Matchings, Covers, and Network Games

Laura Sanità

Combinatorics and Optimization Department

University of Waterloo

29th Cumberland Conference on Combinatorics, Graph Theory and Computing

• A matching of a graph G = (V, E) is a subset $M \subseteq E$ such that each $v \in V$ is incident into at most one edge of M

• A matching of a graph G = (V, E) is a subset $M \subseteq E$ such that each $v \in V$ is incident into at most one edge of M

• A matching of a graph G = (V, E) is a subset $M \subseteq E$ such that each $v \in V$ is incident into at most one edge of M

• A vertex $v \in V$ is called inessential if there exists a matching in G of maximum cardinality that exposes v.

• A matching of a graph G = (V, E) is a subset $M \subseteq E$ such that each $v \in V$ is incident into at most one edge of M

• A vertex $v \in V$ is called inessential if there exists a matching in G of maximum cardinality that exposes v.

• A matching of a graph G = (V, E) is a subset $M \subseteq E$ such that each $v \in V$ is incident into at most one edge of M

• A vertex $v \in V$ is called essential if there is no matching in G of maximum cardinality that exposes v.

• *G* is said to be stable if the set of its inessential vertices forms a stable set (i.e., are pairwise not adjacent).

• Stable graph \rightarrow Why are these graphs interesting?

• Several interesting game theory problems are defined on networks:

• Several interesting *game theory* problems are defined on *networks*: the structure of the underlying graph is fundamental to have good outcomes.

• Several interesting *game theory* problems are defined on *networks*: the structure of the underlying graph is fundamental to have good outcomes.

• Several interesting *game theory* problems are defined on *networks*: the structure of the underlying graph is fundamental to have good outcomes.

- Cooperative matching games [Shapley & Shubik '71]
- Network bargaining games [Kleinberg & Tardos '08]

• Several interesting *game theory* problems are defined on *networks*: the structure of the underlying graph is fundamental to have good outcomes.

- Cooperative matching games [Shapley & Shubik '71]
- Network bargaining games [Kleinberg & Tardos '08]
- Instances of such games are described by a graph G = (V, E) where

• Several interesting *game theory* problems are defined on *networks*: the structure of the underlying graph is fundamental to have good outcomes.

- Cooperative matching games [Shapley & Shubik '71]
- Network bargaining games [Kleinberg & Tardos '08]
- Instances of such games are described by a graph G = (V, E) where
 - Vertices represent players

• Several interesting *game theory* problems are defined on *networks*: the structure of the underlying graph is fundamental to have good outcomes.

- Cooperative matching games [Shapley & Shubik '71]
- Network bargaining games [Kleinberg & Tardos '08]
- Instances of such games are described by a graph G = (V, E) where
 - Vertices represent players
 - The cardinality of a maximum matching represents a total value that the payers could get by interacting with each other.

• Several interesting *game theory* problems are defined on *networks*: the structure of the underlying graph is fundamental to have good outcomes.

- Cooperative matching games [Shapley & Shubik '71]
- Network bargaining games [Kleinberg & Tardos '08]
- Instances of such games are described by a graph G = (V, E) where
 - Vertices represent players
 - The cardinality of a maximum matching represents a total value that the payers could get by interacting with each other.
- Goal: find a stable outcome (players do not have incentive to deviate)

• Several interesting *game theory* problems are defined on *networks*: the structure of the underlying graph is fundamental to have good outcomes.

- Cooperative matching games [Shapley & Shubik '71]
- Network bargaining games [Kleinberg & Tardos '08]
- Instances of such games are described by a graph G = (V, E) where
 - Vertices represent players
 - The cardinality of a maximum matching represents a total value that the payers could get by interacting with each other.
- Goal: find a stable outcome (players do not have incentive to deviate)

- Network bargaining games are described by a graph G = (V, E) where
 - Vertices represent players

- Network bargaining games are described by a graph G = (V, E) where
 - Vertices represent players
 - Edges represent potential deals of unit value between players

- Network bargaining games are described by a graph G = (V, E) where
 - Vertices represent players
 - Edges represent potential deals of unit value between players
- Players can enter in a deal with at most one neighbour

• Network bargaining games are described by a graph G = (V, E) where

- Vertices represent players
- Edges represent potential deals of unit value between players
- Players can enter in a deal with at most one neighbour

 \rightarrow matching M

• Network bargaining games are described by a graph G = (V, E) where

- Vertices represent players
- Edges represent potential deals of unit value between players
- Players can enter in a deal with at most one neighbour

 \rightarrow matching M

• If players u and v make a deal, they agree on how to split a unit value

• Network bargaining games are described by a graph G = (V, E) where

- Vertices represent players
- Edges represent potential deals of unit value between players
- Players can enter in a deal with at most one neighbour

 \rightarrow matching M

• If players u and v make a deal, they agree on how to split a unit value

• Network bargaining games are described by a graph G = (V, E) where

- Vertices represent players
- Edges represent potential deals of unit value between players
- Players can enter in a deal with at most one neighbour

 \rightarrow matching M

• If players u and v make a deal, they agree on how to split a unit value

• An outcome for the game is a pair (M, y)

• For a given outcome (M, y) player u gets implicitly an outside alternative

• For a given outcome (M, y) player u gets implicitly an outside alternative

• If there exists a neighbour v of u with $1 - y_v > y_u$

- For a given outcome (M, y) player u gets implicitly an outside alternative
 - If there exists a neighbour v of u with $1 y_v > y_u$
 - \rightarrow player *u* has an incentive to enter in a deal with *v*!

• For a given outcome (M, y) player u gets implicitly an outside alternative

• If there exists a neighbour v of u with $1 - y_v > y_u$

 \rightarrow player *u* has an incentive to enter in a deal with *v*!

