Templates for Minor-Closed Classes of Binary Matroids

Kevin Grace* and Stefan van Zwam

Department of Mathematics
Louisiana State University
Baton Rouge, Louisiana

29th Cumberland Conference; Nashville, TN
May 21, 2017
Matroids

The concept of a matroid generalizes the combinatorial aspects of linear dependence in matrices.
The concept of a matroid generalizes the combinatorial aspects of linear dependence in matrices. The columns of a matrix are the elements of a representable matroid.
The concept of a matroid generalizes the combinatorial aspects of linear dependence in matrices. The columns of a matrix are the elements of a representable matroid. If the entries of the matrix come from the field $\mathbb{GF}(2)$, then the matroid is called a binary matroid.

Example: Consider the following matrix over $\mathbb{GF}(2)$:
\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{pmatrix}
\] Some sets of columns are dependent, and some are independent.
Matroids

The concept of a matroid generalizes the combinatorial aspects of linear dependence in matrices. The columns of a matrix are the elements of a representable matroid. If the entries of the matrix come from the field $\text{GF}(2)$, then the matroid is called a binary matroid.

Example: Consider the following matrix over $\text{GF}(2)$:

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{bmatrix}
\]
The concept of a *matroid* generalizes the combinatorial aspects of linear dependence in matrices. The columns of a matrix are the elements of a *representable* matroid. If the entries of the matrix come from the field $\text{GF}(2)$, then the matroid is called a *binary* matroid.

Example: Consider the following matrix over $\text{GF}(2)$:

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{bmatrix}
\]

Some sets of columns are dependent, and some are independent.
This matroid also can be represented by a graph.

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 \\
\end{pmatrix}
\]
This matroid also can be represented by a graph.

\[
\begin{bmatrix}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{bmatrix}
\]

All graphic matroids are binary.
Matroids

This matroid also can be represented by a graph.

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{bmatrix}
\]

The edges are the elements of the matroid.
This matroid also can be represented by a graph.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The edges are the elements of the matroid.

A set of edges is *dependent* if it contains a cycle.
Matroids

This matroid also can be represented by a graph.

\[
\begin{bmatrix}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{bmatrix}
\]

The edges are the elements of the matroid.

A set of edges is dependent if it contains a cycle.

Such matroids are called graphic matroids.
This matroid also can be represented by a graph.

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 \\
\end{bmatrix}
\]

The edges are the elements of the matroid.

A set of edges is *dependent* if it contains a cycle.

Such matroids are called *graphic matroids*.

All graphic matroids are binary.
The operations of *contraction* and *deletion* are generalizations of the operations on graphs with the same name.
The operations of *contraction* and *deletion* are generalizations of the operations on graphs with the same name. A matroid N obtained from a matroid M by a sequence of deletions and contractions is called a *minor* of M.
The operations of contraction and deletion are generalizations of the operations on graphs with the same name. A matroid N obtained from a matroid M by a sequence of deletions and contractions is called a minor of M. For every matroid M there is a dual matroid M^*. The concept of duality extends the concept of orthogonality in vector spaces and the concept of a planar dual of a planar graph.
Minors and Duality

The operations of *contraction* and *deletion* are generalizations of the operations on graphs with the same name. A matroid N obtained from a matroid M by a sequence of deletions and contractions is called a *minor* of M. For every matroid M there is a *dual matroid* M^*. The concept of duality extends the concept of orthogonality in vector spaces and the concept of a planar dual of a planar graph.

- Duals of graphic matroids are called *cographic* matroids.
Robertson and Seymour

Building blocks of a proper minor-closed class of graphs are "close" to being embeddable in some surface.
Building blocks of a proper minor-closed class of graphs are “close” to being embeddable in some surface.
Robertson and Seymour

- Graph Minors Project

- Building blocks of a proper minor-closed class of graphs are “close” to being embeddable in some surface.
Highly-connected members of a proper minor-closed class of binary matroids are "close" to being graphic or cographic. Templates help to specify what "close" means. Part of their profound structure theory of matroids representable over a finite field.
Highly-connected members of a proper minor-closed class of binary matroids are “close” to being graphic or cographic.
Highly-connected members of a proper minor-closed class of binary matroids are “close” to being graphic or cographic.

