r nonempty subsets so that the subgraph induced by the i th part has maximum degree at most d_{i} for each $i \in\{1, \ldots, r\}$, where d_{i} s are non-negative integers.
- The Four Color Theorem says that every planar graph is ($0,0,0,0$)-colorable.
- In 1986, Cowen, Cowen, and Woodall proved that planar graphs are (2, 2, 2)-colorable. In 1999, Eaton and Hull, S̆krekovski, separately, proved that this is sharp by exhibiting non- $(1, k, k)$-colorable planar graphs for each k. Thus, the problem is completely solved when $r \geq 3$.

Introduction-2

- The girth of a graph G is the length of a shortest cycle. Let \mathcal{G}_{g} denote the class of planar graphs with girth at least g .

Introduction-2

- The girth of a graph G is the length of a shortest cycle. Let \mathcal{G}_{g} denote the class of planar graphs with girth at least g .
- There are non- $\left(d_{1}, d_{2}\right)$-colorable planar graphs in \mathcal{G}_{4} for any d_{1}, d_{2}. (Montassier and Ochem, 2015)

Introduction-2

- The girth of a graph G is the length of a shortest cycle. Let \mathcal{G}_{g} denote the class of planar graphs with girth at least g .
- There are non- $\left(d_{1}, d_{2}\right)$-colorable planar graphs in \mathcal{G}_{4} for any d_{1}, d_{2}. (Montassier and Ochem, 2015)
- There are non- $(0, k)$-colorable planar graphs in \mathcal{G}_{6} for any k. (Borodin, Ivanova, Montassier, Ochem and Raspaud, 2010)

Introduction-2

- The girth of a graph G is the length of a shortest cycle. Let \mathcal{G}_{g} denote the class of planar graphs with girth at least g .
- There are non- $\left(d_{1}, d_{2}\right)$-colorable planar graphs in \mathcal{G}_{4} for any d_{1}, d_{2}. (Montassier and Ochem, 2015)
- There are non- $(0, k)$-colorable planar graphs in \mathcal{G}_{6} for any k. (Borodin, Ivanova, Montassier, Ochem and Raspaud, 2010)
- There are non-(2, 0)-colorable planar graphs in \mathcal{G}_{7}. (Montassier and Ochem, 2015)

Introduction-2

- The girth of a graph G is the length of a shortest cycle. Let \mathcal{G}_{g} denote the class of planar graphs with girth at least g .
- There are non- $\left(d_{1}, d_{2}\right)$-colorable planar graphs in \mathcal{G}_{4} for any d_{1}, d_{2}. (Montassier and Ochem, 2015)
- There are non- $(0, k)$-colorable planar graphs in \mathcal{G}_{6} for any k. (Borodin, Ivanova, Montassier, Ochem and Raspaud, 2010)
- There are non-(2, 0)-colorable planar graphs in \mathcal{G}_{7}. (Montassier and Ochem, 2015)
- There are non- $(3,1)$-colorable planar graphs in \mathcal{G}_{5}. (Montassier and Ochem, 2015)

Some known results on $\left(d_{1}, d_{2}\right)$-colorable graphs in \mathcal{G}_{5}

- Planar graphs in \mathcal{G}_{5} are $(1,10)$-colorable. (Choi, Choi, Jeong and Suh 2016)

Some known results on $\left(d_{1}, d_{2}\right)$-colorable graphs in \mathcal{G}_{5}

- Planar graphs in \mathcal{G}_{5} are $(1,10)$-colorable. (Choi, Choi, Jeong and Suh 2016)
- Planar graphs in \mathcal{G}_{5} are $(2,6)$-colorable. (Borodin and Kostochka 2014)

Some known results on $\left(d_{1}, d_{2}\right)$-colorable graphs in \mathcal{G}_{5}

- Planar graphs in \mathcal{G}_{5} are $(1,10)$-colorable. (Choi, Choi, Jeong and Suh 2016)
- Planar graphs in \mathcal{G}_{5} are $(2,6)$-colorable. (Borodin and Kostochka 2014)
- Planar graphs in \mathcal{G}_{5} are $(3,5)$-colorable. (Choi and Raspaud 2015)

Some known results on $\left(d_{1}, d_{2}\right)$-colorable graphs in \mathcal{G}_{5}

- Planar graphs in \mathcal{G}_{5} are $(1,10)$-colorable. (Choi, Choi, Jeong and Suh 2016)
- Planar graphs in \mathcal{G}_{5} are $(2,6)$-colorable. (Borodin and Kostochka 2014)
- Planar graphs in \mathcal{G}_{5} are $(3,5)$-colorable. (Choi and Raspaud 2015)
- Planar graphs in \mathcal{G}_{5} are (4,4)-colorable. (Havet and Sereni 2006)

A summary on $\left(d_{1}, d_{2}\right)$-coloring

girth	$(k, 0)$	$(k, 1)$	$(k, 2)$	$(k, 3)$	$(k, 4)$
3,4	X	X	X	X	X
5	X	$(10,1)$	$(6,2)$	$(5,3)$	$(4,4)$
6	X	$(4,1)$	$(2,2)$		
7	$(4,0)$	$(1,1)$			
8	$(2,0)$				
11	$(1,0)$				

A summary on $\left(d_{1}, d_{2}\right)$-coloring

girth	$(k, 0)$	$(k, 1)$	$(k, 2)$	$(k, 3)$	$(k, 4)$
3,4	X	X	X	X	X
5	X	$(10,1)$	$(6,2)$	$(4,3)$	$(3,4)$
6	X	$(4,1)$	$(2,2)$		
7	$(4,0)$	$(1,1)$			
8	$(2,0)$				
11	$(1,0)$				

Our result and its proof

- Theorem 1.(Choi, Yu and Z., $\mathbf{2 0 1 7}^{+}$) Planar graphs with girth at least 5 are (3,4)-colorable.

