Planar graphs with girth at least 5 are (3, 4)-colorable

Xia Zhang
pandarhz@sina.com

Shandong Normal University, China

Coauthors: Ilkyoo Choi and Gexin Yu

May 20, 2017
A proper r-coloring of graph is a coloring of the graph with r colors so that each color class forms an independent set.
A proper \textit{r-coloring} of graph is a coloring of the graph with \textit{r} colors so that each color class forms an independent set.

On proper coloring of planar graphs, a famous example is the Four Color Theorem.
A proper r-coloring of graph is a coloring of the graph with r colors so that each color class forms an independent set.

On proper coloring of planar graphs, a famous example is the Four Color Theorem.

We may relax the requirement by allowing some edges in each color class.
A graph G is called (d_1, d_2, \ldots, d_r)-colorable, if its vertex set can be partitioned into r nonempty subsets so that the subgraph induced by the ith part has maximum degree at most d_i for each $i \in \{1, \ldots, r\}$, where d_is are non-negative integers.
A graph G is called (d_1, d_2, \ldots, d_r)-colorable, if its vertex set can be partitioned into r nonempty subsets so that the subgraph induced by the ith part has maximum degree at most d_i for each $i \in \{1, \ldots, r\}$, where d_is are non-negative integers.

Improper colorings have then been considered for planar graphs with large girth or graphs with low maximum average degree. (See Montassier and Ochem, Near-colorings: non-colorable graphs and NP-completeness, the electronic journal of combinatorics 22(1) (2015), #P1.57)
A graph G is called (d_1, d_2, \ldots, d_r)-colorable, if its vertex set can be partitioned into r nonempty subsets so that the subgraph induced by the ith part has maximum degree at most d_i for each $i \in \{1, \ldots, r\}$, where d_is are non-negative integers.
A graph G is called (d_1, d_2, \ldots, d_r)-colorable, if its vertex set can be partitioned into r nonempty subsets so that the subgraph induced by the ith part has maximum degree at most d_i for each $i \in \{1, \ldots, r\}$, where d_is are non-negative integers.

The Four Color Theorem says that every planar graph is $(0, 0, 0, 0)$-colorable.
A graph G is called (d_1, d_2, \ldots, d_r)-colorable, if its vertex set can be partitioned into r nonempty subsets so that the subgraph induced by the ith part has maximum degree at most d_i for each $i \in \{1, \ldots, r\}$, where d_is are non-negative integers.

The Four Color Theorem says that every planar graph is $(0, 0, 0, 0)$-colorable.

In 1986, Cowen, Cowen, and Woodall proved that planar graphs are $(2, 2, 2)$-colorable. In 1999, Eaton and Hull, Škrekovski, separately, proved that this is sharp by exhibiting non-$(1, k, k)$-colorable planar graphs for each k. Thus, the problem is completely solved when $r \geq 3$.

Xia Zhang pandarhz@sina.com

Planar graphs with girth at least 5 are $(3, 4)$-colorable
The girth of a graph G is the length of a shortest cycle. Let G_g denote the class of planar graphs with girth at least g.

There are non-(d_1, d_2)-colorable planar graphs in G_4 for any d_1, d_2. (Montassier and Ochem, 2015)

There are non-$(0, k)$-colorable planar graphs in G_6 for any k. (Borodin, Ivanova, Montassier, Ochem and Raspaud, 2010)

There are non-$(2, 0)$-colorable planar graphs in G_7. (Montassier and Ochem, 2015)

There are non-$(3, 1)$-colorable planar graphs in G_5. (Montassier and Ochem, 2015)

Planar graphs with girth at least 5 are $(3, 4)$-colorable.
The girth of a graph G is the length of a shortest cycle. Let G_g denote the class of planar graphs with girth at least g.

There are non-(d_1, d_2)-colorable planar graphs in G_4 for any d_1, d_2. (Montassier and Ochem, 2015)
The girth of a graph G is the length of a shortest cycle. Let G_g denote the class of planar graphs with girth at least g.

There are non-(d_1, d_2)-colorable planar graphs in G_4 for any d_1, d_2. (Montassier and Ochem, 2015)

There are non-$(0, k)$-colorable planar graphs in G_6 for any k. (Borodin, Ivanova, Montassier, Ochem and Raspaud, 2010)
• The girth of a graph G is the length of a shortest cycle. Let G_g denote the class of planar graphs with girth at least g.

• There are non-(d_1, d_2)-colorable planar graphs in G_4 for any d_1, d_2. (Montassier and Ochem, 2015)

• There are non-$(0, k)$-colorable planar graphs in G_6 for any k. (Borodin, Ivanova, Montassier, Ochem and Raspaud, 2010)

• There are non-$(2, 0)$-colorable planar graphs in G_7. (Montassier and Ochem, 2015)
The girth of a graph G is the length of a shortest cycle. Let \mathcal{G}_g denote the class of planar graphs with girth at least g.

