Conditional Connectivity in Networks

Xiang-Jun Li

Yangtze University, China
Joint work with Professor Jun-Ming Xu
University of Science and Technology of China

May 21. 2017 Nashville

Outline

(1) Introduction

- Background
- Fault Tolerance of graphs
- Cayley graph
(2) Main Results
- (n, k)-star
- Bubble-sort graphs
(3) Further Problems

Networks

Interconnection networks play an important role in parallel and distributed computing/communication systems and data centers. An interconnection network can be modeled by a graph $G=(V, E)$, where V is the set of processors and E is the set of communication links in the network.

Figure: Topological structure of some simple networks

unway TaihuLight Supercomputer (Top 1)

Architecture and Performance

- Computer nodes 40,960
- Number of core 10,649,600
- Total CPU plus coprocessor memory 1.31 PB
- Total peak performance 93 petaflops.

Supercomputer (Top 2)

Architecture and Performance

- Computer nodes 16,000
- Number of core 3,120,000
- Total CPU plus coprocessor memory 1,375 TB
- Total peak performance 33.9 petaflops.

supercomputer (Top 3)

Architecture and Performance

- Computer nodes 18,688
- Number of core 299,008
- Total CPU plus coprocessor memory 710 TB
- Total peak performance 20 petaflops.

Characteristics of interconnection networks

Extendability

It should be possible to build a network of any given size, or at least to build arbitrarily large versions of the network. Furthermore, it would be easy to construct large networks from small ones.

Symmetry

Regularity and some symmetric properties on the graph.

Classical connectivity

Connectivity, Edge connectivity

A subset $S \subset V(G)(S \subset E(G))$ of a connected graph G is called a cut(edge-cut) if $G-S$ is disconnected. The connectivity(edgeconnectivity) $\kappa(G)(\lambda(G))$ of G is defined as the minimum cardinality over all cuts(edge-cuts) of G, that is

$$
\kappa(G)=\min \{|S|: S \text { is a cut of } G\},
$$

$$
\lambda(G)=\min \{|S|: S \text { is an edge-cut of } G\} .
$$

Classical connectivity

Flaws

When computing these parameters, one implicitly assumes that all links incident with the same processor may fail simultaneously. Consequently, this measurement is inaccurate for large-scale processing systems in which some subsets of system components can not fail at the same time in real applications.

Conditional connectivity

Definition(Harary, 1983)

The conditional connectivity of G with respect to some property P is the smallest cardinality of a set S of vertices, if any, such that every component of the disconnected graph $G-S$ has property P.

- In 1989, Esfahanian proposed restricted connectivity
- In 1994, Latifi generalized it to the restricted h-connectivity

Restricted h-connectivity(Latifi et al. 1994)

$\kappa^{(h)}(G), \lambda^{(h)}(G)$

For a given integer $h(\geq 0)$, a vertex(edge) subset S of a connected graph G is called an h-cut(h-edge-cut), if $G-S$ is disconnected and has the minimum degree $\delta(G-S) \geq h$. The h-super connectivity(edge connectivity) of G, denoted by $\kappa^{(h)}(G)\left(\lambda^{(h)}(G)\right)$, is defined as the minimum cardinality over all. That is

$$
\kappa^{(h)}(G)=\min \{|S|: S \text { is an h-cut of } G\}
$$

$$
\lambda^{(h)}(G)=\min \{|S|: S \text { is an h-edge-cut of } G\} .
$$

Complexity

Complexity (Oh, Choi, and Esfahanian, 1991)

The problem of finding the least cardinality S such that S is a conditional cut of G is NP-complete.

Cayley graphs

$\operatorname{Cay}(\Gamma, S)$

$\Gamma=(Z, \circ)$ is a finite group, S is a nonempty subset of Z without identity. Cayley digraph $\operatorname{Cay}(\Gamma, S)$ is a digraph with vertices Γ and edges $E(C a y(\Gamma, S))=\{u v: v=u \circ s, u \in \Gamma, s \in S\} . S^{-1}=$ $\left\{s^{-1}: s \in S\right\}=S, C a y(\Gamma, S)$ is an undirected graph.

$\operatorname{Cay}(\operatorname{Sym}(n), T)$

$\operatorname{Sym}(n)$ is the symmetric group on $\{1,2, \ldots, n\}$ and T is a set of transposition of Sym (n).
$G(T)$ be the graph on n vertices $\{1,2, \ldots, n\}$ such that there is an edge $i j$ in $G(T)$ if and only if transposition $(i j) \in T$.

If $G(T)$ is a star, $\operatorname{Cay}(\operatorname{Sym}(n), T)$ be star graph; if $G(T)$ is a path, $\operatorname{Cay}(\operatorname{Sym}(n), T)$ be bubble-sort graph.

