Matchings, Covers, and Network Games

Laura Sanità
Combinatorics and Optimization Department
University of Waterloo

29th Cumberland Conference on
Combinatorics, Graph Theory and Computing

Matching and Stable Graphs

- A matching of a graph $G=(V, E)$ is a subset $M \subseteq E$ such that each $v \in V$ is incident into at most one edge of M

Matching and Stable Graphs

- A matching of a graph $G=(V, E)$ is a subset $M \subseteq E$ such that each $v \in V$ is incident into at most one edge of M

Matching and Stable Graphs

- A matching of a graph $G=(V, E)$ is a subset $M \subseteq E$ such that each $v \in V$ is incident into at most one edge of M

- A vertex $v \in V$ is called inessential if there exists a matching in G of maximum cardinality that exposes v.

Matching and Stable Graphs

- A matching of a graph $G=(V, E)$ is a subset $M \subseteq E$ such that each $v \in V$ is incident into at most one edge of M

- A vertex $v \in V$ is called inessential if there exists a matching in G of maximum cardinality that exposes v.

Matching and Stable Graphs

- A matching of a graph $G=(V, E)$ is a subset $M \subseteq E$ such that each $v \in V$ is incident into at most one edge of M

- A vertex $v \in V$ is called essential if there is no matching in G of maximum cardinality that exposes v.

Matching and Stable Graphs

- G is said to be stable if the set of its inessential vertices forms a stable set (i.e., are pairwise not adjacent).

Matching and Stable Graphs

- G is said to be stable if the set of its inessential vertices forms a stable set (i.e., are pairwise not adjacent).

- Unstable graph

Matching and Stable Graphs

- G is said to be stable if the set of its inessential vertices forms a stable set (i.e., are pairwise not adjacent).

- Unstable graph

Matching and Stable Graphs

- G is said to be stable if the set of its inessential vertices forms a stable set (i.e., are pairwise not adjacent).

Matching and Stable Graphs

- G is said to be stable if the set of its inessential vertices forms a stable set (i.e., are pairwise not adjacent).

- Stable graph

Matching and Stable Graphs

- G is said to be stable if the set of its inessential vertices forms a stable set (i.e., are pairwise not adjacent).

- Stable graph

Matching and Stable Graphs

- G is said to be stable if the set of its inessential vertices forms a stable set (i.e., are pairwise not adjacent).

- Stable graph \rightarrow Why are these graphs interesting?

Matching and Network games

- Several interesting game theory problems are defined on networks:

Matching and Network games

- Several interesting game theory problems are defined on networks: the structure of the underlying graph is fundamental to have good outcomes.

Matching and Network games

- Several interesting game theory problems are defined on networks: the structure of the underlying graph is fundamental to have good outcomes.
- Stable graphs play a crucial role in some Network Games:

Matching and Network games

- Several interesting game theory problems are defined on networks: the structure of the underlying graph is fundamental to have good outcomes.
- Stable graphs play a crucial role in some Network Games:
- Cooperative matching games [Shapley \& Shubik '71]
- Network bargaining games [Kleinberg \& Tardos '08]

Matching and Network games

- Several interesting game theory problems are defined on networks: the structure of the underlying graph is fundamental to have good outcomes.
- Stable graphs play a crucial role in some Network Games:
- Cooperative matching games [Shapley \& Shubik '71]
- Network bargaining games [Kleinberg \& Tardos '08]
- Instances of such games are described by a graph $G=(V, E)$ where

Matching and Network games

- Several interesting game theory problems are defined on networks: the structure of the underlying graph is fundamental to have good outcomes.
- Stable graphs play a crucial role in some Network Games:
- Cooperative matching games [Shapley \& Shubik '71]
- Network bargaining games [Kleinberg \& Tardos '08]
- Instances of such games are described by a graph $G=(V, E)$ where
- Vertices represent players

Matching and Network games

- Several interesting game theory problems are defined on networks: the structure of the underlying graph is fundamental to have good outcomes.
- Stable graphs play a crucial role in some Network Games:
- Cooperative matching games [Shapley \& Shubik '71]
- Network bargaining games [Kleinberg \& Tardos '08]
- Instances of such games are described by a graph $G=(V, E)$ where
- Vertices represent players
- The cardinality of a maximum matching represents a total value that the payers could get by interacting with each other.

Matching and Network games

- Several interesting game theory problems are defined on networks: the structure of the underlying graph is fundamental to have good outcomes.
- Stable graphs play a crucial role in some Network Games:
- Cooperative matching games [Shapley \& Shubik '71]
- Network bargaining games [Kleinberg \& Tardos '08]
- Instances of such games are described by a graph $G=(V, E)$ where
- Vertices represent players
- The cardinality of a maximum matching represents a total value that the payers could get by interacting with each other.
- Goal: find a stable outcome (players do not have incentive to deviate)

Matching and Network games

- Several interesting game theory problems are defined on networks: the structure of the underlying graph is fundamental to have good outcomes.
- Stable graphs play a crucial role in some Network Games:
- Cooperative matching games [Shapley \& Shubik '71]
- Network bargaining games [Kleinberg \& Tardos '08]
- Instances of such games are described by a graph $G=(V, E)$ where
- Vertices represent players
- The cardinality of a maximum matching represents a total value that the payers could get by interacting with each other.
- Goal: find a stable outcome (players do not have incentive to deviate)

Network Bargaining Games

Network Bargaining Games

- Network bargaining games are described by a graph $G=(V, E)$ where
- Vertices represent players

Network Bargaining Games

- Network bargaining games are described by a graph $G=(V, E)$ where
- Vertices represent players
- Edges represent potential deals of unit value between players

Network Bargaining Games

- Network bargaining games are described by a graph $G=(V, E)$ where
- Vertices represent players
- Edges represent potential deals of unit value between players
- Players can enter in a deal with at most one neighbour

Network Bargaining Games

- Network bargaining games are described by a graph $G=(V, E)$ where
- Vertices represent players
- Edges represent potential deals of unit value between players
- Players can enter in a deal with at most one neighbour
\rightarrow matching M

Network Bargaining Games

- Network bargaining games are described by a graph $G=(V, E)$ where
- Vertices represent players
- Edges represent potential deals of unit value between players
- Players can enter in a deal with at most one neighbour
\rightarrow matching M
- If players u and v make a deal, they agree on how to split a unit value

Network Bargaining Games

- Network bargaining games are described by a graph $G=(V, E)$ where
- Vertices represent players
- Edges represent potential deals of unit value between players
- Players can enter in a deal with at most one neighbour
\rightarrow matching M
- If players u and v make a deal, they agree on how to split a unit value

$$
\begin{gathered}
\rightarrow \text { allocation } y \in \mathbb{R}^{v}: \\
y_{u}+y_{v}=1 \text { for all }\{u v\} \in M \\
y_{u}=0 \text { if } u \text { is exposed by } M .
\end{gathered}
$$

