obs $\left(P_{t}^{*}\right) \leq 1$
Brauch, Dean

Obstacles
Ptolemaic Graphs

Results So Far

Obstacle Numbers of Some Ptolemaic Graphs

Timothy M. Brauch Thomas Dean
Department of Mathematics and Computer Science,
Manchester University,
North Manchester, Indiana

(V) Manchester

University

May 20, 2017

（＊）Outline

obs $\left(P_{t}^{*}\right) \leq 1$

Brauch，Dean

Obstacles
Ptolemaic Graphs

Results So Far
The Difficulties
（1）Obstacles
（2）Ptolemaic Graphs
（3）Results So Far
（4）The Difficulties
（5）Open Problems

Obstacles

obs $\left(P_{t}^{*}\right) \leq 1$
Brauch, Dean

Obstacles
Ptolemaic Graphs

Results So Far

Definition (Obstacle Representation of a Graph)
Consider a graph whose vertices are points in the plane along with a set of polygonal obstacles. Two vertices are adjacent if the straight line connecting the points in the plane do not intersect an obstacle.
An obstacle representation of a graph is the set of points and polygons.

Obstacles

obs $\left(P_{t}^{*}\right) \leq 1$
Brauch, Dean

Obstacles
Ptolemaic Graphs

Results So Far

Definition (Obstacle Representation of a Graph)

Consider a graph whose vertices are points in the plane along with a set of polygonal obstacles. Two vertices are adjacent if the straight line connecting the points in the plane do not intersect an obstacle.
An obstacle representation of a graph is the set of points and polygons.
Note that an obstacle representation is not necessarily unique.

Obstacle Number

Definition (Obstacle Number of a Graph)

The obstacle number of a graph G, denoted obs (G) is the minimum number of obstacles such that an obstacle representation of the graph exists.

There are some classes of graphs with trivial-to-compute obstacle numbers.

- The complete graphs K_{n} are the only graphs with obstacle number 0 .
- Complete graphs minus an edge have obstacle number 1.
- Trees have obstacle number 1.
- Cycles have obstacle number 1 .

Known Results for Obstacle Numbers

obs $\left(P_{t}^{*}\right) \leq 1$
Brauch, Dean

Obstacles
Ptolemaic Graphs

Results So Far

Theorem (Chaplick, Lipp, Park, Wolff, 2016)
All graphs on 7 or fewer vertices are either the complete graph or have obstacle number 1.

Known Results for Obstacle Numbers

obs $\left(P_{t}^{*}\right) \leq 1$
Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

Theorem (Chaplick, Lipp, Park, Wolff, 2016)
All graphs on 7 or fewer vertices are either the complete graph or have obstacle number 1.

Theorem (Chaplick, Lipp, Park, Wolff, 2016)
There is a graph on 8 vertices that has obstacle number 2.

Known Results for Obstacle Numbers

obs $\left(P_{t}^{*}\right) \leq 1$
Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

Theorem (Chaplick, Lipp, Park, Wolff, 2016)
All graphs on 7 or fewer vertices are either the complete graph or have obstacle number 1.

Theorem (Chaplick, Lipp, Park, Wolff, 2016)
There is a graph on 8 vertices that has obstacle number 2.

obs $\left(P_{t}^{*}\right) \leq 1$
Brauch, Dean

Obstacles

Ptolemaic Graphs

Results So Far

Theorem (Chaplick, Lipp, Park, Wolff, 2016)
All graphs on 7 or fewer vertices are either the complete graph or have obstacle number 1.

Theorem (Chaplick, Lipp, Park, Wolff, 2016)
There is a graph on 8 vertices that has obstacle number 2.

Known Results for Obstacle Numbers

obs $\left(P_{t}^{*}\right) \leq 1$
Brauch, Dean

Obstacles
Ptolemaic Graphs

Results So Far

Theorem (Mukkamala, Pach, Sarioz, 2010)
For any fixed positive integer h, there exist bipartite graphs with obstacle number at least h.

Known Results for Obstacle Numbers

```
obs(P
```

Brauch, Dean

Theorem (Mukkamala, Pach, Sarioz, 2010)
For any fixed positive integer h, there exist bipartite graphs with obstacle number at least h.

Theorem (Berman, Chappell, Faudree, Gimbel, Hartman, Williams, 2016)
If a graph is not the complete graph, then adding a pendant vertex (vertex of degree 1) does not increase the obstacle number. If the graph is complete, then adding a pendant vertex increases the obstacle number by 1.

This last result is what started us thinking about Ptolemaic graphs.

Ptolemaic Graphs

obs $\left(P_{t}^{*}\right) \leq 1$
Brauch, Dean

Obstacles
Ptolemaic Graphs

Results So Far

Definition (True Twin)

A vertex, v^{\prime} is a true twin to a vertex v if $N\left(v^{\prime}\right)=N(v)$ and $v^{\prime} v \in E(G)$.

Definition (False Twin)

A vertex, v^{\prime} is a true twin to a vertex v if $N\left(v^{\prime}\right)=N(v)$ and $v^{\prime} v \notin E(G)$.

Definition (Ptolemaic Graph)

A Ptolemaic graph is a graph that can be constructed from a single vertex by repeated use of three operations:
(1) Adding a pendant vertex to a vertex.
(2) Adding a true twin to a vertex.
(0) Adding a false twin to a vertex whose neighborhood a clique.