• An outcome (M, y) is stable if $y_u + y_v \ge 1$ for all edges $\{uv\} \in E$.

• For a given outcome (M, y) player u gets implicitly an outside alternative

• If there exists a neighbour v of u with $1 - y_v > y_u$

 \rightarrow player *u* has an incentive to enter in a deal with *v*!

• An outcome (M, y) is stable if $y_u + y_v \ge 1$ for all edges $\{uv\} \in E$.

 \rightarrow no player has an incentive to deviate
Network Bargaining Games

- For a given outcome (M, y) player u gets implicitly an outside alternative
 - If there exists a neighbour v of u with $1 y_v > y_u$
 - \rightarrow player *u* has an incentive to enter in a deal with *v*!
- An outcome (M, y) is stable if $y_u + y_v \ge 1$ for all edges $\{uv\} \in E$.

 \rightarrow no player has an incentive to deviate

• [Kleinberg & Tardos'08] proved that for network bargaining instances

Network Bargaining Games

• For a given outcome (M, y) player u gets implicitly an outside alternative

• If there exists a neighbour v of u with $1 - y_v > y_u$

 \rightarrow player *u* has an incentive to enter in a deal with *v*!

• An outcome (M, y) is stable if $y_u + y_v \ge 1$ for all edges $\{uv\} \in E$.

ightarrow no player has an incentive to deviate

• [Kleinberg & Tardos'08] proved that for network bargaining instances A stable outcome exists

Network Bargaining Games

• For a given outcome (M, y) player u gets implicitly an outside alternative

• If there exists a neighbour v of u with $1 - y_v > y_u$

 \rightarrow player *u* has an incentive to enter in a deal with *v*!

• An outcome (M, y) is stable if $y_u + y_v \ge 1$ for all edges $\{uv\} \in E$.

ightarrow no player has an incentive to deviate

[Kleinberg & Tardos'08] proved that for network bargaining instances
 A stable outcome exists
 ⇔
 the correspondent graph G is stable.

• A similar result holds for cooperative matching games.

• A similar result holds for cooperative matching games.

• In cooperative matching instance, we search for an allocation $y \in \mathbb{R}_{\geq 0}^{\nu}$ of the value $\nu(G) := |\max \text{ matching}|$, such that

• no subset $S \subseteq V$ has incentive to deviate

• A similar result holds for cooperative matching games.

• In cooperative matching instance, we search for an allocation $y \in \mathbb{R}_{\geq 0}^{\nu}$ of the value $\nu(G) := |\max \text{ matching}|$, such that

• no subset $S \subseteq V$ has incentive to deviate $(y(S) < \nu(G[S]))$.

• A similar result holds for cooperative matching games.

• In cooperative matching instance, we search for an allocation $y \in \mathbb{R}_{\geq 0}^{\nu}$ of the value $\nu(G) := |\max \text{ matching}|$, such that

- no subset $S \subseteq V$ has incentive to deviate $(y(S) < \nu(G[S]))$.
- [Shubik & Shapley'71] proved

A stable allocation exists

• A similar result holds for cooperative matching games.

• In cooperative matching instance, we search for an allocation $y \in \mathbb{R}_{\geq 0}^{\nu}$ of the value $\nu(G) := |\max \text{ matching}|$, such that

- no subset $S \subseteq V$ has incentive to deviate $(y(S) < \nu(G[S]))$.
- [Shubik &Shapley'71] proved

A stable allocation exists \Leftrightarrow the correspondent graph G is stable.

• A similar result holds for cooperative matching games.

• In cooperative matching instance, we search for an allocation $y \in \mathbb{R}_{\geq 0}^{\nu}$ of the value $\nu(G) := |\max \text{ matching}|$, such that

- no subset $S \subseteq V$ has incentive to deviate $(y(S) < \nu(G[S]))$.
- [Shubik &Shapley'71] proved

A stable allocation exists \Leftrightarrow the correspondent graph G is stable.

Question: [Biró, Kern & Paulusma'10, Könemann, Larson & Steiner'12] Can we stabilize unstable games through minimal changes in the underlying network?

• A similar result holds for cooperative matching games.

• In cooperative matching instance, we search for an allocation $y \in \mathbb{R}_{\geq 0}^{\nu}$ of the value $\nu(G) := |\max \text{ matching}|$, such that

- no subset $S \subseteq V$ has incentive to deviate $(y(S) < \nu(G[S]))$.
- [Shubik &Shapley'71] proved

A stable allocation exists \Leftrightarrow the correspondent graph G is stable.

Question: [Biró, Kern & Paulusma'10, Könemann, Larson & Steiner'12] Can we stabilize unstable games through minimal changes in the underlying network?

 \rightarrow Let's look at this question from a graph theory perspective

• Two natural graph operations:

- Two natural graph operations:
 - edge-removal operation
 - vertex-removal operation

- Two natural graph operations:
 - edge-removal operation \rightarrow blocking some potential deals
 - ▶ vertex-removal operation → blocking some players

- Two natural graph operations:
 - edge-removal operation \rightarrow blocking some potential deals
 - ▶ vertex-removal operation → blocking some players

Def. An edge-stabilizer for G = (V, E) is a subset $F \subseteq E$ s.t. $G \setminus F$ is stable.

- Two natural graph operations:
 - edge-removal operation \rightarrow blocking some potential deals
 - ▶ vertex-removal operation → blocking some players

Def. An edge-stabilizer for G = (V, E) is a subset $F \subseteq E$ s.t. $G \setminus F$ is stable.

- Two natural graph operations:
 - ▶ edge-removal operation → blocking some potential deals
 - ▶ vertex-removal operation → blocking some players

Def. An edge-stabilizer for G = (V, E) is a subset $F \subseteq E$ s.t. $G \setminus F$ is stable.

Def. A vertex-stabilizer for G = (V, E) is a subset $S \subseteq V$ s.t. $G \setminus S$ is stable.