Network Bargaining Games

- Network bargaining games are described by a graph $G=(V, E)$ where
- Vertices represent players
- Edges represent potential deals of unit value between players
- Players can enter in a deal with at most one neighbour

$$
\rightarrow \text { matching } M
$$

- If players u and v make a deal, they agree on how to split a unit value

$$
\begin{gathered}
\rightarrow \text { allocation } y \in \mathbb{R}^{v}: \\
y_{u}+y_{v}=1 \text { for all }\{u v\} \in M \\
y_{u}=0 \text { if } u \text { is exposed by } M
\end{gathered}
$$

- An outcome for the game is a pair (M, y)

Network Bargaining Games

Network Bargaining Games

- For a given outcome (M, y) player u gets implicitly an outside alternative

Network Bargaining Games

- For a given outcome (M, y) player u gets implicitly an outside alternative
- If there exists a neighbour v of u with $1-y_{v}>y_{u}$

Network Bargaining Games

- For a given outcome (M, y) player u gets implicitly an outside alternative
- If there exists a neighbour v of u with $1-y_{v}>y_{u}$
\rightarrow player u has an incentive to enter in a deal with v !

Network Bargaining Games

- For a given outcome (M, y) player u gets implicitly an outside alternative
- If there exists a neighbour v of u with $1-y_{v}>y_{u}$
\rightarrow player u has an incentive to enter in a deal with v !
- An outcome (M, y) is stable if $y_{u}+y_{v} \geq 1$ for all edges $\{u v\} \in E$.

Network Bargaining Games

- For a given outcome (M, y) player u gets implicitly an outside alternative
- If there exists a neighbour v of u with $1-y_{v}>y_{u}$
\rightarrow player u has an incentive to enter in a deal with v !
- An outcome (M, y) is stable if $y_{u}+y_{v} \geq 1$ for all edges $\{u v\} \in E$.
\rightarrow no player has an incentive to deviate

Network Bargaining Games

- For a given outcome (M, y) player u gets implicitly an outside alternative
- If there exists a neighbour v of u with $1-y_{v}>y_{u}$
\rightarrow player u has an incentive to enter in a deal with v !
- An outcome (M, y) is stable if $y_{u}+y_{v} \geq 1$ for all edges $\{u v\} \in E$.
\rightarrow no player has an incentive to deviate
- [Kleinberg \& Tardos'08] proved that for network bargaining instances

Network Bargaining Games

- For a given outcome (M, y) player u gets implicitly an outside alternative
- If there exists a neighbour v of u with $1-y_{v}>y_{u}$
\rightarrow player u has an incentive to enter in a deal with v !
- An outcome (M, y) is stable if $y_{u}+y_{v} \geq 1$ for all edges $\{u v\} \in E$.
\rightarrow no player has an incentive to deviate
- [Kleinberg \& Tardos'08] proved that for network bargaining instances A stable outcome exists

Network Bargaining Games

- For a given outcome (M, y) player u gets implicitly an outside alternative
- If there exists a neighbour v of u with $1-y_{v}>y_{u}$
\rightarrow player u has an incentive to enter in a deal with v !
- An outcome (M, y) is stable if $y_{u}+y_{v} \geq 1$ for all edges $\{u v\} \in E$.
\rightarrow no player has an incentive to deviate
- [Kleinberg \& Tardos'08] proved that for network bargaining instances A stable outcome exists
\Leftrightarrow the correspondent graph G is stable.

Cooperative matching games

- A similar result holds for cooperative matching games.

Cooperative matching games

- A similar result holds for cooperative matching games.
- In cooperative matching instance, we search for an allocation $y \in \mathbb{R}_{\geq 0}^{\nu}$ of the value $\nu(G):=\mid$ max matching \mid, such that
- no subset $S \subseteq V$ has incentive to deviate

Cooperative matching games

- A similar result holds for cooperative matching games.
- In cooperative matching instance, we search for an allocation $y \in \mathbb{R}_{\geq 0}^{\nu}$ of the value $\nu(G):=\mid$ max matching \mid, such that
- no subset $S \subseteq V$ has incentive to deviate $(y(S)<\nu(G[S]))$.

Cooperative matching games

- A similar result holds for cooperative matching games.
- In cooperative matching instance, we search for an allocation $y \in \mathbb{R}_{\geq 0}^{v}$ of the value $\nu(G):=\mid$ max matching|, such that
- no subset $S \subseteq V$ has incentive to deviate $(y(S)<\nu(G[S]))$.
- [Shubik \&Shapley'71] proved

A stable allocation exists

Cooperative matching games

- A similar result holds for cooperative matching games.
- In cooperative matching instance, we search for an allocation $y \in \mathbb{R}_{\geq 0}^{v}$ of the value $\nu(G):=\mid$ max matching|, such that
- no subset $S \subseteq V$ has incentive to deviate $(y(S)<\nu(G[S]))$.
- [Shubik \&Shapley'71] proved

A stable allocation exists \Leftrightarrow the correspondent graph G is stable.

Cooperative matching games

- A similar result holds for cooperative matching games.
- In cooperative matching instance, we search for an allocation $y \in \mathbb{R}_{\geq 0}^{v}$ of the value $\nu(G):=\mid$ max matching \mid, such that
- no subset $S \subseteq V$ has incentive to deviate $(y(S)<\nu(G[S]))$.
- [Shubik \&Shapley'71] proved

A stable allocation exists \Leftrightarrow the correspondent graph G is stable.
Question: [Biró, Kern \& Paulusma'10, Könemann, Larson \& Steiner'12]
Can we stabilize unstable games through minimal changes in the underlying network?

Cooperative matching games

- A similar result holds for cooperative matching games.
- In cooperative matching instance, we search for an allocation $y \in \mathbb{R}_{\geq 0}^{v}$ of the value $\nu(G):=\mid$ max matching \mid, such that
- no subset $S \subseteq V$ has incentive to deviate $(y(S)<\nu(G[S]))$.
- [Shubik \&Shapley'71] proved

A stable allocation exists \Leftrightarrow the correspondent graph G is stable.
Question: [Biró, Kern \& Paulusma'10, Könemann, Larson \& Steiner'12]
Can we stabilize unstable games through minimal changes in the underlying network?
\rightarrow Let's look at this question from a graph theory perspective

Stabilizers

Stabilizers

- Two natural graph operations:

Stabilizers

- Two natural graph operations:
- edge-removal operation
- vertex-removal operation

Stabilizers

- Two natural graph operations:
- edge-removal operation \rightarrow blocking some potential deals
- vertex-removal operation \rightarrow blocking some players

Stabilizers

- Two natural graph operations:
- edge-removal operation \rightarrow blocking some potential deals
- vertex-removal operation \rightarrow blocking some players

Def. An edge-stabilizer for $G=(V, E)$ is a subset $F \subseteq E$ s.t. $G \backslash F$ is stable.

