On Spanning Trees with few Branch Vertices

Warren Shull
Emory University
Joint work with Ron Gould

May 21, 2017

Spanning trees

Spanning trees

- Leaf of a tree: degree 1

Spanning trees

- Leaf of a tree: degree 1
- Branch vertex of a tree: degree ≥ 3

Spanning trees

- Leaf of a tree: degree 1
- Branch vertex of a tree: degree ≥ 3
- Hamiltonian paths are a special kind of spanning tree

Spanning trees

- Leaf of a tree: degree 1
- Branch vertex of a tree: degree ≥ 3
- Hamiltonian paths are a special kind of spanning tree
- Max degree 2 (except K_{2} and K_{1})

Spanning trees

- Leaf of a tree: degree 1
- Branch vertex of a tree: degree ≥ 3
- Hamiltonian paths are a special kind of spanning tree
- Max degree 2 (except K_{2} and K_{1})
- 2 leaves (except K_{1})

Spanning trees

- Leaf of a tree: degree 1
- Branch vertex of a tree: degree ≥ 3
- Hamiltonian paths are a special kind of spanning tree
- Max degree 2 (except K_{2} and K_{1})
- 2 leaves (except K_{1})
- No branch vertices

Spanning trees

- Leaf of a tree: degree 1
- Branch vertex of a tree: degree ≥ 3
- Hamiltonian paths are a special kind of spanning tree
- Max degree 2 (except K_{2} and K_{1})
- 2 leaves (except K_{1})
- No branch vertices
- Some spanning trees are "close" to being a Hamiltonian path, in a few different ways:

Spanning trees

- Leaf of a tree: degree 1
- Branch vertex of a tree: degree ≥ 3
- Hamiltonian paths are a special kind of spanning tree
- Max degree 2 (except K_{2} and K_{1})
- 2 leaves (except K_{1})
- No branch vertices
- Some spanning trees are "close" to being a Hamiltonian path, in a few different ways:
- Low maximum degree

Spanning trees

- Leaf of a tree: degree 1
- Branch vertex of a tree: degree ≥ 3
- Hamiltonian paths are a special kind of spanning tree
- Max degree 2 (except K_{2} and K_{1})
- 2 leaves (except K_{1})
- No branch vertices
- Some spanning trees are "close" to being a Hamiltonian path, in a few different ways:
- Low maximum degree
- Few leaves

Spanning trees

- Leaf of a tree: degree 1
- Branch vertex of a tree: degree ≥ 3
- Hamiltonian paths are a special kind of spanning tree
- Max degree 2 (except K_{2} and K_{1})
- 2 leaves (except K_{1})
- No branch vertices
- Some spanning trees are "close" to being a Hamiltonian path, in a few different ways:
- Low maximum degree
- Few leaves
- Few branch vertices

Spanning trees

- Leaf of a tree: degree 1
- Branch vertex of a tree: degree ≥ 3
- Hamiltonian paths are a special kind of spanning tree
- Max degree 2 (except K_{2} and K_{1})
- 2 leaves (except K_{1})
- No branch vertices
- Some spanning trees are "close" to being a Hamiltonian path, in a few different ways:
- Low maximum degree
- Few leaves
- Few branch vertices

In the next few slides, spanning trees are more "desirable" the fewer branch vertices they have.

Spanning trees

- Leaf of a tree: degree 1
- Branch vertex of a tree: degree ≥ 3
- Hamiltonian paths are a special kind of spanning tree
- Max degree 2 (except K_{2} and K_{1})
- 2 leaves (except K_{1})
- No branch vertices
- Some spanning trees are "close" to being a Hamiltonian path, in a few different ways:
- Low maximum degree
- Few leaves
- Few branch vertices

In the next few slides, spanning trees are more "desirable" the fewer branch vertices they have.

- What conditions might lead to a desirable spanning tree?