- Templates help to specify what “close” means.
Highly-connected members of a proper minor-closed class of binary matroids are “close” to being graphic or cographic.

- Templates help to specify what “close” means.

- Part of their profound structure theory of matroids representable over a finite field
A binary frame template is a tuple \(\Phi = (\{1\}, C, X, Y_0, Y_1, A_1, \Delta, \Lambda) \) with some additional conditions.
A *binary frame template* is a tuple \(\Phi = (\{1\}, C, X, Y_0, Y_1, A_1, \Delta, \Lambda) \) with some additional conditions. A matrix \(A' \) is said to *respect* \(\Phi \) if it is of the following form:

\[
\begin{array}{c|c|c|c}
X & \text{columns from } \Lambda & 0 & Y_0 \quad Y_1 \quad C \\
\hline
\text{incidence} & \text{unit and} & A_1 \\
\text{matrix of} & \text{zero} & \text{rows} \\
\text{a graph} & \text{columns} & \text{from } \Delta
\end{array}
\]
Respecting a Template

A binary frame template is a tuple
\(\Phi = (\{1\}, C, X, Y_0, Y_1, A_1, \Delta, \Lambda) \) with some additional conditions. A matrix \(A' \) is said to respect \(\Phi \) if it is of the following form:

\[\begin{array}{ccc}
X & Z & Y_0 & Y_1 & C \\
\text{columns from } \Lambda & 0 & A_1 \\
\text{incidence matrix of a graph} & \text{unit and zero columns} & \text{rows from } \Delta \\
\end{array} \]

(i) \(C, X, Y_0 \) and \(Y_1 \) are disjoint finite sets.
Respecting a Template

A binary frame template is a tuple $\Phi = (\{1\}, C, X, Y_0, Y_1, A_1, \Delta, \Lambda)$ with some additional conditions. A matrix A' is said to respect Φ if it is of the following form:

\[
\begin{array}{c|c|c|c}
X & \text{columns from } \Lambda & Z & Y_0 & Y_1 & C \\
\hline
\text{incidence matrix of a graph} & 0 & \text{unit and zero columns} & \text{rows from } \Delta \\
\end{array}
\]

(ii) $A_1 \in (\text{GF}(2))^{X \times (C \cup Y_0 \cup Y_1)}$.
A *binary frame template* is a tuple $\Phi = (\{1\}, C, X, Y_0, Y_1, A_1, \Delta, \Lambda)$ with some additional conditions. A matrix A' is said to *respect* Φ if it is of the following form:

\[
\begin{array}{cccc}
X & & Z & \vspace{0.1cm} \\
\text{columns from } \Lambda & 0 & Y_0 & Y_1 & C \\
\end{array}
\]

- incidence matrix of a graph
- unit and zero columns
- rows from Δ

(iii) Λ is a subgroup of the additive group of $(\text{GF}(2))^X$.
A binary frame template is a tuple
\[\Phi = (\{1\}, C, X, Y_0, Y_1, A_1, \Delta, \Lambda) \]
with some additional conditions. A matrix \(A' \) is said to respect \(\Phi \) if it is of the following form:

\[
\begin{array}{c|c|c|c}
X & Z & Y_0 & Y_1 & C \\
\hline
\text{columns from } \Lambda & 0 & & & A_1 \\
\text{incidence matrix of a graph} & \text{unit and zero columns} & \text{rows from } \Delta & \\
\end{array}
\]

(iv) \(\Delta \) is a subgroup of the additive group of \((\text{GF}(2))^{C \cup Y_0 \cup Y_1}\).
Conforming to a Template

A matrix A *conforms* to a template Φ if it is formed from a matrix A' that respects Φ by adding a column of Y_1 to each column of Z.
Conforming to a Template

A matrix A conforms to a template Φ if it is formed from a matrix A' that respects Φ by adding a column of Y_1 to each column of Z.

A matroid M conforms to Φ if there is a matrix A that conforms to Φ such that M is isomorphic to the vector matroid of $M(A)/C\setminus Y_1$.