- Two natural graph operations:
 - ▶ edge-removal operation → blocking some potential deals
 - ▶ vertex-removal operation → blocking some players

Def. An edge-stabilizer for G = (V, E) is a subset $F \subseteq E$ s.t. $G \setminus F$ is stable.

Def. A vertex-stabilizer for G = (V, E) is a subset $S \subseteq V$ s.t. $G \setminus S$ is stable.

Combinatorial question: Can we efficiently find (edge-/vertex-) stabilizers of minimum cardinality?

• Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

• Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Thm: [Bock, Chandrasekaran, Könemann, Peis, S. '14] For a minimum edge-stabilizer F of G we have

$$\nu(G \setminus F) = \nu(G)$$

• Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Thm: [Bock, Chandrasekaran, Könemann, Peis, S. '14] For a minimum edge-stabilizer F of G we have

$$\nu(G \setminus F) = \nu(G)$$

• Network Bargaining Interpretation: there is always a way to stabilize the game that

• Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Thm: [Bock, Chandrasekaran, Könemann, Peis, S. '14] For a minimum edge-stabilizer F of G we have

$$\nu(G \setminus F) = \nu(G)$$

• Network Bargaining Interpretation: there is always a way to stabilize the game that

blocks min number of potential deals, and

• Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Thm: [Bock, Chandrasekaran, Könemann, Peis, S. '14] For a minimum edge-stabilizer F of G we have

$$\nu(G \setminus F) = \nu(G)$$

• Network Bargaining Interpretation: there is always a way to stabilize the game that

- blocks min number of potential deals, and
- does not decrease the total value the players can get!

• Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Thm: [Bock, Chandrasekaran, Könemann, Peis, S. '14] For a minimum edge-stabilizer F of G we have

$$\nu(G\setminus F)=\nu(G)$$

• Network Bargaining Interpretation: there is always a way to stabilize the game that

- blocks min number of potential deals, and
- does not decrease the total value the players can get!

Thm: [Bock, Chandrasekaran, Könemann, Peis, S. '14] Finding a minimum cardinality edge-stabilizer is an NP-Hard problem.

• Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

• Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Thm: [Ahmadian, Hosseinzadeh, S. '16] For a minimum vertex-stabilizer S of G we have

$$\nu(G \setminus S) = \nu(G)$$

• Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Thm: [Ahmadian, Hosseinzadeh, S. '16] For a minimum vertex-stabilizer S of G we have

$$\nu(G \setminus S) = \nu(G)$$

• Network Bargaining Interpretation: there is always a way to stabilize the game that

• Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Thm: [Ahmadian, Hosseinzadeh, S. '16] For a minimum vertex-stabilizer S of G we have

$$\nu(G \setminus S) = \nu(G)$$

• Network Bargaining Interpretation: there is always a way to stabilize the game that

blocks min number of players, and

• Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Thm: [Ahmadian, Hosseinzadeh, S. '16] For a minimum vertex-stabilizer S of G we have

$$\nu(G \setminus S) = \nu(G)$$

• Network Bargaining Interpretation: there is always a way to stabilize the game that

- blocks min number of players, and
- does not decrease the total value the players can get!

• Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Thm: [Ahmadian, Hosseinzadeh, S. '16] For a minimum vertex-stabilizer S of G we have

$$\nu(G \setminus S) = \nu(G)$$

• Network Bargaining Interpretation: there is always a way to stabilize the game that

- blocks min number of players, and
- does not decrease the total value the players can get!

Thm: [Ito,Kakimura,Kamiyama,Kobayashi,Okamoto '16], [AHS'16] *Finding a minimum cardinality vertex-stabilizer is a polynomial-time solvable problem.*

• Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Thm: [Ahmadian, Hosseinzadeh, S. '16] For a minimum vertex-stabilizer S of G we have

$$\nu(G \setminus S) = \nu(G)$$

• Network Bargaining Interpretation: there is always a way to stabilize the game that

- blocks min number of players, and
- does not decrease the total value the players can get!

Thm: [Ito,Kakimura,Kamiyama,Kobayashi,Okamoto '16], [AHS'16] *Finding a minimum cardinality vertex-stabilizer is a polynomial-time solvable problem.*

 \rightarrow How are these results proved?

• A *"dual"* problem to matchings is finding a minimum vertex-cover of a graph.

• A "dual" problem to matchings is finding a minimum vertex-cover of a graph.

Recall: A vertex-cover of G = (V, E) is a subset $C \subseteq V$ s.t. each $e \in E$ is incident into at least one vertex of C.

• A "dual" problem to matchings is finding a minimum vertex-cover of a graph.

Recall: A vertex-cover of G = (V, E) is a subset $C \subseteq V$ s.t. each $e \in E$ is incident into at least one vertex of C.

• A "dual" problem to matchings is finding a minimum vertex-cover of a graph.

Recall: A vertex-cover of G = (V, E) is a subset $C \subseteq V$ s.t. each $e \in E$ is incident into at least one vertex of C.

• Let $\tau(G)$ denote the minimum cardinality of a vertex-cover.
• A "dual" problem to matchings is finding a minimum vertex-cover of a graph.

Recall: A vertex-cover of G = (V, E) is a subset $C \subseteq V$ s.t. each $e \in E$ is incident into at least one vertex of C.

• Let $\tau(G)$ denote the minimum cardinality of a vertex-cover.

• It is well known that the inequality $\nu(G) \leq \tau(G)$ holds for all graphs G.

• A "dual" problem to matchings is finding a minimum vertex-cover of a graph.

Recall: A vertex-cover of G = (V, E) is a subset $C \subseteq V$ s.t. each $e \in E$ is incident into at least one vertex of C.

• Let $\tau(G)$ denote the minimum cardinality of a vertex-cover.