Star graphs S_{2}, S_{3}, S_{4}

Hierarchical Structure

Use $S_{n}^{j: i}$ to denote the subgraph of S_{n} induced by all vertices with symbol i in the j-th position, I_{n}^{\prime} be a set $\{2, \ldots, n\}$.

The first structural property (Akers and Krishnamurthy, 1989)

For a fixed dimension $j \in I_{n}^{\prime}, S_{n}$ can be partitioned into n subgraphs $S_{n}^{j: i}$, which is isomorphic to S_{n-1} for each $i \in I_{n}$. Moreover, there are $(n-2)$! independent edges between $S_{n}^{j: i_{1}}$ and $S_{n}^{j: i_{2}}$ for any $i_{1}, i_{2} \in$ I_{n} with $i_{1} \neq i_{2}$.

Hierarchical Structure

Use $S_{n}^{j: i}$ to denote the subgraph of S_{n} induced by all vertices with symbol i in the j-th position, I_{n}^{\prime} be a set $\{2, \ldots, n\}$.

The second structural property (Shi et al., 2012)

For a fixed symbol $i \in I_{n}, S_{n}$ can be partitioned into n subgraphs $S_{n}^{j: i}$, which is isomorphic to S_{n-1} for each $j \in I_{n}^{\prime}$ and $S_{n}^{1: i}$ is an independent vertex set of size $(n-1)$!. Moreover, there are a perfect matching between $S_{n}^{1: i}$ and $S_{n}^{j: i}$ for any $j \in I_{n}^{\prime}$, and there are no edges between $S_{n}^{j_{1}: i}$ and $S_{n}^{j_{2}: i}$ for any $j_{1}, j_{2} \in I_{n}^{\prime}$ with $j_{1} \neq j_{2}$.

Two structures of S_{4}

Partition along dimension 4

Partition along symbol 1

Some results

Theorem (Rouskov et al., 1996)

If $n \geq 3$, then $\quad \kappa^{(1)}\left(S_{n}\right)=2 n-4$.

Theorem (Wan and Zhang, 2009)

If $n \geq 4$, then $\kappa^{(2)}\left(S_{n}\right)=6(n-3)$.

Conjecture (Wan and Zhang, 2009)
If $h \leq n-2$, Then $\kappa^{(h)}\left(S_{n}\right)=(h+1)!(n-h-1)$.

Theorem (Yang et al., 2010)

If $n \geq 4$, then $\lambda^{(2)}\left(S_{n}\right)=6(n-3)$.

Strategy

For a subset $X \subseteq V\left(S_{n}\right)$ and $j \in I_{n}$, we use U_{j}^{X} to denote the set of symbols in the j-th position of vertices in X, formally, $U_{j}^{X}=$ $\left\{p_{j}: p_{1} \ldots p_{j} \ldots p_{n} \in X\right\}$.

Lemma (Li and Xu, 2014)

Let H be a subgraph of S_{n} with vertex-set X. For a fixed $h \in I_{n-1}$, if $\delta(H) \geq h$, then there exists some $j \in I_{n}^{\prime}$ such that $\left|U_{j}^{X}\right| \geq h+1$.

Theorem (Li and Xu, 2014)

If $0 \leq h \leq n-2$, then $\kappa^{(h)}\left(S_{n}\right) \geq(h+1)$! $(n-h-1)$,
$\lambda^{(h)}\left(S_{n}\right) \geq(h+1)!(n-h-1)$.

Some results

Theorem (Li and Xu, 2014)

If $0 \leq h \leq n-2$, then $\kappa^{(h)}\left(S_{n}\right)=\lambda^{(h)}\left(S_{n}\right)=(h+1)$! $(n-h-1)$.

Conjecture (Wan and Zhang, 2009)

If $h \leq n-2$, Then $\kappa^{(h)}\left(S_{n}\right)=(h+1)!(n-h-1)$.

The Conjecture is proved to be correct, can we say anything more?

(n, k)-Star, A generalization of S_{n}

Definition (Akers and Krishnamurthy, 1989)

The n-dimensional star graph S_{n} has vertex-set $P(n)$ and has an edge between any two vertices if and only if one can be obtained from the other by swapping the 1 -th digit and the i-th digit for $i \in I_{n}^{\prime}$, that is, two vertices $x=p_{1} p_{2} \ldots p_{i} \ldots p_{n}$ and y are adjacent if and only if $y=p_{i} p_{2} \ldots p_{i-1} p_{1} p_{i+1} \ldots p_{n}$ for some $i \in I_{n}^{\prime}$.