$M(\Phi)$ is the set of matroids conforming to Φ.
A matrix A *conforms* to a template Φ if it is formed from a matrix A' that respects Φ by adding a column of Y_1 to each column of Z.

A matroid M *conforms* to Φ if there is a matrix A that conforms to Φ such that M is isomorphic to the vector matroid of $M(A)/C\setminus Y_1$.

$\mathcal{M}(\Phi)$ is the set of matroids conforming to Φ.
Theorem (Geelen, Gerards, and Whittle 2015)

Let \mathcal{M} be a proper minor-closed class of binary matroids. Then there exist $k, l \in \mathbb{Z}_+$ and frame templates $\Phi_1, \ldots, \Phi_s, \Psi_1, \ldots, \Psi_t$ such that

\mathcal{M} contains each of the classes $\mathcal{M}(\Phi_1), \ldots, \mathcal{M}(\Phi_s)$, \mathcal{M} contains the duals of the matroids in each of the classes $\mathcal{M}(\Psi_1), \ldots, \mathcal{M}(\Psi_t)$, and if \mathcal{M} is a simple vertically k-connected member of \mathcal{M} with at least l elements, then either \mathcal{M} is a member of at least one of the classes $\mathcal{M}(\Phi_1), \ldots, \mathcal{M}(\Phi_s)$, or \mathcal{M}^* is a member of at least one of the classes $\mathcal{M}(\Psi_1), \ldots, \mathcal{M}(\Psi_t)$.
Theorem (Geelen, Gerards, and Whittle 2015)

Let \mathcal{M} be a proper minor-closed class of binary matroids. Then there exist $k, l \in \mathbb{Z}_+$ and frame templates $\Phi_1, \ldots, \Phi_s, \Psi_1, \ldots, \Psi_t$ such that

- \mathcal{M} contains each of the classes $\mathcal{M}(\Phi_1), \ldots, \mathcal{M}(\Phi_s)$,
- \mathcal{M} contains the duals of the matroids in each of the classes $\mathcal{M}(\Psi_1), \ldots, \mathcal{M}(\Psi_t)$, and
- if M is a simple vertically k-connected member of \mathcal{M} with at least l elements, then either M is a member of at least one of the classes $\mathcal{M}(\Phi_1), \ldots, \mathcal{M}(\Phi_s)$, or M^* is a member of at least one of the classes $\mathcal{M}(\Psi_1), \ldots, \mathcal{M}(\Psi_t)$.
Theorem (Geelen, Gerards, and Whittle 2015)

Let \(\mathcal{M} \) be a proper minor-closed class of binary matroids. Then there exist \(k, l \in \mathbb{Z}_+ \) and frame templates \(\Phi_1, \ldots, \Phi_s, \Psi_1, \ldots, \Psi_t \) such that

- \(\mathcal{M} \) contains each of the classes \(\mathcal{M}(\Phi_1), \ldots, \mathcal{M}(\Phi_s) \),
- \(\mathcal{M} \) contains the duals of the matroids in each of the classes \(\mathcal{M}(\Psi_1), \ldots, \mathcal{M}(\Psi_t) \), and
Theorem (Geelen, Gerards, and Whittle 2015)

Let \mathcal{M} be a proper minor-closed class of binary matroids. Then there exist $k, l \in \mathbb{Z}_+$ and frame templates $\Phi_1, \ldots, \Phi_s, \Psi_1, \ldots, \Psi_t$ such that

- \mathcal{M} contains each of the classes $\mathcal{M}(\Phi_1), \ldots, \mathcal{M}(\Phi_s)$,
- \mathcal{M} contains the duals of the matroids in each of the classes $\mathcal{M}(\Psi_1), \ldots, \mathcal{M}(\Psi_t)$, and
- if M is a simple vertically k-connected member of \mathcal{M} with at least l elements, then either M is a member of at least one of the classes $\mathcal{M}(\Phi_1), \ldots, \mathcal{M}(\Phi_s)$, or M^* is a member of at least one of the classes $\mathcal{M}(\Psi_1), \ldots, \mathcal{M}(\Psi_t)$.
Minors and Weak Conforming

- A *template minor* of a template Φ is a template Φ' obtained from Φ by repeatedly performing one of several operations.