• It is well known that the inequality $\nu(G) \leq \tau(G)$ holds for all graphs G.

• There are some graphs where the inequality $\nu(G) \leq \tau(G)$ holds tight.

• There are some graphs where the inequality $\nu(G) \leq \tau(G)$ holds tight.

[König's theorem (1931)]: For any bipartite graph G, $\nu(G) = \tau(G)$.

• There are some graphs where the inequality $\nu(G) \leq \tau(G)$ holds tight.

[König's theorem (1931)]: For any bipartite graph G, $\nu(G) = \tau(G)$.

• The inequality holds tight for a *superclass* of bipartite graphs.

• There are some graphs where the inequality $\nu(G) \leq \tau(G)$ holds tight.

[König's theorem (1931)]: For any bipartite graph G, $\nu(G) = \tau(G)$.

• The inequality holds tight for a *superclass* of bipartite graphs. A graph G satisfying $\nu(G) = \tau(G)$, is called a König-Egerváry graph.

• There are some graphs where the inequality $\nu(G) \leq \tau(G)$ holds tight.

[König's theorem (1931)]: For any bipartite graph G, $\nu(G) = \tau(G)$.

• The inequality holds tight for a *superclass* of bipartite graphs. A graph G satisfying $\nu(G) = \tau(G)$, is called a König-Egerváry graph.

• There are some graphs where the inequality $\nu(G) \leq \tau(G)$ holds tight.

[König's theorem (1931)]: For any bipartite graph G, $\nu(G) = \tau(G)$.

• The inequality holds tight for a *superclass* of bipartite graphs. A graph G satisfying $\nu(G) = \tau(G)$, is called a König-Egerváry graph.

• Stable graphs are a superclass of König-Egerváry graphs,

• There are some graphs where the inequality $\nu(G) \leq \tau(G)$ holds tight.

[König's theorem (1931)]: For any bipartite graph G, $\nu(G) = \tau(G)$.

• The inequality holds tight for a *superclass* of bipartite graphs. A graph G satisfying $\nu(G) = \tau(G)$, is called a König-Egerváry graph.

• Stable graphs are a superclass of König-Egerváry graphs,

• There are some graphs where the inequality $\nu(G) \leq \tau(G)$ holds tight.

[König's theorem (1931)]: For any bipartite graph G, $\nu(G) = \tau(G)$.

• The inequality holds tight for a *superclass* of bipartite graphs. A graph G satisfying $\nu(G) = \tau(G)$, is called a König-Egerváry graph.

• Stable graphs are a superclass of König-Egerváry graphs, and can be characterized in terms of fractional matchings and covers.

• Finding a maximum matching of a graph G = (V, E) can be formulated as the following Integer Program (IP):

$$\nu(G) := \max\{\mathbf{1}^T x : x(\delta(v)) \le 1 \ \forall v \in V, \ x \in \{0,1\}^E\}$$

• Finding a maximum matching of a graph G = (V, E) can be formulated as the following Integer Program (IP):

$$\nu(G) := \max\{\mathbf{1}^T x : x(\delta(v)) \le 1 \ \forall v \in V, \ x \in \{0,1\}^E\}$$

• Finding a minimum vertex-cover can be formulated as the following IP:

$$\tau(G) := \min\{\mathbf{1}^T y : y_u + y_v \ge 1 \ \forall e = \{u, v\} \in E, \ y \in \{0, 1\}^V\}$$

• Finding a maximum matching of a graph G = (V, E) can be formulated as the following Integer Program (IP):

$$\nu(G) := \max\{\mathbf{1}^{\mathsf{T}} x : x(\delta(v)) \leq 1 \; \forall v \in V, \; x \in \{0,1\}^{\mathsf{E}}\}$$

• Finding a minimum vertex-cover can be formulated as the following IP:

$$\tau(G) := \min\{\mathbf{1}^T y : y_u + y_v \ge 1 \ \forall e = \{u, v\} \in E, \ y \in \{0, 1\}^V\}$$

• If we relax the integrality constraints, we get a pair of Linear Programs (LP).

$$\nu_f(G) := \max\{\mathbf{1}^T x : x(\delta(v)) \le 1 \ \forall v \in V, \ x \in \mathbb{R}_{\ge 0}^E\}$$

$$\tau_f(G) := \min\{\mathbf{1}^T y : y_u + y_v \ge 1 \ \forall e = \{u, v\} \in E, \ y \in \mathbb{R}_{\ge 0}^V\}$$

• Finding a maximum matching of a graph G = (V, E) can be formulated as the following Integer Program (IP):

$$\nu(G) := \max\{\mathbf{1}^{\mathsf{T}} x : x(\delta(v)) \leq 1 \; \forall v \in V, \; x \in \{0,1\}^{\mathsf{E}}\}$$

• Finding a minimum vertex-cover can be formulated as the following IP:

$$\tau(G) := \min\{\mathbf{1}^T y : y_u + y_v \ge 1 \ \forall e = \{u, v\} \in E, \ y \in \{0, 1\}^V\}$$

• If we relax the integrality constraints, we get a pair of Linear Programs (LP).

$$\nu_f(G) := \max\{\mathbf{1}^T \mathbf{x} : \mathbf{x}(\delta(\mathbf{v})) \le 1 \ \forall \mathbf{v} \in \mathbf{V}, \ \mathbf{x} \in \mathbb{R}_{\ge 0}^E\}$$
$$\tau_f(G) := \min\{\mathbf{1}^T \mathbf{y} : \mathbf{y}_u + \mathbf{y}_v \ge 1 \ \forall e = \{u, v\} \in E, \ \mathbf{y} \in \mathbb{R}_{\ge 0}^V\}$$

• Feasible solutions to these LPs yield *fractional* matchings and covers!

