$\operatorname{obs}(P_t^*) \leq 1$

Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems

Obstacle Numbers of Some Ptolemaic Graphs

Timothy M. Brauch Thomas Dean

Department of Mathematics and Computer Science, Manchester University, North Manchester, Indiana

May 20, 2017

Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems

Ptolemaic Graphs

Obstacles

The Difficulties

(5) Open Problems

<ロト < 団 ト < 臣 ト < 臣 ト 三 三 のへで

Obstacles

$\operatorname{obs}(P_t^*) \leq 1$

Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems

Definition (Obstacle Representation of a Graph)

Consider a graph whose vertices are points in the plane along with a set of polygonal obstacles. Two vertices are adjacent if the straight line connecting the points in the plane do not intersect an obstacle.

An obstacle representation of a graph is the set of points and polygons.

Obstacles

$\operatorname{obs}(P_t^*) \leq 1$

Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems

Definition (Obstacle Representation of a Graph)

Consider a graph whose vertices are points in the plane along with a set of polygonal obstacles. Two vertices are adjacent if the straight line connecting the points in the plane do not intersect an obstacle.

An obstacle representation of a graph is the set of points and polygons.

Note that an obstacle representation is not necessarily unique.

Obstacle Number

$\operatorname{obs}(P_t^*) \leq 1$

Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems

Definition (Obstacle Number of a Graph)

The obstacle number of a graph G, denoted obs(G) is the minimum number of obstacles such that an obstacle representation of the graph exists.

There are some classes of graphs with trivial-to-compute obstacle numbers.

- The complete graphs K_n are the only graphs with obstacle number 0.
- Complete graphs minus an edge have obstacle number 1.
- Trees have obstacle number 1.
- Cycles have obstacle number 1.

$\operatorname{obs}(P_t^*) \leq 1$

Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems

Theorem (Chaplick, Lipp, Park, Wolff, 2016)

All graphs on 7 or fewer vertices are either the complete graph or have obstacle number 1.

(日本) (日本) (日本) (日本) (日本)

$\operatorname{obs}(P_t^*) \leq 1$

Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems

Theorem (Chaplick, Lipp, Park, Wolff, 2016)

All graphs on 7 or fewer vertices are either the complete graph or have obstacle number 1.

Theorem (Chaplick, Lipp, Park, Wolff, 2016)

There is a graph on 8 vertices that has obstacle number 2.

$\operatorname{obs}(P_t^*) \leq 1$

Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems

Theorem (Chaplick, Lipp, Park, Wolff, 2016)

All graphs on 7 or fewer vertices are either the complete graph or have obstacle number 1.

Theorem (Chaplick, Lipp, Park, Wolff, 2016)

There is a graph on 8 vertices that has obstacle number 2.

$\operatorname{obs}(P_t^*) \leq 1$

Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems

Theorem (Chaplick, Lipp, Park, Wolff, 2016)

All graphs on 7 or fewer vertices are either the complete graph or have obstacle number 1.

Theorem (Chaplick, Lipp, Park, Wolff, 2016)

There is a graph on 8 vertices that has obstacle number 2.

$\operatorname{obs}(P_t^*) \leq 1$

Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems

Theorem (Mukkamala, Pach, Sarioz, 2010)

For any fixed positive integer h, there exist bipartite graphs with obstacle number at least h.

$\operatorname{obs}(P_t^*) \leq 1$

Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems

Theorem (Mukkamala, Pach, Sarioz, 2010)

For any fixed positive integer h, there exist bipartite graphs with obstacle number at least h.

Theorem (Berman, Chappell, Faudree, Gimbel, Hartman, Williams, 2016)

If a graph is not the complete graph, then adding a pendant vertex (vertex of degree 1) does not increase the obstacle number. If the graph is complete, then adding a pendant vertex increases the obstacle number by 1.

This last result is what started us thinking about Ptolemaic graphs.

Ptolemaic Graphs

$obs(P_t^*) \leq 1$

Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems

Definition (True Twin)

A vertex, v' is a *true twin* to a vertex v if N(v') = N(v) and $v'v \in E(G)$.

Definition (False Twin)

A vertex, v' is a *true twin* to a vertex v if N(v') = N(v) and $v'v \notin E(G)$.

Definition (Ptolemaic Graph)

A *Ptolemaic graph* is a graph that can be constructed from a single vertex by repeated use of three operations:

- Adding a pendant vertex to a vertex.
- Adding a true twin to a vertex.
- S Adding a *false twin* to a vertex whose neighborhood a clique.