- Every matroid in $M(\Phi')$ is a minor of a matroid in $M(\Phi)$.

- If Φ' is a template minor of Φ, then every matroid conforming to Φ' weakly conforms to Φ.

- We write $\Phi' \preceq \Phi$ if every matroid weakly conforming to Φ' also weakly conforms to Φ.

- The relation \preceq is a preorder on the set of frame templates.
A template minor of a template Φ is a template Φ' obtained from Φ by repeatedly performing one of several operations. Every matroid in $M(\Phi')$ is a minor of a matroid in $M(\Phi)$. If Φ' is a template minor of Φ, then every matroid conforming to Φ' weakly conforms to Φ. We write $\Phi' \preceq \Phi$ if every matroid weakly conforming to Φ' also weakly conforms to Φ. The relation \preceq is a preorder on the set of frame templates.
Minors and Weak Conforming

- A template minor of a template Φ is a template Φ' obtained from Φ by repeatedly performing one of several operations.
 - Every matroid in $\mathcal{M}(\Phi')$ is a minor of a matroid in $\mathcal{M}(\Phi)$.
- If Φ' is a template minor of Φ, then every matroid conforming to Φ' weakly conforms to Φ.

We write $\Phi' \preceq \Phi$ if every matroid weakly conforming to Φ' also weakly conforms to Φ.

The relation \preceq is a preorder on the set of frame templates.
Minors and Weak Conforming

- A *template minor* of a template Φ is a template Φ' obtained from Φ by repeatedly performing one of several operations.
 - Every matroid in $\mathcal{M}(\Phi')$ is a minor of a matroid in $\mathcal{M}(\Phi)$.
- If Φ' is a template minor of Φ, then every matroid conforming to Φ' *weakly conforms* to Φ.
- We write $\Phi' \preceq \Phi$ if every matroid weakly conforming to Φ' also weakly conforms to Φ.

The relation \preceq is a preorder on the set of frame templates.
A template minor of a template Φ is a template Φ' obtained from Φ by repeatedly performing one of several operations.

- Every matroid in $\mathcal{M}(\Phi')$ is a minor of a matroid in $\mathcal{M}(\Phi)$.

- If Φ' is a template minor of Φ, then every matroid conforming to Φ' weakly conforms to Φ.

- We write $\Phi' \preceq \Phi$ if every matroid weakly conforming to Φ' also weakly conforms to Φ.

- The relation \preceq is a preorder on the set of frame templates.
Theorem (G. and Van Zwam, 2017)

Let Φ be a binary frame template. Then at least one of the following is true:
Theorem (G. and Van Zwam, 2017)

Let Φ be a binary frame template. Then at least one of the following is true:

(i) Φ is trivial
Let Φ be a binary frame template. Then at least one of the following is true:

(i) Φ is trivial
(ii) $\Phi_X \preceq \Phi$
(iii) $\Phi_C \preceq \Phi$
(iv) $\Phi_{Y_0} \preceq \Phi$
(v) $\Phi_{Y_1} \preceq \Phi$
(vi) $\Phi_{CX} \preceq \Phi$

There exist $k, l \in \mathbb{Z}^+$ such that no simple, vertically k-connected matroid with at least l elements either conforms or coconforms to Φ.
Theorem (G. and Van Zwam, 2017)

Let Φ be a binary frame template. Then at least one of the following is true:

(i) Φ is trivial
(ii) $\Phi_X \preceq \Phi$
(iii) $\Phi_C \preceq \Phi$
(iv) $\Phi_{Y_0} \preceq \Phi$
(v) $\Phi_{Y_1} \preceq \Phi$
(vi) $\Phi_{CX} \preceq \Phi$
(vii) There exist $k, l \in \mathbb{Z}_+$ such that no simple, vertically k-connected matroid with at least l elements either conforms or coconforms to Φ.
To use templates to study a minor-closed class \mathcal{M}:

1. Find a matroid \mathcal{N} not in \mathcal{M}.
2. Find all templates such that \mathcal{N} is not a minor of any matroid conforming to that template.
3. If all matroids conforming to these templates are in \mathcal{M}, then the analysis is complete.
4. Otherwise, repeat Step (1).
Using Templates