Def. a vector $x \in \mathbb{R}^{E}$ is a fractional matching if it is a feasible solution to:

$$\nu_{f}(\boldsymbol{G}) := \max\{\boldsymbol{1}^{T}x : x(\delta(\boldsymbol{v})) \leq 1 \; \forall \boldsymbol{v} \in \boldsymbol{V}, \; x \in \mathbb{R}_{\geq 0}^{\boldsymbol{\mathcal{E}}}\}$$

Def. a vector $x \in \mathbb{R}^{\mathcal{E}}$ is a fractional matching if it is a feasible solution to:

$$\nu_f(G) := \max\{\mathbf{1}^T x : x(\delta(v)) \le 1 \ \forall v \in V, \ x \in \mathbb{R}^{\mathcal{E}}_{\ge 0}\}$$

Def. a vector $y \in \mathbb{R}^{V}$ is called a fractional vertex-cover if it is a feasible solution to its dual:

$$\tau_f(G) := \min\{\mathbf{1}^T y : y_u + y_v \ge 1 \ \forall e = \{u, v\} \in E, \ y \in \mathbb{R}_{\ge 0}^V\}$$

Def. a vector $x \in \mathbb{R}^{E}$ is a fractional matching if it is a feasible solution to:

$$\nu_f(\boldsymbol{G}) := \max\{\boldsymbol{1}^T \boldsymbol{x} : \boldsymbol{x}(\delta(\boldsymbol{v})) \leq 1 \; \forall \boldsymbol{v} \in \boldsymbol{V}, \; \boldsymbol{x} \in \mathbb{R}^{\boldsymbol{E}}_{\geq 0}\}$$

Def. a vector $y \in \mathbb{R}^{V}$ is called a fractional vertex-cover if it is a feasible solution to its dual:

$$\tau_f(G) := \min\{\mathbf{1}^T y : y_u + y_v \ge 1 \ \forall e = \{u, v\} \in E, \ y \in \mathbb{R}_{\ge 0}^V\}$$

• By duality: we know that the following chain of inequalities holds for all G:

$$\nu(G) \leq \nu_f(G) = \tau_f(G) \leq \tau(G)$$

• Example:

$$\nu(G) \leq \nu_f(G) = \tau_f(G) \leq \tau(G)$$

$$\nu(G) \leq \nu_f(G) = \tau_f(G) \leq \tau(G)$$

▶
$$\nu(G) = 1$$

• Example:

$$\nu(G) \leq \nu_f(G) = \tau_f(G) \leq \tau(G)$$

•
$$\nu(G) = 1$$

• $\nu_f(G) = 1.5$

• Example:

 $\nu(G) \leq \nu_f(G) = \tau_f(G) \leq \tau(G)$

•
$$\nu(G) = 1$$

•
$$\nu_f(G) = 1.5$$

• $\tau_f(G) = 1.5$

$$\nu(G) \leq \nu_f(G) = \tau_f(G) \leq \tau(G)$$

•
$$\nu_f(G) = 1.5$$

•
$$\tau_f(G) = 1.5$$

•
$$\tau(G) = 2$$

Proposition: *G* is stable if and only if $\nu(G) = \nu_f(G) = \tau_f(G)$.

Proposition: *G* is stable if and only if $\nu(G) = \nu_f(G) = \tau_f(G)$.

(It follows from classical results e.g. [Uhry'75, Balas'81, Pulleyblank'87])

Proposition: *G* is stable if and only if $\nu(G) = \nu_f(G) = \tau_f(G)$.

(It follows from classical results e.g. [Uhry'75, Balas'81, Pulleyblank'87])

In other words, G is stable if and only if cardinality of a max matching = min size of a fractional vertex cover y.

Proposition: *G* is stable if and only if $\nu(G) = \nu_f(G) = \tau_f(G)$.

(It follows from classical results e.g. [Uhry'75, Balas'81, Pulleyblank'87])

 In other words, G is stable if and only if cardinality of a max matching = min size of a fractional vertex cover y.

• Note: such y does not necessarily have integer coordinates!

Proposition: *G* is stable if and only if $\nu(G) = \nu_f(G) = \tau_f(G)$.

(It follows from classical results e.g. [Uhry'75, Balas'81, Pulleyblank'87])

In other words, G is stable if and only if cardinality of a max matching = min size of a fractional vertex cover y.
Note: such y does not necessarily have integer coordinates! In fact, General graphs ⊃ Stable graphs ⊃ König-Egervary graphs ⊃ Bipartite graphs.

Proposition: *G* is stable if and only if $\nu(G) = \nu_f(G) = \tau_f(G)$.

(It follows from classical results e.g. [Uhry'75, Balas'81, Pulleyblank'87])

 In other words, G is stable if and only if cardinality of a max matching = min size of a fractional vertex cover y.

• Note: such y does not necessarily have integer coordinates! In fact,

General graphs \supset Stable graphs \supset König-Egervary graphs \supset Bipartite graphs.

• The fact that $\nu(G) = \nu_f(G)$ allows us to exploit properties of max matchings and max fractional matchings to stabilize graphs.

Proposition: *G* is stable if and only if $\nu(G) = \nu_f(G) = \tau_f(G)$.

(It follows from classical results e.g. [Uhry'75, Balas'81, Pulleyblank'87])

 In other words, G is stable if and only if cardinality of a max matching = min size of a fractional vertex cover y.

• Note: such y does not necessarily have integer coordinates! In fact,

General graphs \supset Stable graphs \supset König-Egervary graphs \supset Bipartite graphs.

• The fact that $\nu(G) = \nu_f(G)$ allows us to exploit properties of max matchings and max fractional matchings to stabilize graphs.

Key ingredient: Edmonds-Gallai Decomposition of a graph.