One possible condition: independent sets

One possible condition: independent sets

- A desirable spanning tree is reached by adding edges

One possible condition: independent sets

- A desirable spanning tree is reached by adding edges
- A large independent set is reached by removing edges

One possible condition: independent sets

- A desirable spanning tree is reached by adding edges
- A large independent set is reached by removing edges

Given the right parameters, one or the other must exist.

One possible condition: independent sets

- A desirable spanning tree is reached by adding edges
- A large independent set is reached by removing edges

Given the right parameters, one or the other must exist.
But there's more...

One possible condition: independent sets

- A desirable spanning tree is reached by adding edges
- A large independent set is reached by removing edges

Given the right parameters, one or the other must exist.
But there's more...

- Independent sets may have many outgoing edges.

One possible condition: independent sets

- A desirable spanning tree is reached by adding edges
- A large independent set is reached by removing edges

Given the right parameters, one or the other must exist.
But there's more...

- Independent sets may have many outgoing edges.
- Can we choose one that does not?

One possible condition: independent sets

- A desirable spanning tree is reached by adding edges
- A large independent set is reached by removing edges

Given the right parameters, one or the other must exist.
But there's more...

- Independent sets may have many outgoing edges.
- Can we choose one that does not?
- We can if we remove enough edges!

One possible condition: independent sets

- A desirable spanning tree is reached by adding edges
- A large independent set is reached by removing edges

Given the right parameters, one or the other must exist.
But there's more...

- Independent sets may have many outgoing edges.
- Can we choose one that does not?
- We can if we remove enough edges!

Given the right parameters, there is either a desirable spanning tree or a large independent set with few outgoing edges.

One possible condition: independent sets

- A desirable spanning tree is reached by adding edges
- A large independent set is reached by removing edges

Given the right parameters, one or the other must exist.
But there's more...

- Independent sets may have many outgoing edges.
- Can we choose one that does not?
- We can if we remove enough edges!

Given the right parameters, there is either a desirable spanning tree or a large independent set with few outgoing edges.

And of course...it helps if the graph is claw-free.

One possible condition: independent sets

- A desirable spanning tree is reached by adding edges
- A large independent set is reached by removing edges

Given the right parameters, one or the other must exist.
But there's more...

- Independent sets may have many outgoing edges.
- Can we choose one that does not?
- We can if we remove enough edges!

Given the right parameters, there is either a desirable spanning tree or a large independent set with few outgoing edges.

And of course...it helps if the graph is claw-free.
What are the best possible parameters?

Theorem (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.

Theorem (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices,

Theorem (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices, or an independent set of $2 k+3$ vertices.

Theorem (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices, or an independent set of $2 k+3$ vertices.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Theorem (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices, or an independent set of $2 k+3$ vertices.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.

Theorem (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices, or an independent set of $2 k+3$ vertices.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices,

Theorem (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices, or an independent set of $2 k+3$ vertices.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices, or an independent set of $2 k+3$ vertices...

Theorem (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices, or an independent set of $2 k+3$ vertices.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices, or an independent set of $2 k+3$ vertices with at most $|V(G)|-3$ outgoing edges.

Theorem (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices, or an independent set of $2 k+3$ vertices. This is best possible.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices, or an independent set of $2 k+3$ vertices with at most $|V(G)|-3$ outgoing edges. This is best possible.

Connected and claw-free

Connected and claw-free

Connected and claw-free
Any spanning tree must have a branch vertex in this triangle...

Connected and claw-free
Any spanning tree must have a branch vertex in this triangle...

Connected and claw-free
Any spanning tree must have a branch vertex in this triangle...
...and each of these others...