To use templates to study a minor-closed class \mathcal{M}:

1. Find a matroid N not in \mathcal{M}.
To use templates to study a minor-closed class \mathcal{M}:

1. Find a matroid N not in \mathcal{M}.
2. Find all templates such that N is not a minor of any matroid conforming to that template.
To use templates to study a minor-closed class \mathcal{M}:

1. Find a matroid N not in \mathcal{M}.
2. Find all templates such that N is not a minor of any matroid conforming to that template.
3. If all matroids conforming to these templates are in \mathcal{M}, then the analysis is complete.
Using Templates

To use templates to study a minor-closed class \mathcal{M}:

1. Find a matroid N not in \mathcal{M}.
2. Find all templates such that N is not a minor of any matroid conforming to that template.
3. If all matroids conforming to these templates are in \mathcal{M}, then the analysis is complete.
4. Otherwise, repeat Step (1).
1-Flowing Matroids

The 1-flowing property is a generalization of the max-flow min-cut property of graphs.
1-Flowing Matroids

The 1-flowing property is a generalization of the max-flow min-cut property of graphs.

▶ So graphic matroids are 1-flowing.
The 1-flowing property is a generalization of the max-flow min-cut property of graphs.

So graphic matroids are 1-flowing.

Seymour (1981) showed:

> Cographic matroids are 1-flowing.
> The class of 1-flowing matroids is minor-closed.
> All 1-flowing matroids are binary.
> $AG(3, 2)$ is not 1-flowing.

Conjecture (Seymour’s 1-flowing Conjecture, 1981)

The set of excluded minors for the class of 1-flowing matroids consists of $U_{2,4}$, $AG(3, 2)$, T_{11}, and T^*_11.
1-Flowing Matroids

The 1-flowing property is a generalization of the max-flow min-cut property of graphs.

- So graphic matroids are 1-flowing.

Seymour (1981) showed:

- Cographic matroids are 1-flowing.

Conjecture (Seymour's 1-flowing Conjecture, 1981)

The set of excluded minors for the class of 1-flowing matroids consists of \(U_{2,4} \), \(\text{AG}(3,2) \), \(T_{11} \), and \(T^*_{11} \).
1-Flowing Matroids

The 1-flowing property is a generalization of the max-flow min-cut property of graphs.

So graphic matroids are 1-flowing.

Seymour (1981) showed:

- Cographic matroids are 1-flowing.
- The class of 1-flowing matroids is minor-closed.
The 1-flowing property is a generalization of the max-flow min-cut property of graphs.

- So graphic matroids are 1-flowing.

Seymour (1981) showed:

- Cographic matroids are 1-flowing.
- The class of 1-flowing matroids is minor-closed.
- All 1-flowing matroids are binary.
The 1-flowing property is a generalization of the max-flow min-cut property of graphs.

- So graphic matroids are 1-flowing.

Seymour (1981) showed:

- Cographic matroids are 1-flowing.
- The class of 1-flowing matroids is minor-closed.
- All 1-flowing matroids are binary.
- $AG(3, 2)$ is not 1-flowing.
The 1-flowing property is a generalization of the max-flow min-cut property of graphs.

- So graphic matroids are 1-flowing.

Seymour (1981) showed:

- Cographic matroids are 1-flowing.
- The class of 1-flowing matroids is minor-closed.
- All 1-flowing matroids are binary.
- $AG(3, 2)$ is not 1-flowing.

Conjecture (Seymour’s 1-flowing Conjecture, 1981)

The set of excluded minors for the class of 1-flowing matroids consists of $U_{2,4}$, $AG(3, 2)$, T_{11}, and T_{11}^.***
It can be shown that to each of Φ_{Y_0}, Φ_{Y_1}, Φ_C, Φ_X, and Φ_{CX} conforms a matroid with an $AG(3, 2)$-minor.
It can be shown that to each of Φ_{Y_0}, Φ_{Y_1}, Φ_C, Φ_X, and Φ_{CX} conforms a matroid with an $AG(3,2)$-minor. Thus, we have the following:

Theorem (G. and Van Zwam, 2017)

There exist $k, l \in \mathbb{Z}_+^+$ such that every simple, vertically k-connected, 1-flowing matroid with at least l elements is either graphic or cographic.
All Minors Are Not Created Equal

If we consider highly connected matroids of sufficient size in a minor-closed class, we often can reduce the number of excluded minors.