Transformations

$\operatorname{obs}(P_t^*) \leq 1$

Brauch, Dean

Obstacles

Ptolemaic Graphs Obstacle Preserving Transformations

<ロト < 団 ト < 臣 ト < 臣 ト 三 三 のへで

- Translations
- Rotations
- Reflections
- Scalings

The Difficulties

Results So Far

Open Problems

Transformations

$\operatorname{obs}(P_t^*) \leq 1$

- Brauch, Dean
- Obstacles
- Ptolemaic Graphs
- Results So Far
- The Difficulties
- Open Problems

- Obstacle Preserving Transformations
 - Translations
 - Rotations
 - Reflections
 - Scalings
 - Careful perspective from a point

Transformations

$\operatorname{obs}(P_t^*) \leq 1$

- Brauch, Dean
- Obstacles
- Ptolemaic Graphs
- Results So Far
- The Difficulties
- Open Problems

- Obstacle Preserving Transformations
 - Translations
 - Rotations
 - Reflections
 - Scalings
 - Careful perspective from a point

Ptolemaic* Graphs

$\operatorname{obs}(P_t^*) \leq 1$

Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems The false twin operation is complicated, and where we got stuck.

Ptolemaic* Graphs

$\operatorname{obs}(P_t^*) \leq 1$

Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems The false twin operation is complicated, and where we got stuck.

Definition (Ptolemaic* Graph)

A *Ptolemaic* graph* is a graph that can be constructed from a single vertex by repeated use of three TWO operations:

- Adding a pendant vertex to a vertex.
- 2 Adding a *true twin* to a vertex.
- Adding a *false twin* to a vertex whose neighborhood a clique.

We denote this class of graphs as P_t^* .

Results So Far

$\operatorname{obs}(P_t^*) \leq 1$

Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems

Lemma (B, Dean, 2017+)

Adding a true twin vertex does not increase the obstacle number.

Results So Far

$\operatorname{obs}(P_t^*) \leq 1$

Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems

Lemma (B, Dean, 2017+)

Adding a true twin vertex does not increase the obstacle number.

Results So Far

$\operatorname{obs}(P_t^*) \leq 1$

Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems

Lemma (B, Dean, 2017+)

Adding a true twin vertex does not increase the obstacle number.

The Main Result

$obs(P_t^*) \leq 1$

Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems

Theorem (B, Dean, 2017+)

If a Ptolemaic* graph is not the complete graph, then it has obstacle number 1.

Sketch of the proof.

- Induct on the number of vertices. The base case is that all graphs on 7 or fewer vertices are complete or have obstacle number 1.
 - Look at a Ptolemaic* graph on n + 1 vertices (not K_{n+1}).
 - If it has a pendant vertex, remove it. Berman et al says we can put it back.
 - If there is no pendant vertex, it must have a true twin which can be removed. Our lemma says we can put it back.

The complete graph case is even easier.

Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems

What about False Twins?

Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems

What about False Twins?

$\operatorname{obs}(P_t^*) \leq 1$

Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems

What about False Twins?

$obs(P_t^*) \leq 1$

Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems But, we know it has an obstacle 1 embedding.

$obs(P_t^*) \leq 1$

Brauch, Dean

But, we know it has an obstacle 1 embedding.

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems

$\mathsf{obs}(P^*_t) \leq 1$

Brauch, Dean

But, we know it has an obstacle 1 embedding.

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems

$obs(P_t^*) \leq 1$

Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

The Difficulties

Open Problems

But, we know it has an obstacle 1 embedding.

Conjecture

If the neighborhood of a vertex v is a <u>clockwise consecutive</u> clique, then you can add a false twin to v.

Other Open Problems

$\operatorname{obs}(P_t^*) \leq 1$

- Brauch, Dean
- Obstacles
- Ptolemaic Graphs
- Results So Far

The Difficulties

Open Problems

- Are all Ptolemaic graphs obstacle 1 graphs?
- Are all distance hereditary graphs obstacle 1 graphs?
- Trees and Complete graphs are extremes. How many edges allow for an graph with obstacle number 2?

Questions?

$obs(P^*_t) \leq 1$
Brauch, Dean
Obstacles
Ptolemaic Graphs
Results So Far
The Difficulties
Open Problems