Connected and claw-free
Any spanning tree must have a branch vertex in this triangle... ...and each of these others...
...for a minimum of $k+1$ branch vertices.

$$
k+1
$$

$$
\begin{aligned}
|V(G)| & =m(k+3)+2 k=m k+3 m+2 k \\
|X| & =k+3+k=2 k+3 \\
\sum_{x \in X} \operatorname{deg}(x) & \geq(k+3)(m-1)
\end{aligned}
$$

$$
k+1
$$

$$
\begin{aligned}
|V(G)| & =m(k+3)+2 k=m k+3 m+2 k \\
|X| & =k+3+k=2 k+3 \\
\sum_{x \in X} \operatorname{deg}(x) & \geq(k+3)(m-1)
\end{aligned}
$$

$$
k+1
$$

$$
\begin{aligned}
|V(G)| & =m(k+3)+2 k=m k+3 m+2 k \\
|X| & =k+3+k=2 k+3 \\
\sum_{x \in X} \operatorname{deg}(x) & \geq(k+3)(m-1)+3 k
\end{aligned}
$$

$$
-k+1
$$

$$
\begin{aligned}
|V(G)| & =m(k+3)+2 k=m k+3 m+2 k \\
|X| & =k+3+k=2 k+3 \\
\sum_{x \in X} \operatorname{deg}(x) & \geq(k+3)(m-1)+3 k \\
& =m k-k+3 m-3+3 k
\end{aligned}
$$

$$
-k+1
$$

$$
\begin{aligned}
|V(G)| & =m(k+3)+2 k=m k+3 m+2 k \\
|X| & =k+3+k=2 k+3 \\
\sum_{x \in X} \operatorname{deg}(x) & \geq(k+3)(m-1)+3 k \\
& =m k-k+3 m-3+3 k \\
& =m k+3 m+2 k-3
\end{aligned}
$$

$$
-k+1
$$

$$
\begin{aligned}
|V(G)| & =m(k+3)+2 k=m k+3 m+2 k \\
|X| & =k+3+k=2 k+3 \\
\sum_{x \in X} \operatorname{deg}(x) & \geq(k+3)(m-1)+3 k \\
& =m k-k+3 m-3+3 k \\
& =m k+3 m+2 k-3=|V(G)|-3
\end{aligned}
$$

Theorem (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices, or an independent set of $2 k+3$ vertices. This is best possible.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices, or an independent set of $2 k+3$ vertices with at most $|V(G)|-3$ outgoing edges. This is best possible.

Theorem (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices, or an independent set of $2 k+3$ vertices. This is best possible.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices, or an independent set of $2 k+3$ vertices with at most $|V(G)|-3$ outgoing edges. This is best possible.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most $k+2$ leaves, or an independent set of $k+3$ vertices whose degrees add up to at most $|V(G)|-k-3$.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices, or an independent set of $2 k+3$ vertices with at most $|V(G)|-3$ outgoing edges. This is best possible.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most $k+2$ leaves, or an independent set of $k+3$ vertices whose degrees add up to at most $|V(G)|-k-3$.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices, or an independent set of $2 k+3$ vertices with at most $|V(G)|-3$ outgoing edges. This is best possible.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most $k+2$ leaves, or an independent set of $k+3$ vertices whose degrees add up to at most $|V(G)|-k-3$.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices, or an independent set of $2 k+3$ vertices with at most $|V(G)|-3$ outgoing edges. This is best possible.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most $k+2$ leaves, or an independent set of $k+3$ vertices whose degrees add up to at most $|V(G)|-k-3$.

Corollary

Let G be a connected claw-free graph. Then G contains either a spanning tree with at most 2 leaves, or an independent set of 3 vertices with at most $|V(G)|-3$ outgoing edges.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices, or an independent set of $2 k+3$ vertices with at most $|V(G)|-3$ outgoing edges. This is best possible.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most $k+2$ leaves, or an independent set of $k+3$ vertices whose degrees add up to at most $|V(G)|-k-3$.

Corollary

Let G be a connected claw-free graph. Then G contains either a spanning tree with at most 2 leaves (0 branch vertices), or an independent set of 3 vertices with at most $|V(G)|-3$ outgoing edges.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices, or an independent set of $2 k+3$ vertices with at most $|V(G)|-3$ outgoing edges. This is best possible.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most $k+2$ leaves, or an independent set of $k+3$ vertices whose degrees add up to at most $|V(G)|-k-3$.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices, or an independent set of $2 k+3$ vertices with at most $|V(G)|-3$ outgoing edges. This is best possible.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most $k+2$ leaves, or an independent set of $k+3$ vertices whose degrees add up to at most $|V(G)|-k-3$.