Example: A 3-connected graph with at least 11 edges is planar if and only if it contains no K_3, K_3-minor.

$\text{EX}(M_1, M_2, \ldots)$: the class of binary matroids with no minor in the set $\{M_1, M_2, \ldots\}$.
If we consider *highly connected* matroids of *sufficient size* in a minor-closed class, we often can reduce the number of excluded minors.
If we consider highly connected matroids of sufficient size in a minor-closed class, we often can reduce the number of excluded minors.

Example: A 3-connected graph with at least 11 edges is planar if and only if it contains no $K_{3,3}$-minor.
If we consider *highly connected* matroids of *sufficient size* in a minor-closed class, we often can reduce the number of excluded minors.

Example: A 3-connected graph with at least 11 edges is planar if and only if it contains no $K_{3,3}$-minor.

$\mathcal{E}(M_1, M_2, \ldots)$: the class of binary matroids with no minor in the set $\{M_1, M_2, \ldots\}$.
Theorem (G. and Van Zwam, submitted)
There exist $k, l \in \mathbb{Z}^+$ such that a vertically k-connected matroid with at least l elements is in $\text{EX}(\text{PG}(3,2) \setminus \mathcal{L}, \mathcal{M}^\ast(\mathcal{K}_6), \mathcal{L}^{11})$ if and only if it is an even-cycle matroid.

Theorem (G. and Van Zwam, submitted)
There exist $k, l \in \mathbb{Z}^+$ such that a vertically k-connected matroid with at least l elements is in $\text{EX}(\text{PG}(3,2) \setminus \mathcal{L}, \mathcal{M}^\ast(\mathcal{K}_6))$ if and only if it has an even-cycle representation with a blocking pair.

Theorem (G. and Van Zwam, submitted)
There exist $k, l \in \mathbb{Z}^+$ such that a cyclically k-connected matroid with at least l elements is in $\text{EX}((\mathcal{M}(\mathcal{K}_6)), \mathcal{H}^\ast_{12})$ if and only if it is an even-cut matroid.
Theorem (G. and Van Zwam, submitted)

There exist $k, l \in \mathbb{Z}_+$ such that a vertically k-connected matroid with at least l elements is in $\mathcal{E}(PG(3, 2) \setminus e, M^*(K_6), L_{11})$ if and only if it is an even-cycle matroid.
Theorem (G. and Van Zwam, submitted)

There exist $k, l \in \mathbb{Z}_+$ such that a vertically k-connected matroid with at least l elements is in $EX(PG(3, 2) \setminus e, M^*(K_6), L_{11})$ if and only if it is an even-cycle matroid.

Theorem (G. and Van Zwam, submitted)

There exist $k, l \in \mathbb{Z}_+$ such that a vertically k-connected matroid with at least l elements is in $EX(PG(3, 2) \setminus L, M^*(K_6))$ if and only if it has an even-cycle representation with a blocking pair.
Theorem (G. and Van Zwam, submitted)

There exist $k, l \in \mathbb{Z}_+$ such that a vertically k-connected matroid with at least l elements is in $EX(PG(3, 2) \setminus e, M^*(K_6), L_{11})$ if and only if it is an even-cycle matroid.

Theorem (G. and Van Zwam, submitted)

There exist $k, l \in \mathbb{Z}_+$ such that a vertically k-connected matroid with at least l elements is in $EX(PG(3, 2) \setminus L, M^*(K_6))$ if and only if it has an even-cycle representation with a blocking pair.

Theorem (G. and Van Zwam, submitted)

There exist $k, l \in \mathbb{Z}_+$ such that a cyclically k-connected matroid with at least l elements is in $EX(M(K_6), H_{12}^*)$ if and only if it is an even-cut matroid.
Thank you!