Our result and its proof

- Theorem 1.(Choi, Yu and Z., $\mathbf{2 0 1 7}^{+}$) Planar graphs with girth at least 5 are (3,4)-colorable.
- Proof. Let G be a counterexample to Theorem 1 with the minimum number of 3^{+}-vertices, and subject to that choose one with the minimum number of edges.

Our result and its proof

- Theorem 1.(Choi, Yu and Z., $\mathbf{2 0 1 7}^{+}$) Planar graphs with girth at least 5 are (3,4)-colorable.
- Proof. Let G be a counterexample to Theorem 1 with the minimum number of 3^{+}-vertices, and subject to that choose one with the minimum number of edges.
- Claim. G must be connected and there are no 1-vertices in G.

Our result and its proof

- Theorem 1.(Choi, Yu and Z., $\mathbf{2 0 1 7}^{+}$) Planar graphs with girth at least 5 are (3,4)-colorable.
- Proof. Let G be a counterexample to Theorem 1 with the minimum number of 3^{+}-vertices, and subject to that choose one with the minimum number of edges.
- Claim. G must be connected and there are no 1-vertices in G.
- Lemma 2 There is no 3-vertex in G.

Proof-1

- Let the initial charge of each element $x \in V \cup F$ be $\mu(x)=d(x)-4$. Then by Euler formula,

$$
\sum_{x \in V \cup F} \mu(x)=-8
$$

Proof-1

- Let the initial charge of each element $x \in V \cup F$ be $\mu(x)=d(x)-4$. Then by Euler formula,

$$
\sum_{x \in V \cup F} \mu(x)=-8
$$

- By design discharging rules, we will show that the sum of the charges is non-negative after the discharging is finished.

Proof-1

- Let the initial charge of each element $x \in V \cup F$ be $\mu(x)=d(x)-4$. Then by Euler formula,

$$
\sum_{x \in V \cup F} \mu(x)=-8
$$

- By design discharging rules, we will show that the sum of the charges is non-negative after the discharging is finished.
- Clearly, by Lemma 2, each face and each vertex has a non-negative initial charge except 2 -vertices.

Proof-3

Proof-4

- Three special vertices:
$5 p$-vertex $x, 5 s$-vertex y and $6 p$-vertex z.

Proof-4

- Three special vertices: $5 p$-vertex $x, 5 s$-vertex y and $6 p$-vertex z.

- $\mu^{\prime}(x)=5-4-\frac{4}{2}=-1$.

Proof-4

- Three special vertices:
$5 p$-vertex $x, 5 s$-vertex y and $6 p$-vertex z.

- $\mu^{\prime}(x)=5-4-\frac{4}{2}=-1$.
- $\mu^{\prime}(y)=5-4-\frac{3}{2}=-\frac{1}{2}$.

Proof-4

- Three special vertices:
$5 p$-vertex $x, 5 s$-vertex y and $6 p$-vertex z.

- $\mu^{\prime}(x)=5-4-\frac{4}{2}=-1$.
- $\mu^{\prime}(y)=5-4-\frac{3}{2}=-\frac{1}{2}$.
- $\mu^{\prime}(z)=6-4-\frac{5}{2}=-\frac{1}{2}$.

Prooft

- So $5 p$-, $5 s$ - and $6 p$-vertices need get extra charge from their neighbors with high degree and incident faces with remaining charge.

Prooft

- So $5 p$-, $5 s$ - and $6 p$-vertices need get extra charge from their neighbors with high degree and incident faces with remaining charge.
- Considering these three special vertices and some special faces, we design the discharging rules.

Proof+

- So $5 p$-, $5 s$ - and $6 p$-vertices need get extra charge from their neighbors with high degree and incident faces with remaining charge.
- Considering these three special vertices and some special faces, we design the discharging rules.
- By the discharging rules, there is $\mu^{*}(x) \geq 0$ for each $x \in V \cup F$. So we have

$$
\sum_{x \in V \cup F} \mu^{*}(x) \geq 0
$$

a contradiction.

Some problems

- Problem 1. Given a pair $\left(d_{1}, d_{2}\right)$, determine the minimum $g=g\left(d_{1}, d_{2}\right)$ such that every planar graph with girth g is (d_{1}, d_{2})-colorable.

Some problems

- Problem 1. Given a pair $\left(d_{1}, d_{2}\right)$, determine the minimum $g=g\left(d_{1}, d_{2}\right)$ such that every planar graph with girth g is (d_{1}, d_{2})-colorable.
- Problem 2. Given a pair $\left(g, d_{1}\right)$, determine the minimum $d_{2}=d_{2}\left(g, d_{1}\right)$ such that every planar graph with girth g is (d_{1}, d_{2})-colorable.

Some problems

- Problem 1. Given a pair $\left(d_{1}, d_{2}\right)$, determine the minimum $g=g\left(d_{1}, d_{2}\right)$ such that every planar graph with girth g is (d_{1}, d_{2})-colorable.
- Problem 2. Given a pair $\left(g, d_{1}\right)$, determine the minimum $d_{2}=d_{2}\left(g, d_{1}\right)$ such that every planar graph with girth g is (d_{1}, d_{2})-colorable.
- Problem 3. What is the minimum d where graphs with girth 5 are $(3, d)$-colorable in $\{2,3,4\}$?

Thank you for your attention!