Theorem (Matsuda, Ozeki, Yamashita 2012)

Let G be a connected claw-free graph. Then G contains either a spanning tree with at most 1 branch vertex, or an independent set of 5 vertices with at most $|V(G)|-3$ outgoing edges.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices, or an independent set of $2 k+3$ vertices with at most $|V(G)|-3$ outgoing edges. This is best possible.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most $k+2$ leaves, or an independent set of $k+3$ vertices whose degrees add up to at most $|V(G)|-k-3$.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most k branch vertices, or an independent set of $2 k+3$ vertices with at most $|V(G)|-3$ outgoing edges. This is best possible.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most $k+2$ leaves, or an independent set of $k+3$ vertices whose degrees add up to at most $|V(G)|-k-3$.

Theorem (Gould, S. 2017)

Let G be a connected claw-free graph. Then G contains either a spanning tree with at most 2 branch vertices, or an independent set of 7 vertices with at most $|V(G)|-3$ outgoing edges.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most $k+2$ leaves, or an independent set of $k+3$ vertices whose degrees add up to at most $|V(G)|-k-3$.

Theorem (Gould, S. 2017)

Let G be a connected claw-free graph. Then G contains either a spanning tree with at most 2 branch vertices, or an independent set of 7 vertices with at most $|V(G)|-3$ outgoing edges.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most $k+2$ leaves, or an independent set of $k+3$ vertices whose degrees add up to at most $|V(G)|-k-3$.

Theorem (Gould, S. 2017)

Let G be a connected claw-free graph. Then G contains either a spanning tree with at most 2 branch vertices, or an independent set of 7 vertices with at most $|V(G)|-3$ outgoing edges.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most $k+2$ leaves, or an independent set of $k+3$ vertices whose degrees add up to at most $|V(G)|-k-3$.

Theorem (Gould, S. 2017)

Let G be a connected claw-free graph. Then G contains either a spanning tree with at most 2 branch vertices, or an independent set of 7 vertices with at most $|V(G)|-3$ outgoing edges.

Proof:

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most $k+2$ leaves, or an independent set of $k+3$ vertices whose degrees add up to at most $|V(G)|-k-3$.

Theorem (Gould, S. 2017)

Let G be a connected claw-free graph. Then G contains either a spanning tree with at most 2 branch vertices, or an independent set of 7 vertices with at most $|V(G)|-3$ outgoing edges.

Proof:

- Let G be a connected claw-free graph.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most $k+2$ leaves, or an independent set of $k+3$ vertices whose degrees add up to at most $|V(G)|-k-3$.

Theorem (Gould, S. 2017)

Let G be a connected claw-free graph. Then G contains either a spanning tree with at most 2 branch vertices, or an independent set of 7 vertices with at most $|V(G)|-3$ outgoing edges.

Proof:

- Let G be a connected claw-free graph.
- By contradiciton, assume G has neither a spanning tree with at most 2 branch vertices, nor an independent set of 7 vertices with at most $|V(G)|-3$ outgoing edges.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph. Then G contains either a spanning tree with at most $k+2$ leaves, or an independent set of $k+3$ vertices whose degrees add up to at most $|V(G)|-k-3$.

Theorem (Gould, S. 2017)

Let G be a connected claw-free graph. Then G contains either a spanning tree with at most 2 branch vertices, or an independent set of 7 vertices with at most $|V(G)|-3$ outgoing edges.

Proof:

- Let G be a connected claw-free graph.
- By contradiciton, assume G has neither a spanning tree with at most 2 branch vertices, nor an independent set of 7 vertices with at most $|V(G)|-3$ outgoing edges.
- By the theorem of Kano et. al. above (with $k=4$), G has a spanning tree with at most 6 leaves.