- There are non-(d_1, d_2)-colorable planar graphs in \mathcal{G}_4 for any d_1, d_2. (Montassier and Ochem, 2015)

- There are non-$(0, k)$-colorable planar graphs in \mathcal{G}_6 for any k. (Borodin, Ivanova, Montassier, Ochem and Raspaud, 2010)

- There are non-$(2, 0)$-colorable planar graphs in \mathcal{G}_7. (Montassier and Ochem, 2015)

- There are non-$(3, 1)$-colorable planar graphs in \mathcal{G}_5. (Montassier and Ochem, 2015)
Some known results on \((d_1, d_2)\)-colorable graphs in \(G_5\)

- Planar graphs in \(G_5\) are \((1, 10)\)-colorable. (Choi, Choi, Jeong and Suh 2016)

- Planar graphs in \(G_5\) are \((2, 6)\)-colorable. (Borodin and Kostochka 2014)

- Planar graphs in \(G_5\) are \((3, 5)\)-colorable. (Choi and Raspaud 2015)

- Planar graphs in \(G_5\) are \((4, 4)\)-colorable. (Havet and Sereni 2006)

- Planar graphs with girth at least 5 are \((3, 4)\)-colorable.
Some known results on \((d_1, d_2)\)-colorable graphs in \(G_5\)

- Planar graphs in \(G_5\) are \((1, 10)\)-colorable. (Choi, Choi, Jeong and Suh 2016)

- Planar graphs in \(G_5\) are \((2, 6)\)-colorable. (Borodin and Kostochka 2014)
Some known results on \((d_1, d_2)\)-colorable graphs in \(G_5\)

- Planar graphs in \(G_5\) are \((1, 10)\)-colorable. (Choi, Choi, Jeong and Suh 2016)

- Planar graphs in \(G_5\) are \((2, 6)\)-colorable. (Borodin and Kostochka 2014)

- Planar graphs in \(G_5\) are \((3, 5)\)-colorable. (Choi and Raspaud 2015)
Some known results on \((d_1, d_2)\)-colorable graphs in \(G_5\)

- Planar graphs in \(G_5\) are \((1, 10)\)-colorable. (Choi, Choi, Jeong and Suh 2016)

- Planar graphs in \(G_5\) are \((2, 6)\)-colorable. (Borodin and Kostochka 2014)

- Planar graphs in \(G_5\) are \((3, 5)\)-colorable. (Choi and Raspaud 2015)

- Planar graphs in \(G_5\) are \((4, 4)\)-colorable. (Havet and Sereni 2006)

Planar graphs with girth at least 5 are \((3, 4)\)-colorable.
A summary on (d_1, d_2)-coloring

<table>
<thead>
<tr>
<th>girth</th>
<th>$(k, 0)$</th>
<th>$(k, 1)$</th>
<th>$(k, 2)$</th>
<th>$(k, 3)$</th>
<th>$(k, 4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3, 4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>(10, 1)</td>
<td>(6, 2)</td>
<td>(5, 3)</td>
<td>(4, 4)</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>(4, 1)</td>
<td>(2, 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(4, 0)</td>
<td>(1, 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(2, 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>(1, 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Planar graphs with girth at least 5 are $(3, 4)$-colorable.
A summary on \((d_1, d_2)\)-coloring

<table>
<thead>
<tr>
<th>girth</th>
<th>((k, 0))</th>
<th>((k, 1))</th>
<th>((k, 2))</th>
<th>((k, 3))</th>
<th>((k, 4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3, 4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>(10, 1)</td>
<td>(6, 2)</td>
<td>(4, 3)</td>
<td>(3, 4)</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>(4, 1)</td>
<td>(2, 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(4, 0)</td>
<td>(1, 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(2, 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>(1, 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Our result and its proof

- **Theorem 1.** *(Choi, Yu and Z., 2017+) Planar graphs with girth at least 5 are \((3, 4)\)-colorable.*
Our result and its proof

- **Theorem 1. (Choi, Yu and Z., 2017+)** Planar graphs with girth at least 5 are (3, 4)-colorable.

- **Proof.** Let G be a counterexample to Theorem 1 with the minimum number of 3^+-vertices, and subject to that choose one with the minimum number of edges.
Our result and its proof

- **Theorem 1.** (Choi, Yu and Z., 2017) Planar graphs with girth at least 5 are (3, 4)-colorable.

- **Proof.** Let G be a counterexample to Theorem 1 with the minimum number of 3^+-vertices, and subject to that choose one with the minimum number of edges.

- **Claim.** G must be connected and there are no 1-vertices in G.
Our result and its proof

- **Theorem 1.** (Choi, Yu and Z., 2017+) Planar graphs with girth at least 5 are \((3, 4)\)-colorable.