• The Edmonds-Gallai decomposition of G = (V, E) is a partition of V into three sets B, C, D such that:

• The Edmonds-Gallai decomposition of G = (V, E) is a partition of V into three sets B, C, D such that:

• The Edmonds-Gallai decomposition of G = (V, E) is a partition of V into three sets B, C, D such that:

B contains the set of inessential vertices of *G*
• The Edmonds-Gallai decomposition of G = (V, E) is a partition of V into three sets B, C, D such that:

- **B** contains the set of inessential vertices of *G*
- C contains the set of neighbors of B

• The Edmonds-Gallai decomposition of G = (V, E) is a partition of V into three sets B, C, D such that:

- **B** contains the set of inessential vertices of *G*
- C contains the set of neighbors of B
- D contains all remaining vertices

• The Edmonds-Gallai decomposition of G = (V, E) is a partition of V into three sets B, C, D such that:

• **Note:** The Edmonds-Gallai decomposition of a graph can be computed in polynomial-time.

• The Edmonds-Gallai decomposition of G = (V, E) is a partition of V into three sets B, C, D such that:

• Note: The Edmonds-Gallai decomposition of a graph can be computed in polynomial-time.

• What is the relation between this decomposition and max matchings?

• Let M be any maximum matching of G. Then

• *M* induces a near-perfect matching in each component of $G[\mathbf{B}]$

- *M* induces a near-perfect matching in each component of $G[\mathbf{B}]$
- M matches C to distinct components of G[B]

- ▶ *M* induces a near-perfect matching in each component of *G*[**B**]
- ► *M* matches **C** to distinct components of *G*[**B**]
- M induces a perfect matching in G[D]

- ▶ *M* induces a near-perfect matching in each component of *G*[**B**]
- ► *M* matches **C** to distinct components of *G*[**B**]
- M induces a perfect matching in G[D]

• Let M be a maximum matching of G, that covers the maximum number of singletons in G[B].

• Let M be a maximum matching of G, that covers the maximum number of singletons in G[B].

• Let M be a maximum matching of G, that covers the maximum number of singletons in G[B].

• Let M be a maximum matching of G, that covers the maximum number of singletons in G[B].

Construct a *fractional* matching $x \in \mathbb{R}^{E}$ as follows:

• Let M be a maximum matching of G, that covers the maximum number of singletons in G[B].

Construct a *fractional* matching $x \in \mathbb{R}^{E}$ as follows:

▶ Find odd cycles in *G*[*B*] containing *M*-exposed vertices,

• Let M be a maximum matching of G, that covers the maximum number of singletons in G[B].

Construct a *fractional* matching $x \in \mathbb{R}^{E}$ as follows:

▶ Find odd cycles in *G*[*B*] containing *M*-exposed vertices,

• Let M be a maximum matching of G, that covers the maximum number of singletons in G[B].

Construct a *fractional* matching $x \in \mathbb{R}^{E}$ as follows:

▶ Find odd cycles in G[B] containing M-exposed vertices, set x_e = ¹/₂ for such edges. Set x_e = 1 for all other edges of M.

• Let M be a maximum matching of G, that covers the maximum number of singletons in G[B].

Construct a *fractional* matching $x \in \mathbb{R}^{E}$ as follows:

▶ Find odd cycles in G[B] containing M-exposed vertices, set x_e = ¹/₂ for such edges. Set x_e = 1 for all other edges of M.

Then, x is maximum fractional matching.

• We can use this insight to prove our theorems.

• We can use this insight to prove our theorems. Recall the structural results.

• We can use this insight to prove our theorems. Recall the structural results.

Thm: [BCKPS '14] For a minimum edge-stabilizer F of G, $\nu(G \setminus F) = \nu(G)$. **Thm:** [AHS '16] For a minimum vertex-stabilizer S of G, $\nu(G \setminus S) = \nu(G)$.

• We can use this insight to prove our theorems. Recall the structural results.

Thm: [BCKPS '14] For a minimum edge-stabilizer F of G, $\nu(G \setminus F) = \nu(G)$. **Thm:** [AHS '16] For a minimum vertex-stabilizer S of G, $\nu(G \setminus S) = \nu(G)$. Intuition: We need to "kill" the fractional cycles.

• We can use this insight to prove our theorems. Recall the structural results.

Thm: [BCKPS '14] For a minimum edge-stabilizer F of G, $\nu(G \setminus F) = \nu(G)$. **Thm:** [AHS '16] For a minimum vertex-stabilizer S of G, $\nu(G \setminus S) = \nu(G)$.

Intuition: We need to "kill" the fractional cycles. Edges/vertices achieving this goal can be chosen to be disjoint by at least one max matching.

• We can use this insight to prove our theorems.

• We can use this insight to prove our theorems. Recall the algorithmic results.

• We can use this insight to prove our theorems. Recall the algorithmic results.

Thm: [AHS '16, IKKKO '16] *Finding a minimum vertex-stabilizer is solvable in polynomial-time.*

• We can use this insight to prove our theorems. Recall the algorithmic results.

Thm: [AHS '16, IKKKO '16] Finding a minimum vertex-stabilizer is solvable in polynomial-time.

Intuition: We construct the fractional matching *x* as before.

• We can use this insight to prove our theorems. Recall the algorithmic results.

Thm: [AHS '16, IKKKO '16] Finding a minimum vertex-stabilizer is solvable in polynomial-time.

Intuition: We construct the fractional matching *x* as before.

• We can use this insight to prove our theorems. Recall the algorithmic results.

Thm: [AHS '16, IKKKO '16] Finding a minimum vertex-stabilizer is solvable in polynomial-time.

Intuition: We construct the fractional matching x as before. We remove one distinct vertex from each fractional cycle.

• We can use this insight to prove our theorems. Recall the algorithmic results.

Thm: [AHS '16, IKKKO '16] Finding a minimum vertex-stabilizer is solvable in polynomial-time.