Stabilizers

- Two natural graph operations:
- edge-removal operation \rightarrow blocking some potential deals
- vertex-removal operation \rightarrow blocking some players

Def. An edge-stabilizer for $G=(V, E)$ is a subset $F \subseteq E$ s.t. $G \backslash F$ is stable.

Stabilizers

- Two natural graph operations:
- edge-removal operation \rightarrow blocking some potential deals
- vertex-removal operation \rightarrow blocking some players

Def. An edge-stabilizer for $G=(V, E)$ is a subset $F \subseteq E$ s.t. $G \backslash F$ is stable.

Def. A vertex-stabilizer for $G=(V, E)$ is a subset $S \subseteq V$ s.t. $G \backslash S$ is stable.

Stabilizers

- Two natural graph operations:
- edge-removal operation \rightarrow blocking some potential deals
- vertex-removal operation \rightarrow blocking some players

Def. An edge-stabilizer for $G=(V, E)$ is a subset $F \subseteq E$ s.t. $G \backslash F$ is stable.

Def. A vertex-stabilizer for $G=(V, E)$ is a subset $S \subseteq V$ s.t. $G \backslash S$ is stable.
Combinatorial question: Can we efficiently find (edge-/vertex-) stabilizers of minimum cardinality?

Edge-stabilizers: complexity results

Edge-stabilizers: complexity results

- Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Edge-stabilizers: complexity results

- Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Thm: [Bock, Chandrasekaran, Könemann, Peis, S. '14] For a minimum edge-stabilizer F of G we have

$$
\nu(G \backslash F)=\nu(G)
$$

Edge-stabilizers: complexity results

- Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Thm: [Bock, Chandrasekaran, Könemann, Peis, S. '14] For a minimum edge-stabilizer F of G we have

$$
\nu(G \backslash F)=\nu(G)
$$

- Network Bargaining Interpretation: there is always a way to stabilize the game that

Edge-stabilizers: complexity results

- Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Thm: [Bock, Chandrasekaran, Könemann, Peis, S. '14] For a minimum edge-stabilizer F of G we have

$$
\nu(G \backslash F)=\nu(G)
$$

- Network Bargaining Interpretation: there is always a way to stabilize the game that
- blocks min number of potential deals, and

Edge-stabilizers: complexity results

- Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Thm: [Bock, Chandrasekaran, Könemann, Peis, S. '14] For a minimum edge-stabilizer F of G we have

$$
\nu(G \backslash F)=\nu(G)
$$

- Network Bargaining Interpretation: there is always a way to stabilize the game that
- blocks min number of potential deals, and
- does not decrease the total value the players can get!

Edge-stabilizers: complexity results

- Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Thm: [Bock, Chandrasekaran, Könemann, Peis, S. '14] For a minimum edge-stabilizer F of G we have

$$
\nu(G \backslash F)=\nu(G)
$$

- Network Bargaining Interpretation: there is always a way to stabilize the game that
- blocks min number of potential deals, and
- does not decrease the total value the players can get!

Thm: [Bock, Chandrasekaran, Könemann, Peis, S. '14] Finding a minimum cardinality edge-stabilizer is an NP-Hard problem.

Vertex-stabilizers: complexity results

- Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Vertex-stabilizers: complexity results

- Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Thm: [Ahmadian, Hosseinzadeh, S. '16] For a minimum vertex-stabilizer S of G we have

$$
\nu(G \backslash S)=\nu(G)
$$

Vertex-stabilizers: complexity results

- Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Thm: [Ahmadian, Hosseinzadeh, S. '16] For a minimum vertex-stabilizer S of G we have

$$
\nu(G \backslash S)=\nu(G)
$$

- Network Bargaining Interpretation: there is always a way to stabilize the game that

Vertex-stabilizers: complexity results

- Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Thm: [Ahmadian, Hosseinzadeh, S. '16] For a minimum vertex-stabilizer S of G we have

$$
\nu(G \backslash S)=\nu(G)
$$

- Network Bargaining Interpretation: there is always a way to stabilize the game that
- blocks min number of players, and

Vertex-stabilizers: complexity results

- Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Thm: [Ahmadian, Hosseinzadeh, S. '16] For a minimum vertex-stabilizer S of G we have

$$
\nu(G \backslash S)=\nu(G)
$$

- Network Bargaining Interpretation: there is always a way to stabilize the game that
- blocks min number of players, and
- does not decrease the total value the players can get!

Vertex-stabilizers: complexity results

- Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Thm: [Ahmadian, Hosseinzadeh, S. '16] For a minimum vertex-stabilizer S of G we have

$$
\nu(G \backslash S)=\nu(G)
$$

- Network Bargaining Interpretation: there is always a way to stabilize the game that
- blocks min number of players, and
- does not decrease the total value the players can get!

Thm: [Ito,Kakimura,Kamiyama,Kobayashi,Okamoto '16], [AHS'16] Finding a minimum cardinality vertex-stabilizer is a polynomial-time solvable problem.

Vertex-stabilizers: complexity results

- Recall $\nu(G)$ denote the cardinality of a maximum matching in G.

Thm: [Ahmadian, Hosseinzadeh, S. '16] For a minimum vertex-stabilizer S of G we have

$$
\nu(G \backslash S)=\nu(G)
$$

- Network Bargaining Interpretation: there is always a way to stabilize the game that
- blocks min number of players, and
- does not decrease the total value the players can get!

Thm: [Ito,Kakimura,Kamiyama,Kobayashi,Okamoto '16], [AHS'16] Finding a minimum cardinality vertex-stabilizer is a polynomial-time solvable problem.
\rightarrow How are these results proved?

Matchings and Covers

- A "dual" problem to matchings is finding a minimum vertex-cover of a graph.

Matchings and Covers

- A "dual" problem to matchings is finding a minimum vertex-cover of a graph.

Recall: A vertex-cover of $G=(V, E)$ is a subset $C \subseteq V$ s.t. each $e \in E$ is incident into at least one vertex of C.

Matchings and Covers

- A "dual" problem to matchings is finding a minimum vertex-cover of a graph.