Definition (Chiang et al., 1995)

An (n, k)-star graph $S_{n, k}$ is a graph with vertex-set $P(n, k)$, a vertex $p=p_{1} p_{2} \ldots p_{i} \ldots p_{k}$ being linked a vertex q if and only if q is
(a) $p_{i} p_{2} \cdots p_{i-1} p_{1} p_{i+1} \cdots p_{k}$, where $i \in I_{k}^{\prime}$ ($\operatorname{swap} p_{1}$ with p_{i}), or
(b) $p_{1}^{\prime} p_{2} p_{3} \cdots p_{k}$, where $p_{1}^{\prime} \in I_{n} \backslash\left\{p_{i}: i \in I_{k}\right\}$ (replace p_{1} by p_{1}^{\prime}).

An Useful Tool

Definition, t-Split

A t-split graph G^{t} of G is a graph obtained from G by replacing each vertex x by a set V_{x} of t independent vertices, and replacing each edge $e=x y$ by a perfect matching E_{e} between V_{x} and V_{y}.

Lemma

Let G be a connected graph and G^{t} be a t-split graph of G. Then $\kappa^{(h)}\left(G^{t}\right) \leq t \kappa^{(h)}(G)$ and $\lambda^{(h)}\left(G^{t}\right) \leq t \lambda^{(h)}(G)$.

(4, 2)-star graph $S_{4,2}$ and its 2-split graph

Relationship between S_{n} and $S_{n, k}$

Theorem (Li and Xu, 2017+)

For any k with $2 \leq k \leq n-1$, there is an $(n-k)$!-split graph of $S_{n, k}$ that is isomorphic to a star graph S_{n}.

Theorem (Li and Xu, 2017+)

For $2 \leq k \leq n-1$ and $n-k \leq h \leq n-2$,

$$
\kappa^{(h)}\left(S_{n, k}\right)=\lambda^{(h)}\left(S_{n, k}\right)=\frac{(h+1)!(n-h-1)}{(n-k)!} .
$$

Bubble-sort graphs

Definition (Akers and Krishnamurthy, 1989)

The n-dimensional bubble-sort graph B_{n} has n ! vertices labeled by distinct permutations on $\{1,2, \ldots, n\}$, and has an edge between any two vertices if and only if one can be obtained from the other by swapping the i-th digit and the $(i+1)$-th digit where $1 \leq i \leq n-1$.

Bubble graphs B_{2}, B_{3}, B_{4}

Some Results

Theorem (Akers and Krishnamurthy, 1989)

(1) B_{n} has regular degree $n-1$;
(2) $\kappa\left(B_{n}\right)=\lambda\left(B_{n}\right)=n-1$;

Structure (Akers and Krishnamurthy, 1989)

For a fixed $t \in\{1, n\}, B_{n}$ can be partitioned into n subgraphs $B_{n}^{t: j}$ isomorphic to B_{n-1} for each $j \in I_{n}$, moreover, there are $(n-2)$! independent edges between $B_{n}^{t: j_{1}}$ and $B_{n}^{t: j_{2}}$ for any $j_{1}, j_{2} \in I_{n}$ with $j_{1} \neq j_{2}$.

Theorem (Yang et al., 2010)

If $n \geq 3$, then $\kappa^{1}\left(B_{n}\right)=2 n-4$; if $n \geq 4$, then $\kappa^{2}\left(B_{n}\right)=4 n-12$.

How about $\lambda^{h}\left(B_{n}\right), \kappa^{h}\left(B_{n}\right)$ for more bigger h ?

Motivation and Methods

- Construction of the upper bound;
- The structure of B_{n};
- How an h-cut(edge cut) of large networks distributed in the small B_{n-1};
- Prove the lower bound using the $(h-1)$-supper connectivity of B_{n-1}.

Fault tolerance in B_{n}

> Theorem (Li and $\mathrm{Xu}, 2017+$)
> $\kappa^{h}\left(B_{n}\right)=\lambda^{h}\left(B_{n}\right)=2^{h}(n-1-h)$ for any h with $2 h \leq n$.

Corollary

If $n \geq 3$, then $\kappa^{1}\left(B_{n}\right)=2 n-4$; if $n \geq 4$, then $\kappa^{2}\left(B_{n}\right)=4 n-12$.

Problems

Problem

How about the h-super connectivity (edge connectivity) of B_{n} for $h \geq 2 k+1$?

h-Atom

For a given integer $h(\geq 0)$, a vertex(edge) subset S of a connected graph G is called an S be an h-cut(h-edge-cut), of G, the minimum connected component of $G-S$ is an h-atom(edge atom) of G.

Observation and Problems

The h-atom of S_{n}, Q_{n} is regular, How about h-atom for general Cayley graphs or regular graphs.

Thanks For Your Attention!