Intuition: We construct the fractional matching x as before. We remove one distinct vertex from each fractional cycle.

• We can use this insight to prove our theorems. Recall the algorithmic results.

Thm: [BCKPS '14] Finding a minimum edge-stabilizer is an NP-hard problem.

• We can use this insight to prove our theorems. Recall the algorithmic results.

Thm: [BCKPS '14] Finding a minimum edge-stabilizer is an NP-hard problem.

 Intuition: Though the number of fractional cycle is a lower bound on the number of edges to remove,

• We can use this insight to prove our theorems. Recall the algorithmic results.

Thm: [BCKPS '14] Finding a minimum edge-stabilizer is an NP-hard problem.

Intuition: Though the number of fractional cycle is a lower bound on the number of edges to remove, it is not clear how many of them to select...

• We can use this insight to prove our theorems. Recall the algorithmic results.

Thm: [BCKPS '14] Finding a minimum edge-stabilizer is an NP-hard problem.

Intuition: Though the number of fractional cycle is a lower bound on the number of edges to remove, it is not clear how many of them to select...

How about approximation algorithms?

Approximation algorithms

Def. An algorithm is called an α -approximation algorithm for a minimization problem Π if for every instance of Π , it computes in polynomial-time a feasible solution of value at most α -times the value of an optimal solution.
Def. An algorithm is called an α -approximation algorithm for a minimization problem Π if for every instance of Π , it computes in polynomial-time a feasible solution of value at most α -times the value of an optimal solution.

• A graph G is called ω -sparse if $\forall S \subseteq V$, $|E(S)| \leq \omega |S|$.

Def. An algorithm is called an α -approximation algorithm for a minimization problem Π if for every instance of Π , it computes in polynomial-time a feasible solution of value at most α -times the value of an optimal solution.

• A graph G is called ω -sparse if $\forall S \subseteq V$, $|E(S)| \leq \omega |S|$.

Thm [Bock, Chandrasekaran, Könemann, Peis, S.'14]: There is a $O(\omega)$ -approximation algorithm for finding a minimum edge-stabilizer.

Def. An algorithm is called an α -approximation algorithm for a minimization problem Π if for every instance of Π , it computes in polynomial-time a feasible solution of value at most α -times the value of an optimal solution.

• A graph G is called ω -sparse if $\forall S \subseteq V$, $|E(S)| \leq \omega |S|$.

Thm [Bock, Chandrasekaran, Könemann, Peis, S.'14]: There is a $O(\omega)$ -approximation algorithm for finding a minimum edge-stabilizer.

• The algorithm relies on the following Lemma.

Def. An algorithm is called an α -approximation algorithm for a minimization problem Π if for every instance of Π , it computes in polynomial-time a feasible solution of value at most α -times the value of an optimal solution.

• A graph G is called ω -sparse if $\forall S \subseteq V$, $|E(S)| \leq \omega |S|$.

Thm [Bock, Chandrasekaran, Könemann, Peis, S.'14]: There is a $O(\omega)$ -approximation algorithm for finding a minimum edge-stabilizer.

• The algorithm relies on the following Lemma.

Lemma: Let G be s.t. $\nu_f(G) > \nu(G)$.

Def. An algorithm is called an α -approximation algorithm for a minimization problem Π if for every instance of Π , it computes in polynomial-time a feasible solution of value at most α -times the value of an optimal solution.

• A graph G is called ω -sparse if $\forall S \subseteq V$, $|E(S)| \leq \omega |S|$.

Thm [Bock, Chandrasekaran, Könemann, Peis, S.'14]: There is a $O(\omega)$ -approximation algorithm for finding a minimum edge-stabilizer.

• The algorithm relies on the following Lemma.

Lemma: Let G be s.t. $\nu_f(G) > \nu(G)$. We can find $L \subseteq E$ with $|L| \leq O(\omega)$ s.t.

• (i) $G \setminus L$ has a matching of size $\nu(G)$,

Def. An algorithm is called an α -approximation algorithm for a minimization problem Π if for every instance of Π , it computes in polynomial-time a feasible solution of value at most α -times the value of an optimal solution.

• A graph G is called ω -sparse if $\forall S \subseteq V$, $|E(S)| \leq \omega |S|$.

Thm [Bock, Chandrasekaran, Könemann, Peis, S.'14]: There is a $O(\omega)$ -approximation algorithm for finding a minimum edge-stabilizer.

• The algorithm relies on the following Lemma.

Lemma: Let G be s.t. $\nu_f(G) > \nu(G)$. We can find $L \subseteq E$ with $|L| \leq O(\omega)$ s.t.

• (i) $G \setminus L$ has a matching of size $\nu(G)$, and (ii) $\nu_f(G \setminus L) \leq \nu_f(G) - \frac{1}{2}$.

Def. An algorithm is called an α -approximation algorithm for a minimization problem Π if for every instance of Π , it computes in polynomial-time a feasible solution of value at most α -times the value of an optimal solution.

• A graph G is called ω -sparse if $\forall S \subseteq V$, $|E(S)| \leq \omega |S|$.

Thm [Bock, Chandrasekaran, Könemann, Peis, S.'14]: There is a $O(\omega)$ -approximation algorithm for finding a minimum edge-stabilizer.

• The algorithm relies on the following Lemma.

Lemma: Let G be s.t. $\nu_f(G) > \nu(G)$. We can find $L \subseteq E$ with $|L| \leq O(\omega)$ s.t.

• (i) $G \setminus L$ has a matching of size $\nu(G)$, and (ii) $\nu_f(G \setminus L) \leq \nu_f(G) - \frac{1}{2}$.

• In other words, we can find a small subset of edges to remove from G that

Def. An algorithm is called an α -approximation algorithm for a minimization problem Π if for every instance of Π , it computes in polynomial-time a feasible solution of value at most α -times the value of an optimal solution.