Recall: A vertex-cover of $G=(V, E)$ is a subset $C \subseteq V$ s.t. each $e \in E$ is incident into at least one vertex of C.

Matchings and Covers

- A "dual" problem to matchings is finding a minimum vertex-cover of a graph.

Recall: A vertex-cover of $G=(V, E)$ is a subset $C \subseteq V$ s.t. each $e \in E$ is incident into at least one vertex of C.

- Let $\tau(G)$ denote the minimum cardinality of a vertex-cover.

Matchings and Covers

- A "dual" problem to matchings is finding a minimum vertex-cover of a graph.

Recall: A vertex-cover of $G=(V, E)$ is a subset $C \subseteq V$ s.t. each $e \in E$ is incident into at least one vertex of C.

- Let $\tau(G)$ denote the minimum cardinality of a vertex-cover.
- It is well known that the inequality $\nu(G) \leq \tau(G)$ holds for all graphs G.

Matchings and Covers

- A "dual" problem to matchings is finding a minimum vertex-cover of a graph.

Recall: A vertex-cover of $G=(V, E)$ is a subset $C \subseteq V$ s.t. each $e \in E$ is incident into at least one vertex of C.

- Let $\tau(G)$ denote the minimum cardinality of a vertex-cover.
- It is well known that the inequality $\nu(G) \leq \tau(G)$ holds for all graphs G.

Matchings and Covers

Matchings and Covers

- There are some graphs where the inequality $\nu(G) \leq \tau(G)$ holds tight.

Matchings and Covers

- There are some graphs where the inequality $\nu(G) \leq \tau(G)$ holds tight.
[König's theorem (1931)]: For any bipartite graph $G, \nu(G)=\tau(G)$.

Matchings and Covers

- There are some graphs where the inequality $\nu(G) \leq \tau(G)$ holds tight.
[König's theorem (1931)]: For any bipartite graph $G, \nu(G)=\tau(G)$.
- The inequality holds tight for a superclass of bipartite graphs.

Matchings and Covers

- There are some graphs where the inequality $\nu(G) \leq \tau(G)$ holds tight.
[König's theorem (1931)]: For any bipartite graph $G, \nu(G)=\tau(G)$.
- The inequality holds tight for a superclass of bipartite graphs. A graph G satisfying $\nu(G)=\tau(G)$, is called a König-Egerváry graph.

Matchings and Covers

- There are some graphs where the inequality $\nu(G) \leq \tau(G)$ holds tight.
[König's theorem (1931)]: For any bipartite graph $G, \nu(G)=\tau(G)$.
- The inequality holds tight for a superclass of bipartite graphs. A graph G satisfying $\nu(G)=\tau(G)$, is called a König-Egerváry graph.

Matchings and Covers

- There are some graphs where the inequality $\nu(G) \leq \tau(G)$ holds tight.
[König's theorem (1931)]: For any bipartite graph $G, \nu(G)=\tau(G)$.
- The inequality holds tight for a superclass of bipartite graphs. A graph G satisfying $\nu(G)=\tau(G)$, is called a König-Egerváry graph.

- Stable graphs are a superclass of König-Egerváry graphs,

Matchings and Covers

- There are some graphs where the inequality $\nu(G) \leq \tau(G)$ holds tight.
[König's theorem (1931)]: For any bipartite graph $G, \nu(G)=\tau(G)$.
- The inequality holds tight for a superclass of bipartite graphs. A graph G satisfying $\nu(G)=\tau(G)$, is called a König-Egerváry graph.

- Stable graphs are a superclass of König-Egerváry graphs,

Matchings and Covers

- There are some graphs where the inequality $\nu(G) \leq \tau(G)$ holds tight.
[König's theorem (1931)]: For any bipartite graph $G, \nu(G)=\tau(G)$.
- The inequality holds tight for a superclass of bipartite graphs. A graph G satisfying $\nu(G)=\tau(G)$, is called a König-Egerváry graph.

- Stable graphs are a superclass of König-Egerváry graphs, and can be characterized in terms of fractional matchings and covers.

Fractional matchings and covers

Fractional matchings and covers

- Finding a maximum matching of a graph $G=(V, E)$ can be formulated as the following Integer Program (IP):

$$
\nu(G):=\max \left\{\mathbf{1}^{\top} x: x(\delta(v)) \leq 1 \forall v \in V, x \in\{0,1\}^{E}\right\}
$$

Fractional matchings and covers

- Finding a maximum matching of a graph $G=(V, E)$ can be formulated as the following Integer Program (IP):

$$
\nu(G):=\max \left\{\mathbf{1}^{\top} x: x(\delta(v)) \leq 1 \forall v \in V, x \in\{0,1\}^{E}\right\}
$$

- Finding a minimum vertex-cover can be formulated as the following IP:

$$
\tau(G):=\min \left\{\mathbf{1}^{T} y: y_{u}+y_{v} \geq 1 \forall e=\{u, v\} \in E, y \in\{0,1\}^{v}\right\}
$$

Fractional matchings and covers

- Finding a maximum matching of a graph $G=(V, E)$ can be formulated as the following Integer Program (IP):

$$
\nu(G):=\max \left\{\mathbf{1}^{\top} x: x(\delta(v)) \leq 1 \forall v \in V, x \in\{0,1\}^{E}\right\}
$$

- Finding a minimum vertex-cover can be formulated as the following IP:

$$
\tau(G):=\min \left\{\mathbf{1}^{T} y: y_{u}+y_{v} \geq 1 \forall e=\{u, v\} \in E, y \in\{0,1\}^{v}\right\}
$$

- If we relax the integrality constraints, we get a pair of Linear Programs (LP).

$$
\begin{gathered}
\nu_{f}(G):=\max \left\{\mathbf{1}^{T} x: x(\delta(v)) \leq 1 \forall v \in V, x \in \mathbb{R}_{\geq 0}^{E}\right\} \\
\tau_{f}(G):=\min \left\{\mathbf{1}^{T} y: y_{u}+y_{v} \geq 1 \forall e=\{u, v\} \in E, y \in \mathbb{R}_{\geq 0}^{v}\right\}
\end{gathered}
$$

Fractional matchings and covers

- Finding a maximum matching of a graph $G=(V, E)$ can be formulated as the following Integer Program (IP):

$$
\nu(G):=\max \left\{\mathbf{1}^{\top} x: x(\delta(v)) \leq 1 \forall v \in V, x \in\{0,1\}^{E}\right\}
$$

- Finding a minimum vertex-cover can be formulated as the following IP:

$$
\tau(G):=\min \left\{\mathbf{1}^{T} y: y_{u}+y_{v} \geq 1 \forall e=\{u, v\} \in E, y \in\{0,1\}^{v}\right\}
$$

- If we relax the integrality constraints, we get a pair of Linear Programs (LP).

$$
\begin{gathered}
\nu_{f}(G):=\max \left\{\mathbf{1}^{T} x: x(\delta(v)) \leq 1 \forall v \in V, x \in \mathbb{R}_{\geq 0}^{E}\right\} \\
\tau_{f}(G):=\min \left\{\mathbf{1}^{T} y: y_{u}+y_{v} \geq 1 \forall e=\{u, v\} \in E, y \in \mathbb{R}_{\geq 0}^{V}\right\}
\end{gathered}
$$

- Feasible solutions to these LPs yield fractional matchings and covers!

