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Matching and Network games

• Several interesting game theory problems are defined on networks:

the
structure of the underlying graph is fundamental to have good outcomes.

• Stable graphs play a crucial role in some Network Games:

I Cooperative matching games [Shapley & Shubik ’71]

I Network bargaining games [Kleinberg & Tardos ’08]

• Instances of such games are described by a graph G = (V ,E) where

I Vertices represent players

I The cardinality of a maximum matching represents a total value that the
payers could get by interacting with each other.

• Goal: find a stable outcome (players do not have incentive to deviate)
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I Vertices represent players
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• Players can enter in a deal with at most one neighbour

→ matching M

• If players u and v make a deal, they agree on how to split a unit value

→ allocation y ∈ RV :
yu + yv = 1 for all {uv} ∈ M
yu = 0 if u is exposed by M.

• An outcome for the game is a pair (M, y)
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• For a given outcome (M, y) player u gets implicitly an outside alternative

I If there exists a neighbour v of u with 1− yv > yu

→ player u has an incentive to enter in a deal with v !

• An outcome (M, y) is stable if yu + yv ≥ 1 for all edges {uv} ∈ E .

→ no player has an incentive to deviate

• [Kleinberg & Tardos’08] proved that for network bargaining instances

A stable outcome exists
⇔

the correspondent graph G is stable.
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≥0 of the

value ν(G) := |max matching|, such that
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Question: [Biró, Kern & Paulusma’10, Könemann, Larson & Steiner’12]
Can we stabilize unstable games through minimal changes in the underlying

network?

→ Let’s look at this question from a graph theory perspective



Cooperative matching games

• A similar result holds for cooperative matching games.

• In cooperative matching instance, we search for an allocation y ∈ Rv
≥0 of the

value ν(G) := |max matching|, such that

I no subset S ⊆ V has incentive to deviate (y(S) < ν(G [S ])).

• [Shubik &Shapley’71] proved

A stable allocation exists ⇔ the correspondent graph G is stable.
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Edge-stabilizers: complexity results

• Recall ν(G) denote the cardinality of a maximum matching in G .

Thm: [Bock, Chandrasekaran, Könemann, Peis, S. ’14] For a minimum
edge-stabilizer F of G we have

ν(G \ F ) = ν(G)

• Network Bargaining Interpretation: there is always a way to stabilize the
game that

I blocks min number of potential deals, and

I does not decrease the total value the players can get!

Thm: [Bock, Chandrasekaran, Könemann, Peis, S. ’14] Finding a
minimum cardinality edge-stabilizer is an NP-Hard problem.
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Fractional matchings and covers

• Finding a maximum matching of a graph G = (V ,E) can be formulated as
the following Integer Program (IP):

ν(G) := max{1T x : x(δ(v)) ≤ 1 ∀v ∈ V , x ∈ {0, 1}E}

• Finding a minimum vertex-cover can be formulated as the following IP:

τ(G) := min{1T y : yu + yv ≥ 1 ∀e = {u, v} ∈ E , y ∈ {0, 1}V }

• If we relax the integrality constraints, we get a pair of Linear Programs (LP).

νf (G) := max{1T x : x(δ(v)) ≤ 1 ∀v ∈ V , x ∈ RE
≥0}

τf (G) := min{1T y : yu + yv ≥ 1 ∀e = {u, v} ∈ E , y ∈ RV
≥0}

• Feasible solutions to these LPs yield fractional matchings and covers!
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Fractional matchings and covers

Def. a vector x ∈ RE is a fractional matching if it is a feasible solution to:

νf (G) := max{1T x : x(δ(v)) ≤ 1 ∀v ∈ V , x ∈ RE
≥0}

Def. a vector y ∈ RV is called a fractional vertex-cover if it is a feasible
solution to its dual:

τf (G) := min{1T y : yu + yv ≥ 1 ∀e = {u, v} ∈ E , y ∈ RV
≥0}

• By duality: we know that the following chain of inequalities holds for all G :
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Fractional matchings and covers

Proposition: G is stable if and only if ν(G) = νf (G) = τf (G).

(It follows from classical results e.g. [Uhry’75, Balas’81, Pulleyblank’87])

• In other words, G is stable if and only if

cardinality of a max matching = min size of a fractional vertex cover y .

• Note: such y does not necessarily have integer coordinates! In fact,

General graphs ⊃ Stable graphs ⊃ König-Egervary graphs ⊃ Bipartite graphs.

• The fact that ν(G) = νf (G) allows us to exploit properties of max matchings
and max fractional matchings to stabilize graphs.

Key ingredient: Edmonds-Gallai Decomposition of a graph.
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Approximation algorithms

Def. An algorithm is called an α-approximation algorithm for a minimization
problem Π if for every instance of Π, it computes in polynomial-time a feasible
solution of value at most α-times the value of an optimal solution.

• A graph G is called ω-sparse if ∀S ⊆ V , |E(S)| ≤ ω|S |.

Thm [Bock, Chandrasekaran, Könemann, Peis, S.’14]: There is a
O(ω)-approximation algorithm for finding a minimum edge-stabilizer.

• The algorithm relies on the following Lemma.

Lemma: Let G be s.t. νf (G) > ν(G). We can find L ⊆ E with |L| ≤ O(ω) s.t.

I (i) G \ L has a matching of size ν(G), and (ii) νf (G \ L) ≤ νf (G)− 1
2
.

• In other words, we can find a small subset of edges to remove from G that

I (i) does not decrease the value of a max matching, and (ii) reduces the
minimum size of a fractional vertex cover.
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Further remarks

Open question: Is a O(1)-approximation possible for min-egde stabilizer
problem?

• A graph G = (V ,E) is factor-critical if for every v ∈ V , G \ {v} has a
perfect matching. Here one can find a maximum fractional matching with one
odd cycle in the support. Is an O(1)-approximation possible here?

• Subclasses of graphs?

I For d-regular graphs (→ each player has the same number of potential
deals), previous algorithm of [BCKPS’14] yields a 2-approximation

• What about b-matchings? (→ each player v can enter in bv deals)
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Further remarks

• Network bargaining games are more generally defined on weighted graphs
(→ each edge represents a deal of value we)

Stable graphs: In this setting, a graph G is stable if the max-weight matching
equals the cardinality of a min-fractional w -cover.

• In this setting, min-stabilizers may reduce the weight of max-matching, and
finding a min vertex-stabilizer preserving a max-weight matching is no longer
poly-time solvable [Koh, S.’17]

• Good (approximation) algorithms in this case?

Thank you!
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