- **Proof.** Let \(G\) be a counterexample to Theorem 1 with the minimum number of \(3^+\)-vertices, and subject to that choose one with the minimum number of edges.

- **Claim.** \(G\) must be connected and there are no 1-vertices in \(G\).

- **Lemma 2** There is no 3-vertex in \(G\).

![Diagram](image-url)
Let the initial charge of each element $x \in V \cup F$ be $\mu(x) = d(x) - 4$. Then by Euler formula,

$$\sum_{x \in V \cup F} \mu(x) = -8.$$
Let the initial charge of each element $x \in V \cup F$ be $\mu(x) = d(x) - 4$. Then by Euler formula,

$$\sum_{x \in V \cup F} \mu(x) = -8.$$

By design discharging rules, we will show that the sum of the charges is non-negative after the discharging is finished.
Let the initial charge of each element \(x \in V \cup F \) be \(\mu(x) = d(x) - 4 \). Then by Euler formula,

\[
\sum_{x \in V \cup F} \mu(x) = -8.
\]

By design discharging rules, we will show that the sum of the charges is non-negative after the discharging is finished.

Clearly, by Lemma 2, each face and each vertex has a non-negative initial charge except 2-vertices.
Planar graphs with girth at least 5 are (3, 4)-colorable.
Proof–4

- Three special vertices: $5p$-vertex x, $5s$-vertex y and $6p$-vertex z.

\[\mu'(x) = 5 - 4 - 4 = -1.\]
\[\mu'(y) = 5 - 4 - 3 = -\frac{1}{2}.\]
\[\mu'(z) = 6 - 4 - 5 = -\frac{1}{2}.\]
Three special vertices:
5p-vertex x, 5s-vertex y and 6p-vertex z.

\[
\mu'(x) = 5 - 4 - \frac{4}{2} = -1.
\]
Three special vertices: 5p-vertex x, 5s-vertex y and 6p-vertex z.

- $\mu'(x) = 5 - 4 - \frac{4}{2} = -1$.

- $\mu'(y) = 5 - 4 - \frac{3}{2} = -\frac{1}{2}$.
Three special vertices:
5p-vertex x, 5s-vertex y and 6p-vertex z.

- $\mu'(x) = 5 - 4 - \frac{4}{2} = -1$.
- $\mu'(y) = 5 - 4 - \frac{3}{2} = -\frac{1}{2}$.
- $\mu'(z) = 6 - 4 - \frac{5}{2} = -\frac{1}{2}$.
So 5p-, 5s- and 6p-vertices need get extra charge from their neighbors with high degree and incident faces with remaining charge.
So 5p-, 5s- and 6p-vertices need get extra charge from their neighbors with high degree and incident faces with remaining charge.

Considering these three special vertices and some special faces, we design the discharging rules.
So 5p-, 5s- and 6p-vertices need get extra charge from their neighbors with high degree and incident faces with remaining charge.

Considering these three special vertices and some special faces, we design the discharging rules.

By the discharging rules, there is $\mu^*(x) \geq 0$ for each $x \in V \cup F$. So we have

$$\sum_{x \in V \cup F} \mu^*(x) \geq 0,$$

a contradiction.
Some problems

Problem 1. Given a pair \((d_1, d_2)\), determine the minimum \(g = g(d_1, d_2)\) such that every planar graph with girth \(g\) is \((d_1, d_2)\)-colorable.

Problem 2. Given a pair \((g, d_1)\), determine the minimum \(d_2 = d_2(g, d_1)\) such that every planar graph with girth \(g\) is \((d_1, d_2)\)-colorable.

Problem 3. What is the minimum \(d\) where graphs with girth 5 are \((3, d)\)-colorable in \{2, 3, 4\}?

Xia Zhang pandarhz@sina.com

Planar graphs with girth at least 5 are \((3, 4)\)-colorable
Some problems

- **Problem 1.** Given a pair \((d_1, d_2)\), determine the minimum \(g = g(d_1, d_2)\) such that every planar graph with girth \(g\) is \((d_1, d_2)\)-colorable.

- **Problem 2.** Given a pair \((g, d_1)\), determine the minimum \(d_2 = d_2(g, d_1)\) such that every planar graph with girth \(g\) is \((d_1, d_2)\)-colorable.
Some problems

- **Problem 1.** Given a pair \((d_1, d_2)\), determine the minimum \(g = g(d_1, d_2)\) such that every planar graph with girth \(g\) is \((d_1, d_2)\)-colorable.

- **Problem 2.** Given a pair \((g, d_1)\), determine the minimum \(d_2 = d_2(g, d_1)\) such that every planar graph with girth \(g\) is \((d_1, d_2)\)-colorable.

- **Problem 3.** What is the minimum \(d\) where graphs with girth 5 are \((3, d)\)-colorable in \(\{2, 3, 4\}\)?
Thank you for your attention!