Fractional matchings and covers

Fractional matchings and covers

Def. a vector $x \in \mathbb{R}^{E}$ is a fractional matching if it is a feasible solution to:

$$
\nu_{f}(G):=\max \left\{\mathbf{1}^{T} x: x(\delta(v)) \leq 1 \forall v \in V, x \in \mathbb{R}_{\geq 0}^{E}\right\}
$$

Fractional matchings and covers

Def. a vector $x \in \mathbb{R}^{E}$ is a fractional matching if it is a feasible solution to:

$$
\nu_{f}(G):=\max \left\{\mathbf{1}^{T} x: x(\delta(v)) \leq 1 \forall v \in V, x \in \mathbb{R}_{\geq 0}^{E}\right\}
$$

Def. a vector $y \in \mathbb{R}^{V}$ is called a fractional vertex-cover if it is a feasible solution to its dual:

$$
\tau_{f}(G):=\min \left\{\mathbf{1}^{T} y: y_{u}+y_{v} \geq 1 \forall e=\{u, v\} \in E, y \in \mathbb{R}_{\geq 0}^{V}\right\}
$$

Fractional matchings and covers

Def. a vector $x \in \mathbb{R}^{E}$ is a fractional matching if it is a feasible solution to:

$$
\nu_{f}(G):=\max \left\{\mathbf{1}^{T} x: x(\delta(v)) \leq 1 \forall v \in V, x \in \mathbb{R}_{\geq 0}^{E}\right\}
$$

Def. a vector $y \in \mathbb{R}^{V}$ is called a fractional vertex-cover if it is a feasible solution to its dual:

$$
\tau_{f}(G):=\min \left\{\mathbf{1}^{T} y: y_{u}+y_{v} \geq 1 \forall e=\{u, v\} \in E, y \in \mathbb{R}_{\geq 0}^{V}\right\}
$$

- By duality: we know that the following chain of inequalities holds for all G :

$$
\nu(G) \leq \nu_{f}(G)=\tau_{f}(G) \leq \tau(G)
$$

Fractional matchings and covers

- Example:

$$
\nu(G) \leq \nu_{f}(G)=\tau_{f}(G) \leq \tau(G)
$$

Fractional matchings and covers

- Example:

$$
\nu(G) \leq \nu_{f}(G)=\tau_{f}(G) \leq \tau(G)
$$

- $\nu(G)=1$

Fractional matchings and covers

- Example:

$$
\nu(G) \leq \nu_{f}(G)=\tau_{f}(G) \leq \tau(G)
$$

- $\nu(G)=1$
- $\nu_{f}(G)=1.5$

Fractional matchings and covers

- Example:

$$
\nu(G) \leq \nu_{f}(G)=\tau_{f}(G) \leq \tau(G)
$$

- $\nu(G)=1$
- $\nu_{f}(G)=1.5$
- $\tau_{f}(G)=1.5$

Fractional matchings and covers

- Example:

$$
\nu(G) \leq \nu_{f}(G)=\tau_{f}(G) \leq \tau(G)
$$

- $\nu(G)=1$
- $\nu_{f}(G)=1.5$
- $\tau_{f}(G)=1.5$
- $\tau(G)=2$

Fractional matchings and covers

Proposition: G is stable if and only if $\nu(G)=\nu_{f}(G)=\tau_{f}(G)$.

Fractional matchings and covers

Proposition: G is stable if and only if $\nu(G)=\nu_{f}(G)=\tau_{f}(G)$.
(It follows from classical results e.g. [Uhry'75, Balas'81, Pulleyblank'87])

Fractional matchings and covers

Proposition: G is stable if and only if $\nu(G)=\nu_{f}(G)=\tau_{f}(G)$.
(It follows from classical results e.g. [Uhry'75, Balas'81, Pulleyblank'87])

- In other words, G is stable if and only if
cardinality of a max matching $=\min$ size of a fractional vertex cover y.

Fractional matchings and covers

Proposition: G is stable if and only if $\nu(G)=\nu_{f}(G)=\tau_{f}(G)$.
(It follows from classical results e.g. [Uhry'75, Balas'81, Pulleyblank'87])

- In other words, G is stable if and only if
cardinality of a max matching $=\min$ size of a fractional vertex cover y.
- Note: such y does not necessarily have integer coordinates!

Fractional matchings and covers

Proposition: G is stable if and only if $\nu(G)=\nu_{f}(G)=\tau_{f}(G)$.
(It follows from classical results e.g. [Uhry'75, Balas'81, Pulleyblank'87])

- In other words, G is stable if and only if
cardinality of a max matching $=\min$ size of a fractional vertex cover y.
- Note: such y does not necessarily have integer coordinates! In fact,

General graphs \supset Stable graphs \supset König-Egervary graphs \supset Bipartite graphs.

Fractional matchings and covers

Proposition: G is stable if and only if $\nu(G)=\nu_{f}(G)=\tau_{f}(G)$.
(It follows from classical results e.g. [Uhry'75, Balas'81, Pulleyblank'87])

- In other words, G is stable if and only if
cardinality of a max matching $=\min$ size of a fractional vertex cover y.
- Note: such y does not necessarily have integer coordinates! In fact,

General graphs \supset Stable graphs \supset König-Egervary graphs \supset Bipartite graphs.

- The fact that $\nu(G)=\nu_{f}(G)$ allows us to exploit properties of max matchings and max fractional matchings to stabilize graphs.

Fractional matchings and covers

Proposition: G is stable if and only if $\nu(G)=\nu_{f}(G)=\tau_{f}(G)$.
(It follows from classical results e.g. [Uhry'75, Balas'81, Pulleyblank'87])

- In other words, G is stable if and only if
cardinality of a max matching $=\min$ size of a fractional vertex cover y.
- Note: such y does not necessarily have integer coordinates! In fact,

General graphs \supset Stable graphs \supset König-Egervary graphs \supset Bipartite graphs.

- The fact that $\nu(G)=\nu_{f}(G)$ allows us to exploit properties of max matchings and max fractional matchings to stabilize graphs.

