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Networks

Interconnection networks play an important role in parallel and dis-
tributed computing/communication systems and data centers. An
interconnection network can be modeled by a graph G = (V,E),
where V is the set of processors and E is the set of communication
links in the network.
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Figure: Topological structure of some simple networks
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Sunway TaihuLight Supercomputer (Top 1)

Architecture and Performance

Computer nodes 40,960

Number of core 10,649,600

Total CPU plus coprocessor
memory 1.31 PB

Total peak performance 93
petaflops.
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Tianhe-2 Supercomputer (Top 2)

Architecture and Performance

Computer nodes 16,000

Number of core 3,120,000

Total CPU plus coprocessor
memory 1,375 TB

Total peak performance 33.9
petaflops.
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Titan supercomputer (Top 3)

Architecture and Performance

Computer nodes 18,688

Number of core 299,008

Total CPU plus coprocessor
memory 710 TB

Total peak performance 20
petaflops.
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Characteristics of interconnection networks

Extendability

It should be possible to build a network of any given size, or at least
to build arbitrarily large versions of the network. Furthermore, it
would be easy to construct large networks from small ones.

Symmetry

Regularity and some symmetric properties on the graph.
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Classical connectivity

Connectivity, Edge connectivity

A subset S ⊂ V (G)(S ⊂ E(G)) of a connected graph G is called
a cut(edge-cut) if G − S is disconnected. The connectivity(edge-
connectivity) κ(G)(λ(G)) of G is defined as the minimum cardinality
over all cuts(edge-cuts) of G, that is

κ(G) = min{|S| : S is a cut of G },

λ(G) = min{|S| : S is an edge-cut of G }.
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Classical connectivity

Flaws

When computing these parameters, one implicitly assumes that all
links incident with the same processor may fail simultaneously. Con-
sequently, this measurement is inaccurate for large-scale processing
systems in which some subsets of system components can not fail
at the same time in real applications.
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Conditional connectivity

Definition( Harary, 1983)

The conditional connectivity of G with respect to some property P
is the smallest cardinality of a set S of vertices, if any, such that
every component of the disconnected graph G− S has property P .

In 1989, Esfahanian proposed restricted connectivity

In 1994, Latifi generalized it to the restricted h-connectivity
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Restricted h-connectivity(Latifi et al. 1994)

κ(h)(G), λ(h)(G)

For a given integer h (≥ 0), a vertex(edge) subset S of a connected
graph G is called an h-cut(h-edge-cut), if G−S is disconnected and
has the minimum degree δ(G − S) ≥ h. The h-super connectivi-
ty(edge connectivity) of G, denoted by κ(h)(G)(λ(h)(G)), is defined
as the minimum cardinality over all . That is

κ(h)(G) = min{|S| : S is an h-cut of G }.

λ(h)(G) = min{|S| : S is an h-edge-cut of G }.
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Complexity

Complexity (Oh, Choi, and Esfahanian, 1991)

The problem of finding the least cardinality S such that S is a
conditional cut of G is NP-complete.
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Cayley graphs

Cay(Γ, S)

Γ = (Z, ◦) is a finite group, S is a nonempty subset of Z without
identity. Cayley digraph Cay(Γ, S) is a digraph with vertices Γ and
edges E(Cay(Γ, S)) = {uv : v = u ◦ s, u ∈ Γ, s ∈ S}. S−1 =
{s−1 : s ∈ S} = S, Cay(Γ, S) is an undirected graph.

Cay(Sym(n), T )

Sym(n) is the symmetric group on {1, 2, . . . , n} and T is a set of
transposition of Sym(n).
G(T ) be the graph on n vertices {1, 2, . . . , n} such that there is an
edge ij in G(T ) if and only if transposition (ij) ∈ T .

If G(T ) is a star, Cay(Sym(n), T ) be star graph; if G(T ) is a path,
Cay(Sym(n), T ) be bubble-sort graph.
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Star graphs S2, S3, S4
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Hierarchical Structure

Use Sj:i
n to denote the subgraph of Sn induced by all vertices with

symbol i in the j-th position, I ′n be a set {2, . . . , n}.

The first structural property (Akers and Krishnamurthy, 1989)

For a fixed dimension j ∈ I ′n, Sn can be partitioned into n subgraphs
Sj:i
n , which is isomorphic to Sn−1 for each i ∈ In. Moreover, there

are (n−2)! independent edges between Sj:i1
n and Sj:i2

n for any i1, i2 ∈
In with i1 6= i2.
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Hierarchical Structure

Use Sj:i
n to denote the subgraph of Sn induced by all vertices with

symbol i in the j-th position, I ′n be a set {2, . . . , n}.

The second structural property ( Shi et al., 2012)

For a fixed symbol i ∈ In, Sn can be partitioned into n subgraphs
Sj:i
n , which is isomorphic to Sn−1 for each j ∈ I ′n and S1:i

n is an
independent vertex set of size (n−1)!. Moreover, there are a perfect
matching between S1:i

n and Sj:i
n for any j ∈ I ′n, and there are no

edges between Sj1:i
n and Sj2:i

n for any j1, j2 ∈ I ′n with j1 6= j2.
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Two structures of S4

Partition along dimension 4
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Some results

Theorem (Rouskov et al., 1996)

If n ≥ 3, then κ(1)(Sn) = 2n− 4.

Theorem (Wan and Zhang, 2009)

If n ≥ 4, then κ(2)(Sn) = 6(n− 3).

Conjecture (Wan and Zhang, 2009)

If h ≤ n− 2, Then κ(h)(Sn) = (h+ 1)!(n− h− 1).