• A graph G is called ω -sparse if $\forall S \subseteq V$, $|E(S)| \leq \omega |S|$.

Thm [Bock, Chandrasekaran, Könemann, Peis, S.'14]: There is a $O(\omega)$ -approximation algorithm for finding a minimum edge-stabilizer.

• The algorithm relies on the following Lemma.

Lemma: Let G be s.t. $\nu_f(G) > \nu(G)$. We can find $L \subseteq E$ with $|L| \leq O(\omega)$ s.t.

- (i) $G \setminus L$ has a matching of size $\nu(G)$, and (ii) $\nu_f(G \setminus L) \leq \nu_f(G) \frac{1}{2}$.
- In other words, we can find a small subset of edges to remove from G that
 (i) does not decrease the value of a max matching,

Def. An algorithm is called an α -approximation algorithm for a minimization problem Π if for every instance of Π , it computes in polynomial-time a feasible solution of value at most α -times the value of an optimal solution.

• A graph G is called ω -sparse if $\forall S \subseteq V$, $|E(S)| \leq \omega |S|$.

Thm [Bock, Chandrasekaran, Könemann, Peis, S.'14]: There is a $O(\omega)$ -approximation algorithm for finding a minimum edge-stabilizer.

• The algorithm relies on the following Lemma.

Lemma: Let G be s.t. $\nu_f(G) > \nu(G)$. We can find $L \subseteq E$ with $|L| \leq O(\omega)$ s.t.

- (i) $G \setminus L$ has a matching of size $\nu(G)$, and (ii) $\nu_f(G \setminus L) \leq \nu_f(G) \frac{1}{2}$.
- In other words, we can find a small subset of edges to remove from G that
 - (i) does not decrease the value of a max matching, and (ii) reduces the minimum size of a fractional vertex cover.

Open question: Is a O(1)-approximation possible for min-egde stabilizer problem?

Open question: Is a O(1)-approximation possible for min-egde stabilizer problem?

• A graph G = (V, E) is factor-critical if for every $v \in V$, $G \setminus \{v\}$ has a perfect matching.

Open question: Is a O(1)-approximation possible for min-egde stabilizer problem?

• A graph G = (V, E) is factor-critical if for every $v \in V$, $G \setminus \{v\}$ has a perfect matching. Here one can find a maximum fractional matching with *one* odd cycle in the support.

Open question: Is a O(1)-approximation possible for min-egde stabilizer problem?

• A graph G = (V, E) is factor-critical if for every $v \in V$, $G \setminus \{v\}$ has a perfect matching. Here one can find a maximum fractional matching with *one* odd cycle in the support. Is an O(1)-approximation possible here?

Open question: Is a O(1)-approximation possible for min-egde stabilizer problem?

• A graph G = (V, E) is factor-critical if for every $v \in V$, $G \setminus \{v\}$ has a perfect matching. Here one can find a maximum fractional matching with *one* odd cycle in the support. Is an O(1)-approximation possible here?

• Subclasses of graphs?

For d-regular graphs (→ each player has the same number of potential deals), previous algorithm of [BCKPS'14] yields a 2-approximation

Open question: Is a O(1)-approximation possible for min-egde stabilizer problem?

• A graph G = (V, E) is factor-critical if for every $v \in V$, $G \setminus \{v\}$ has a perfect matching. Here one can find a maximum fractional matching with *one* odd cycle in the support. Is an O(1)-approximation possible here?

• Subclasses of graphs?

- For d-regular graphs (→ each player has the same number of potential deals), previous algorithm of [BCKPS'14] yields a 2-approximation
- What about *b*-matchings? (\rightarrow each player *v* can enter in b_v deals)

• Network bargaining games are more generally defined on weighted graphs

• Network bargaining games are more generally defined on weighted graphs (\rightarrow each edge represents a deal of value w_e)

• Network bargaining games are more generally defined on weighted graphs $(\rightarrow \text{ each edge represents a deal of value } w_e)$

Stable graphs: In this setting, a graph G is stable if the max-weight matching equals the cardinality of a min-fractional *w*-cover.

• Network bargaining games are more generally defined on weighted graphs $(\rightarrow \text{ each edge represents a deal of value } w_e)$

Stable graphs: In this setting, a graph G is stable if the max-weight matching equals the cardinality of a min-fractional *w*-cover.

• In this setting, min-stabilizers may reduce the weight of max-matching,

• Network bargaining games are more generally defined on weighted graphs $(\rightarrow \text{ each edge represents a deal of value } w_e)$

Stable graphs: In this setting, a graph G is stable if the max-weight matching equals the cardinality of a min-fractional *w*-cover.

• In this setting, min-stabilizers may reduce the weight of max-matching, and finding a min vertex-stabilizer preserving a max-weight matching is no longer poly-time solvable [Koh, S.'17]

• Network bargaining games are more generally defined on weighted graphs $(\rightarrow \text{ each edge represents a deal of value } w_e)$

Stable graphs: In this setting, a graph G is stable if the max-weight matching equals the cardinality of a min-fractional *w*-cover.

• In this setting, min-stabilizers may reduce the weight of max-matching, and finding a min vertex-stabilizer preserving a max-weight matching is no longer poly-time solvable [Koh, S.'17]

• Good (approximation) algorithms in this case?

• Network bargaining games are more generally defined on weighted graphs $(\rightarrow \text{ each edge represents a deal of value } w_e)$

Stable graphs: In this setting, a graph G is stable if the max-weight matching equals the cardinality of a min-fractional *w*-cover.

• In this setting, min-stabilizers may reduce the weight of max-matching, and finding a min vertex-stabilizer preserving a max-weight matching is no longer poly-time solvable [Koh, S.'17]

• Good (approximation) algorithms in this case?

Thank you!