Key ingredient: Edmonds-Gallai Decomposition of a graph.

Edmonds-Gallai decomposition

Edmonds-Gallai decomposition

- The Edmonds-Gallai decomposition of $G=(V, E)$ is a partition of V into three sets B, C, D such that:

Edmonds-Gallai decomposition

- The Edmonds-Gallai decomposition of $G=(V, E)$ is a partition of V into three sets B, C, D such that:

Edmonds-Gallai decomposition

- The Edmonds-Gallai decomposition of $G=(V, E)$ is a partition of V into three sets B, C, D such that:

- B contains the set of inessential vertices of G

Edmonds-Gallai decomposition

- The Edmonds-Gallai decomposition of $G=(V, E)$ is a partition of V into three sets B, C, D such that:

- B contains the set of inessential vertices of G
- C contains the set of neighbors of B

Edmonds-Gallai decomposition

- The Edmonds-Gallai decomposition of $G=(V, E)$ is a partition of V into three sets B, C, D such that:

- B contains the set of inessential vertices of G
- C contains the set of neighbors of B
- D contains all remaining vertices

Edmonds-Gallai decomposition

- The Edmonds-Gallai decomposition of $G=(V, E)$ is a partition of V into three sets B, C, D such that:

- Note: The Edmonds-Gallai decomposition of a graph can be computed in polynomial-time.

Edmonds-Gallai decomposition

- The Edmonds-Gallai decomposition of $G=(V, E)$ is a partition of V into three sets B, C, D such that:

- Note: The Edmonds-Gallai decomposition of a graph can be computed in polynomial-time.
- What is the relation between this decomposition and max matchings?

Edmonds-Gallai decomposition

- Let M be any maximum matching of G.

Edmonds-Gallai decomposition

- Let M be any maximum matching of G.

Edmonds-Gallai decomposition

- Let M be any maximum matching of G. Then

Edmonds-Gallai decomposition

- Let M be any maximum matching of G. Then

- M induces a near-perfect matching in each component of $G[\mathrm{~B}]$

Edmonds-Gallai decomposition

- Let M be any maximum matching of G. Then

- M induces a near-perfect matching in each component of $G[\mathrm{~B}]$
- M matches C to distinct components of $G[\mathrm{~B}]$

Edmonds-Gallai decomposition

- Let M be any maximum matching of G. Then

- M induces a near-perfect matching in each component of $G[\mathrm{~B}]$
- M matches C to distinct components of $G[\mathrm{~B}]$
- M induces a perfect matching in $G[D]$

Edmonds-Gallai decomposition

- Let M be any maximum matching of G. Then

- M induces a near-perfect matching in each component of $G[\mathrm{~B}]$
- M matches C to distinct components of $G[\mathrm{~B}]$
- M induces a perfect matching in $G[D]$

Edmonds-Gallai decomposition

- Let M be a maximum matching of G, that covers the maximum number of singletons in $G[B]$.

Edmonds-Gallai decomposition

- Let M be a maximum matching of G, that covers the maximum number of singletons in $G[B]$.

Edmonds-Gallai decomposition

- Let M be a maximum matching of G, that covers the maximum number of singletons in $G[B]$.

Edmonds-Gallai decomposition

- Let M be a maximum matching of G, that covers the maximum number of singletons in $G[B]$.

Construct a fractional matching $x \in \mathbb{R}^{E}$ as follows:

Edmonds-Gallai decomposition

- Let M be a maximum matching of G, that covers the maximum number of singletons in $G[B]$.

Construct a fractional matching $x \in \mathbb{R}^{E}$ as follows:

- Find odd cycles in $G[B]$ containing M-exposed vertices,

Edmonds-Gallai decomposition

- Let M be a maximum matching of G, that covers the maximum number of singletons in $G[B]$.

Construct a fractional matching $x \in \mathbb{R}^{E}$ as follows:

- Find odd cycles in $G[B]$ containing M-exposed vertices,

Edmonds-Gallai decomposition

- Let M be a maximum matching of G, that covers the maximum number of singletons in $G[B]$.

Construct a fractional matching $x \in \mathbb{R}^{E}$ as follows:

- Find odd cycles in $G[B]$ containing M-exposed vertices, set $x_{e}=\frac{1}{2}$ for such edges. Set $x_{e}=1$ for all other edges of M.

Edmonds-Gallai decomposition

- Let M be a maximum matching of G, that covers the maximum number of singletons in $G[B]$.

Construct a fractional matching $x \in \mathbb{R}^{E}$ as follows:

- Find odd cycles in $G[B]$ containing M-exposed vertices, set $x_{e}=\frac{1}{2}$ for such edges. Set $x_{e}=1$ for all other edges of M.
Then, x is maximum fractional matching.

Edmonds-Gallai decomposition

- We can use this insight to prove our theorems.

Edmonds-Gallai decomposition

- We can use this insight to prove our theorems. Recall the structural results.

Edmonds-Gallai decomposition

- We can use this insight to prove our theorems. Recall the structural results.

Thm: [BCKPS '14] For a minimum edge-stabilizer F of $G, \nu(G \backslash F)=\nu(G)$.
Thm: [AHS '16] For a minimum vertex-stabilizer S of $G, \nu(G \backslash S)=\nu(G)$.

Edmonds-Gallai decomposition

- We can use this insight to prove our theorems. Recall the structural results.

Thm: [BCKPS '14] For a minimum edge-stabilizer F of $G, \nu(G \backslash F)=\nu(G)$.
Thm: [AHS '16] For a minimum vertex-stabilizer S of $G, \nu(G \backslash S)=\nu(G)$.

- Intuition: We need to "kill" the fractional cycles.

Edmonds-Gallai decomposition

- We can use this insight to prove our theorems. Recall the structural results.

Thm: [BCKPS '14] For a minimum edge-stabilizer F of $G, \nu(G \backslash F)=\nu(G)$.
Thm: [AHS '16] For a minimum vertex-stabilizer S of $G, \nu(G \backslash S)=\nu(G)$.

- Intuition: We need to "kill" the fractional cycles. Edges/vertices achieving this goal can be chosen to be disjoint by at least one max matching.

Edmonds-Gallai decomposition

- We can use this insight to prove our theorems.

Edmonds-Gallai decomposition

- We can use this insight to prove our theorems. Recall the algorithmic results.

Edmonds-Gallai decomposition

- We can use this insight to prove our theorems. Recall the algorithmic results.

Thm: [AHS '16, IKKKO '16] Finding a minimum vertex-stabilizer is solvable in polynomial-time.