Theorem (Yang et al., 2010)

If n ≥ 4, then λ(2)(Sn) = 6(n− 3).
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Strategy

For a subset X ⊆ V (Sn) and j ∈ In, we use UX
j to denote the

set of symbols in the j-th position of vertices in X, formally, UX
j =

{pj : p1 . . . pj . . . pn ∈ X}.

Lemma (Li and Xu, 2014)

Let H be a subgraph of Sn with vertex-set X. For a fixed h ∈ In−1,
if δ(H) ≥ h, then there exists some j ∈ I ′n such that |UX

j | ≥ h+ 1.

Theorem (Li and Xu, 2014)

If 0 ≤ h ≤ n− 2, then κ(h)(Sn) ≥ (h+ 1)!(n− h− 1),
λ(h)(Sn) ≥ (h+ 1)!(n− h− 1).
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Some results

Theorem (Li and Xu, 2014)

If 0 ≤ h ≤ n− 2, then κ(h)(Sn) = λ(h)(Sn) = (h+ 1)!(n− h− 1).

Conjecture (Wan and Zhang, 2009)

If h ≤ n− 2, Then κ(h)(Sn) = (h+ 1)!(n− h− 1).

The Conjecture is proved to be correct, can we say anything more?
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(n, k)-Star, A generalization of Sn

Definition (Akers and Krishnamurthy, 1989)

The n-dimensional star graph Sn has vertex-set P (n) and has an
edge between any two vertices if and only if one can be obtained
from the other by swapping the 1-th digit and the i-th digit for
i ∈ I ′n, that is, two vertices x = p1p2 . . . pi . . . pn and y are adjacent
if and only if y = pip2 . . . pi−1p1pi+1 . . . pn for some i ∈ I ′n.

Definition (Chiang et al., 1995)

An (n, k)-star graph Sn,k is a graph with vertex-set P (n, k), a vertex
p = p1p2 . . . pi . . . pk being linked a vertex q if and only if q is
(a) pip2 · · · pi−1p1pi+1 · · · pk, where i ∈ I ′k (swap p1 with pi), or
(b) p′1p2p3 · · · pk, where p′1 ∈ In \ {pi : i ∈ Ik} (replace p1 by p′1).
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An Useful Tool

Definition, t-Split

A t-split graph Gt of G is a graph obtained from G by replacing
each vertex x by a set Vx of t independent vertices, and replacing
each edge e = xy by a perfect matching Ee between Vx and Vy.

Lemma

Let G be a connected graph and Gt be a t-split graph of G. Then
κ(h)(Gt) ≤ t κ(h)(G) and λ(h)(Gt) ≤ t λ(h)(G).
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(4, 2)-star graph S4,2 and its 2-split graph
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Relationship between Sn and Sn,k

Theorem (Li and Xu, 2017+)

For any k with 2 ≤ k ≤ n − 1, there is an (n − k)!-split graph of
Sn,k that is isomorphic to a star graph Sn.

Theorem (Li and Xu, 2017+)

For 2 ≤ k ≤ n− 1 and n− k ≤ h ≤ n− 2,

κ(h)(Sn,k) = λ(h)(Sn,k) =
(h+ 1)!(n− h− 1)

(n− k)!
.
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Bubble-sort graphs

Definition (Akers and Krishnamurthy, 1989)

The n-dimensional bubble-sort graph Bn has n! vertices labeled by
distinct permutations on {1, 2, ..., n}, and has an edge between any
two vertices if and only if one can be obtained from the other by
swapping the i-th digit and the (i+1)-th digit where 1 ≤ i ≤ n−1.

Xiang-Jun Li Conditional Connectivity in Networks



Introduction Main Results Further Problems (n,k)-star Bubble-sort graphs

Bubble graphs B2, B3, B4
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Some Results

Theorem (Akers and Krishnamurthy, 1989)

(1) Bn has regular degree n− 1;
(2) κ(Bn) = λ(Bn) = n− 1;

Structure (Akers and Krishnamurthy, 1989)

For a fixed t ∈ {1, n}, Bn can be partitioned into n subgraphs Bt:j
n

isomorphic to Bn−1 for each j ∈ In, moreover, there are (n − 2)!
independent edges between Bt:j1

n and Bt:j2
n for any j1, j2 ∈ In with

j1 6= j2.

Theorem (Yang et al., 2010)

If n ≥ 3, then κ1(Bn) = 2n− 4; if n ≥ 4, then κ2(Bn) = 4n− 12.

How about λh(Bn), κh(Bn) for more bigger h?
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Motivation and Methods

Construction of the upper bound;

The structure of Bn;

How an h-cut(edge cut) of large networks distributed in the
small Bn−1;

Prove the lower bound using the (h−1)-supper connectivity of
Bn−1.
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Fault tolerance in Bn

Theorem (Li and Xu, 2017+)

κh(Bn) = λh(Bn) = 2h(n− 1− h) for any h with 2h ≤ n.

Corollary

If n ≥ 3, then κ1(Bn) = 2n− 4; if n ≥ 4, then κ2(Bn) = 4n− 12.
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Problems

Problem

How about the h-super connectivity (edge connectivity) of Bn for
h ≥ 2k + 1?

h-Atom

For a given integer h (≥ 0), a vertex(edge) subset S of a connected
graph G is called an S be an h-cut(h-edge-cut), of G, the minimum
connected component of G− S is an h-atom(edge atom) of G.

Observation and Problems

The h-atom of Sn,Qn is regular, How about h-atom for general
Cayley graphs or regular graphs.
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Thanks For Your Attention !
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