(
 Transformations

obs $\left(P_{t}^{*}\right) \leq 1$

Brauch, Dean

Obstacles
Ptolemaic Graphs

Results So Far
The Difficulties

Obstacle Preserving Transformations

- Translations
- Rotations
- Reflections
- Scalings

(
 Transformations

obs $\left(P_{t}^{*}\right) \leq 1$
Brauch, Dean

Obstacles
Ptolemaic Graphs

Results So Far
The Difficulties

Obstacle Preserving Transformations

- Translations
- Rotations
- Reflections
- Scalings
- Careful perspective from a point

\otimes
 Transformations

obs $\left(P_{t}^{*}\right) \leq 1$
Brauch, Dean

Obstacles
Ptolemaic Graphs

Results So Far

Obstacle Preserving Transformations

- Translations
- Rotations
- Reflections
- Scalings
- Careful perspective from a point

Ptolemaic* Graphs

obs $\left(P_{t}^{*}\right) \leq 1$
Brauch, Dean
Obstacles
Ptolemaic Graphs

Results So Far
The Difficulties

The false twin operation is complicated, and where we got stuck.

Ptolemaic* Graphs

obs $\left(P_{t}^{*}\right) \leq 1$
Brauch, Dean

Obstacles
Ptolemaic Graphs

Results So Far

The false twin operation is complicated, and where we got stuck.

Definition (Ptolemaic* Graph)

A Ptolemaic* graph is a graph that can be constructed from a single vertex by repeated use of three TWO operations:
(1) Adding a pendant vertex to a vertex.
(2) Adding a true twin to a vertex.
(3) Adding a false twin to a vertex whose neighborhood a clique.

We denote this class of graphs as P_{t}^{*}.

Results So Far

obs $\left(P_{t}^{*}\right) \leq 1$ Brauch, Dean

Obstacles
Ptolemaic Graphs Results So Far

Lemma (B, Dean, 2017+)
Adding a true twin vertex does not increase the obstacle number.

Results So Far

obs $\left(P_{t}^{*}\right) \leq 1$
Brauch, Dean

Obstacles
Ptolemaic Graphs Results So Far

Lemma (B, Dean, 2017+)
Adding a true twin vertex does not increase the obstacle number.

Results So Far

obs $\left(P_{t}^{*}\right) \leq 1$ Brauch, Dean

Obstacles
Ptolemaic Graphs

Results So Far
The
Difficulties

Lemma (B, Dean, 2017+)
Adding a true twin vertex does not increase the obstacle number.

The Main Result

$\operatorname{obs}\left(P_{t}^{*}\right) \leq 1$
Brauch，Dean

Obstacles
Ptolemaic Graphs

Theorem（B，Dean，2017＋）
If a Ptolemaic＊graph is not the complete graph，then it has obstacle number 1.

Sketch of the proof．

－Induct on the number of vertices．The base case is that all graphs on 7 or fewer vertices are complete or have obstacle number 1.
－Look at a Ptolemaic＊graph on $n+1$ vertices（not K_{n+1} ）．
－If it has a pendant vertex，remove it．Berman et al says we can put it back．
－If there is no pendant vertex，it must have a true twin which can be removed． Our lemma says we can put it back．

The complete graph case is even easier．

False Twins

$\operatorname{obs}\left(P_{t}^{*}\right) \leq 1$
Brauch, Dean

Obstacles

Ptolemaic

 GraphsResults So Far
The Difficulties

What about False Twins?

False Twins

$\operatorname{obs}\left(P_{t}^{*}\right) \leq 1$
Brauch, Dean

Obstacles

Ptolemaic

 GraphsResults So Far
The Difficulties

What about False Twins?

False Twins
obs $\left(P_{t}^{*}\right) \leq 1$
Brauch, Dean

Obstacles

Ptolemaic

 GraphsResults So Far The Difficulties

What about False Twins?

False Twins

obs $\left(P_{t}^{*}\right) \leq 1$
Brauch, Dean

Obstacles
Ptolemaic Graphs

Results So Far
The Difficulties

But, we know it has an obstacle 1 embedding.

False Twins

obs $\left(P_{t}^{*}\right) \leq 1$
Brauch, Dean

Obstacles
Ptolemaic Graphs

Results So Far
The Difficulties

But, we know it has an obstacle 1 embedding.

False Twins

obs $\left(P_{t}^{*}\right) \leq 1$
Brauch, Dean

Obstacles

Ptolemaic

 GraphsResults So Far
The Difficulties

But, we know it has an obstacle 1 embedding.

False Twins

$\operatorname{obs}\left(P_{t}^{*}\right) \leq 1$
Brauch, Dean

Obstacles

Ptolemaic

 GraphsResults So Far

But, we know it has an obstacle 1 embedding.

Conjecture

If the neighborhood of a vertex v is a clockwise consecutive clique, then you can add a false twin to v .

Other Open Problems

－Are all Ptolemaic graphs obstacle 1 graphs？
－Are all distance hereditary graphs obstacle 1 graphs？
－Trees and Complete graphs are extremes．How many edges allow for an graph with obstacle number 2？
(v) Questions?
obs $\left(P_{t}^{*}\right) \leq 1$
Brauch, Dean
Obstacles
Ptolemaic Graphs

Results So Far