Edmonds-Gallai decomposition

- We can use this insight to prove our theorems. Recall the algorithmic results.

Thm: [AHS '16, IKKKO '16] Finding a minimum vertex-stabilizer is solvable in polynomial-time.

- Intuition: We construct the fractional matching x as before.

Edmonds-Gallai decomposition

- We can use this insight to prove our theorems. Recall the algorithmic results.

Thm: [AHS '16, IKKKO '16] Finding a minimum vertex-stabilizer is solvable in polynomial-time.

- Intuition: We construct the fractional matching x as before.

Edmonds-Gallai decomposition

- We can use this insight to prove our theorems. Recall the algorithmic results.

Thm: [AHS '16, IKKKO '16] Finding a minimum vertex-stabilizer is solvable in polynomial-time.

- Intuition: We construct the fractional matching x as before. We remove one distinct vertex from each fractional cycle.

Edmonds-Gallai decomposition

- We can use this insight to prove our theorems. Recall the algorithmic results.

Thm: [AHS '16, IKKKO '16] Finding a minimum vertex-stabilizer is solvable in polynomial-time.

- Intuition: We construct the fractional matching x as before. We remove one distinct vertex from each fractional cycle.

Edmonds-Gallai decomposition

- We can use this insight to prove our theorems. Recall the algorithmic results.

Thm: [BCKPS '14] Finding a minimum edge-stabilizer is an NP-hard problem.

Edmonds-Gallai decomposition

- We can use this insight to prove our theorems. Recall the algorithmic results.

Thm: [BCKPS '14] Finding a minimum edge-stabilizer is an NP-hard problem.

- Intuition: Though the number of fractional cycle is a lower bound on the number of edges to remove,

Edmonds-Gallai decomposition

- We can use this insight to prove our theorems. Recall the algorithmic results.

Thm: [BCKPS '14] Finding a minimum edge-stabilizer is an NP-hard problem.

- Intuition: Though the number of fractional cycle is a lower bound on the number of edges to remove, it is not clear how many of them to select...

Edmonds-Gallai decomposition

- We can use this insight to prove our theorems. Recall the algorithmic results.

Thm: [BCKPS '14] Finding a minimum edge-stabilizer is an NP-hard problem.

- Intuition: Though the number of fractional cycle is a lower bound on the number of edges to remove, it is not clear how many of them to select...

How about approximation algorithms?

Approximation algorithms

Def. An algorithm is called an α-approximation algorithm for a minimization problem Π if for every instance of Π, it computes in polynomial-time a feasible solution of value at most α-times the value of an optimal solution.

Approximation algorithms

Def. An algorithm is called an α-approximation algorithm for a minimization problem Π if for every instance of Π, it computes in polynomial-time a feasible solution of value at most α-times the value of an optimal solution.

- A graph G is called ω-sparse if $\forall S \subseteq V,|E(S)| \leq \omega|S|$.

Approximation algorithms

Def. An algorithm is called an α-approximation algorithm for a minimization problem Π if for every instance of Π, it computes in polynomial-time a feasible solution of value at most α-times the value of an optimal solution.

- A graph G is called ω-sparse if $\forall S \subseteq V,|E(S)| \leq \omega|S|$.

Thm [Bock, Chandrasekaran, Könemann, Peis, S.'14]: There is a $O(\omega)$-approximation algorithm for finding a minimum edge-stabilizer.

Approximation algorithms

Def. An algorithm is called an α-approximation algorithm for a minimization problem Π if for every instance of Π, it computes in polynomial-time a feasible solution of value at most α-times the value of an optimal solution.

- A graph G is called ω-sparse if $\forall S \subseteq V,|E(S)| \leq \omega|S|$.

Thm [Bock, Chandrasekaran, Könemann, Peis, S.'14]: There is a $O(\omega)$-approximation algorithm for finding a minimum edge-stabilizer.

- The algorithm relies on the following Lemma.

Approximation algorithms

Def. An algorithm is called an α-approximation algorithm for a minimization problem Π if for every instance of Π, it computes in polynomial-time a feasible solution of value at most α-times the value of an optimal solution.

- A graph G is called ω-sparse if $\forall S \subseteq V,|E(S)| \leq \omega|S|$.

Thm [Bock, Chandrasekaran, Könemann, Peis, S.'14]: There is a $O(\omega)$-approximation algorithm for finding a minimum edge-stabilizer.

- The algorithm relies on the following Lemma.

Lemma: Let G be s.t. $\nu_{f}(G)>\nu(G)$.

Approximation algorithms

Def. An algorithm is called an α-approximation algorithm for a minimization problem Π if for every instance of Π, it computes in polynomial-time a feasible solution of value at most α-times the value of an optimal solution.

- A graph G is called ω-sparse if $\forall S \subseteq V,|E(S)| \leq \omega|S|$.

Thm [Bock, Chandrasekaran, Könemann, Peis, S.'14]: There is a $O(\omega)$-approximation algorithm for finding a minimum edge-stabilizer.

- The algorithm relies on the following Lemma.

Lemma: Let G be s.t. $\nu_{f}(G)>\nu(G)$. We can find $L \subseteq E$ with $|L| \leq O(\omega)$ s.t.

- (i) $G \backslash L$ has a matching of size $\nu(G)$,

Approximation algorithms

Def. An algorithm is called an α-approximation algorithm for a minimization problem Π if for every instance of Π, it computes in polynomial-time a feasible solution of value at most α-times the value of an optimal solution.

- A graph G is called ω-sparse if $\forall S \subseteq V,|E(S)| \leq \omega|S|$.

Thm [Bock, Chandrasekaran, Könemann, Peis, S.'14]: There is a $O(\omega)$-approximation algorithm for finding a minimum edge-stabilizer.

- The algorithm relies on the following Lemma.

Lemma: Let G be s.t. $\nu_{f}(G)>\nu(G)$. We can find $L \subseteq E$ with $|L| \leq O(\omega)$ s.t.

- (i) $G \backslash L$ has a matching of size $\nu(G)$, and (ii) $\nu_{f}(G \backslash L) \leq \nu_{f}(G)-\frac{1}{2}$.

Approximation algorithms

Def. An algorithm is called an α-approximation algorithm for a minimization problem Π if for every instance of Π, it computes in polynomial-time a feasible solution of value at most α-times the value of an optimal solution.

- A graph G is called ω-sparse if $\forall S \subseteq V,|E(S)| \leq \omega|S|$.

Thm [Bock, Chandrasekaran, Könemann, Peis, S.'14]: There is a $O(\omega)$-approximation algorithm for finding a minimum edge-stabilizer.

- The algorithm relies on the following Lemma.

Lemma: Let G be s.t. $\nu_{f}(G)>\nu(G)$. We can find $L \subseteq E$ with $|L| \leq O(\omega)$ s.t.

- (i) $G \backslash L$ has a matching of size $\nu(G)$, and (ii) $\nu_{f}(G \backslash L) \leq \nu_{f}(G)-\frac{1}{2}$.
- In other words, we can find a small subset of edges to remove from G that

Approximation algorithms

Def. An algorithm is called an α-approximation algorithm for a minimization problem Π if for every instance of Π, it computes in polynomial-time a feasible solution of value at most α-times the value of an optimal solution.

- A graph G is called ω-sparse if $\forall S \subseteq V,|E(S)| \leq \omega|S|$.

Thm [Bock, Chandrasekaran, Könemann, Peis, S.'14]: There is a $O(\omega)$-approximation algorithm for finding a minimum edge-stabilizer.

- The algorithm relies on the following Lemma.

Lemma: Let G be s.t. $\nu_{f}(G)>\nu(G)$. We can find $L \subseteq E$ with $|L| \leq O(\omega)$ s.t.

- (i) $G \backslash L$ has a matching of size $\nu(G)$, and (ii) $\nu_{f}(G \backslash L) \leq \nu_{f}(G)-\frac{1}{2}$.
- In other words, we can find a small subset of edges to remove from G that
- (i) does not decrease the value of a max matching,

Approximation algorithms

Def. An algorithm is called an α-approximation algorithm for a minimization problem Π if for every instance of Π, it computes in polynomial-time a feasible solution of value at most α-times the value of an optimal solution.

- A graph G is called ω-sparse if $\forall S \subseteq V,|E(S)| \leq \omega|S|$.

Thm [Bock, Chandrasekaran, Könemann, Peis, S.'14]: There is a $O(\omega)$-approximation algorithm for finding a minimum edge-stabilizer.

- The algorithm relies on the following Lemma.

Lemma: Let G be s.t. $\nu_{f}(G)>\nu(G)$. We can find $L \subseteq E$ with $|L| \leq O(\omega)$ s.t.

- (i) $G \backslash L$ has a matching of size $\nu(G)$, and (ii) $\nu_{f}(G \backslash L) \leq \nu_{f}(G)-\frac{1}{2}$.
- In other words, we can find a small subset of edges to remove from G that
- (i) does not decrease the value of a max matching, and (ii) reduces the minimum size of a fractional vertex cover.

Further remarks

Further remarks

Open question: Is a $O(1)$-approximation possible for min-egde stabilizer problem?

Further remarks

Open question: Is a $O(1)$-approximation possible for min-egde stabilizer problem?

- A graph $G=(V, E)$ is factor-critical if for every $v \in V, G \backslash\{v\}$ has a perfect matching.

Further remarks

Open question: Is a $O(1)$-approximation possible for min-egde stabilizer problem?

- A graph $G=(V, E)$ is factor-critical if for every $v \in V, G \backslash\{v\}$ has a perfect matching. Here one can find a maximum fractional matching with one odd cycle in the support.

Further remarks

Open question: Is a $O(1)$-approximation possible for min-egde stabilizer problem?

- A graph $G=(V, E)$ is factor-critical if for every $v \in V, G \backslash\{v\}$ has a perfect matching. Here one can find a maximum fractional matching with one odd cycle in the support. Is an $O(1)$-approximation possible here?

Further remarks

Open question: Is a $O(1)$-approximation possible for min-egde stabilizer problem?

- A graph $G=(V, E)$ is factor-critical if for every $v \in V, G \backslash\{v\}$ has a perfect matching. Here one can find a maximum fractional matching with one odd cycle in the support. Is an $O(1)$-approximation possible here?
- Subclasses of graphs?
- For d-regular graphs (\rightarrow each player has the same number of potential deals), previous algorithm of [BCKPS'14] yields a 2-approximation

Further remarks

Open question: Is a $O(1)$-approximation possible for min-egde stabilizer problem?

- A graph $G=(V, E)$ is factor-critical if for every $v \in V, G \backslash\{v\}$ has a perfect matching. Here one can find a maximum fractional matching with one odd cycle in the support. Is an $O(1)$-approximation possible here?
- Subclasses of graphs?
- For d-regular graphs (\rightarrow each player has the same number of potential deals), previous algorithm of [BCKPS'14] yields a 2-approximation
- What about b-matchings? (\rightarrow each player v can enter in b_{v} deals)

Further remarks

Further remarks

- Network bargaining games are more generally defined on weighted graphs

Further remarks

- Network bargaining games are more generally defined on weighted graphs (\rightarrow each edge represents a deal of value w_{e})

Further remarks

- Network bargaining games are more generally defined on weighted graphs $\left(\rightarrow\right.$ each edge represents a deal of value w_{e})

Stable graphs: In this setting, a graph G is stable if the max-weight matching equals the cardinality of a min-fractional w-cover.

Further remarks

- Network bargaining games are more generally defined on weighted graphs $\left(\rightarrow\right.$ each edge represents a deal of value w_{e})

Stable graphs: In this setting, a graph G is stable if the max-weight matching equals the cardinality of a min-fractional w-cover.

- In this setting, min-stabilizers may reduce the weight of max-matching,

Further remarks

- Network bargaining games are more generally defined on weighted graphs $\left(\rightarrow\right.$ each edge represents a deal of value w_{e})

Stable graphs: In this setting, a graph G is stable if the max-weight matching equals the cardinality of a min-fractional w-cover.

- In this setting, min-stabilizers may reduce the weight of max-matching, and finding a min vertex-stabilizer preserving a max-weight matching is no longer poly-time solvable [Koh, S.'17]

Further remarks

- Network bargaining games are more generally defined on weighted graphs $\left(\rightarrow\right.$ each edge represents a deal of value w_{e})

Stable graphs: In this setting, a graph G is stable if the max-weight matching equals the cardinality of a min-fractional w-cover.

- In this setting, min-stabilizers may reduce the weight of max-matching, and finding a min vertex-stabilizer preserving a max-weight matching is no longer poly-time solvable [Koh, S.'17]
- Good (approximation) algorithms in this case?

Further remarks

- Network bargaining games are more generally defined on weighted graphs $\left(\rightarrow\right.$ each edge represents a deal of value w_{e})

Stable graphs: In this setting, a graph G is stable if the max-weight matching equals the cardinality of a min-fractional w-cover.

- In this setting, min-stabilizers may reduce the weight of max-matching, and finding a min vertex-stabilizer preserving a max-weight matching is no longer poly-time solvable [Koh, S.'17]
- Good (approximation) algorithms in this case?

Thank you!