Among spanning trees with at most 6 leaves, choose a tree T such that:

Among spanning trees with at most 6 leaves, choose a tree T such that: (T1) T has as few branch vertices as possible.

Among spanning trees with at most 6 leaves, choose a tree T such that: (T1) T has as few branch vertices as possible. (T2) T has as few leaves as possible, subject to (T1).

Among spanning trees with at most 6 leaves, choose a tree T such that: (T1) T has as few branch vertices as possible. (T2) T has as few leaves as possible, subject to (T1). (T3) TBA

Among spanning trees with at most 6 leaves, choose a tree T such that:
(T1) T has as few branch vertices as possible.
(T2) T has as few leaves as possible, subject to (T1).
(T3) TBA
(T4) The parts of T in-between branch vertices are as small as possible.

Among spanning trees with at most 6 leaves, choose a tree T such that:
(T1) T has as few branch vertices as possible.
(T2) T has as few leaves as possible, subject to (T1).
(T3) TBA
(T4) The parts of T in-between branch vertices are as small as possible.
How many different structures could T possibly have?

First case: T has only 5 leaves (the fewest possible):

First case: T has only 5 leaves (the fewest possible):

First case: T has only 5 leaves (the fewest possible):

Second and third cases: T has 6 leaves, but only 3 branch vertices.

Second and third cases: T has 6 leaves, but only 3 branch vertices.

Second and third cases: T has 6 leaves, but only 3 branch vertices.

Second and third cases: T has 6 leaves, but only 3 branch vertices.

(T3) If choosing between trees of these two types, we always choose one of the first type.

Fourth and fifth cases: T has 4 branch vertices (and therefore 6 leaves)

Fourth and fifth cases: T has 4 branch vertices (and therefore 6 leaves)

Fourth and fifth cases: T has 4 branch vertices (and therefore 6 leaves)

First case:

First case:

First case:

- Choose independent set X

First case:

- Choose independent set X
- Partition the tree

First case:

- Choose independent set X
- Partition the tree

First case:

First case:

- Consider one part

First case:

- Consider one part

First case:

- Consider one part
- Show certain neighbor sets must be disjoint

First case:

- Consider one part
- Show certain neighbor sets must be disjoint

First case:

- Consider one part
- Show certain neighbor sets must be disjoint

$$
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) \quad j \in\{1,2\}
$$

First case:

- Consider one part
- Show certain neighbor sets must be disjoint

$$
\begin{array}{ll}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right) & i \neq 1
\end{array}
$$

First case:

- Consider one part
- Show certain neighbor sets must be disjoint

$$
\begin{array}{ll}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right) & i \neq 1
\end{array}
$$

First case:

- Consider one part
- Show certain neighbor sets must be disjoint

$$
\begin{array}{ll}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right) & i \neq 1
\end{array}
$$

First case:

- Consider one part
- Show certain neighbor sets must be disjoint

$$
\begin{array}{ll}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right) & i \neq 1
\end{array}
$$

First case:

- Consider one part
- Show certain neighbor sets must be disjoint

$$
\begin{array}{ll}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right) & i \neq 1
\end{array}
$$

First case:

- Consider one part
- Show certain neighbor sets must be disjoint

$$
\begin{array}{ll}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right) & i \neq 1
\end{array}
$$

First case:

- Consider one part
- Show certain neighbor sets must be disjoint

$$
\begin{array}{ll}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right) & i \neq 1
\end{array}
$$

First case:

- Consider one part
- Show certain neighbor sets must be disjoint

$$
\begin{array}{ll}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right) & i \neq 1
\end{array}
$$

First case:

- Consider one part
- Show certain neighbor sets must be disjoint

$$
\begin{array}{ll}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right) & i \neq 1
\end{array}
$$

First case:

- Consider one part
- Show certain neighbor sets must be disjoint

$$
\begin{array}{ll}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right) & i \neq 1
\end{array}
$$

First case:

- Consider one part
- Show certain neighbor sets must be disjoint

$$
\begin{array}{ll}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right) & i \neq 1 \\
\left(N_{G}\left(l_{1}\right) \cap V\left(M_{1}\right)\right)^{-} &
\end{array}
$$

First case:

- Consider one part
- Show certain neighbor sets must be disjoint

$$
\begin{array}{ll}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right) & i \neq 1 \\
\left(N_{G}\left(l_{1}\right) \cap V\left(M_{1}\right)\right)^{-} &
\end{array}
$$

First case:

- Consider one part
- Show certain neighbor sets must be disjoint

$$
\begin{array}{ll}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right) & i \neq 1 \\
\left(N_{G}\left(l_{1}\right) \cap V\left(M_{1}\right)\right)^{-} &
\end{array}
$$

First case:

- Consider one part
- Show certain neighbor sets must be disjoint

$$
\begin{array}{ll}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right) & i \neq 1 \\
\left(N_{G}\left(l_{1}\right) \cap V\left(M_{1}\right)\right)^{-} &
\end{array}
$$

First case:

- Consider one part
- Show certain neighbor sets must be disjoint

$$
\begin{array}{ll}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right) & i \neq 1 \\
\left(N_{G}\left(l_{1}\right) \cap V\left(M_{1}\right)\right)^{-} &
\end{array}
$$

First case:

- Consider one part
- Show certain neighbor sets must be disjoint

$$
\begin{array}{ll}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right) & i \neq 1 \\
\left(N_{G}\left(l_{1}\right) \cap V\left(M_{1}\right)\right)^{-} &
\end{array}
$$

First case:

- Consider one part
- Show certain neighbor sets must be disjoint

$$
\begin{array}{ll}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right) & i \neq 1 \\
\left(N_{G}\left(l_{1}\right) \cap V\left(M_{1}\right)\right)^{-} &
\end{array}
$$

Disjoint sets:

Disjoint sets:

$$
\begin{array}{ll}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right) & i \neq 1 \\
\left(N_{G}\left(l_{1}\right) \cap V\left(M_{1}\right)\right)^{-} &
\end{array}
$$

Disjoint sets:

$$
\begin{array}{ll}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right) & i \neq 1 \\
\left(N_{G}\left(l_{1}\right) \cap V\left(M_{1}\right)\right)^{-} &
\end{array}
$$

$$
\left(X=\left\{I_{1}, I_{2}, I_{3}, I_{4}, I_{5}, b_{1}, b_{2}\right\}\right)
$$

Disjoint sets:

$$
\begin{array}{cl}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{l}\right) \cap V\left(M_{1}\right) & i \neq 1 \\
\left(N_{G}\left(l_{1}\right) \cap V\left(M_{1}\right)\right)^{-} & \\
\sum_{v \in X}\left|N_{G}(v) \cap V\left(M_{1}\right)\right| & \left(X=\left\{l_{1}, l_{2}, l_{3}, l_{4}, l_{5}, b_{1}, b_{2}\right\}\right)
\end{array}
$$

Disjoint sets:

$$
\begin{array}{cl}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right) & i \neq 1 \\
\left(N_{G}\left(l_{1}\right) \cap V\left(M_{1}\right)\right)^{-} & \\
\sum_{v \in X}\left|N_{G}(v) \cap V\left(M_{1}\right)\right| & \left(X=\left\{l_{1}, l_{2}, l_{3}, l_{4}, l_{5}, b_{1}, b_{2}\right\}\right) \\
=\sum_{i=1}^{5}\left|N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right)\right|+\sum_{j=1}^{2}\left|N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right)\right|
\end{array}
$$

Disjoint sets:

$$
\begin{array}{cl}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right) & i \neq 1 \\
\left(N_{G}\left(l_{1}\right) \cap V\left(M_{1}\right)\right)^{-} & \\
\sum_{v \in X}\left|N_{G}(v) \cap V\left(M_{1}\right)\right| & \left(X=\left\{l_{1}, l_{2}, l_{3}, l_{4}, l_{5}, b_{1}, b_{2}\right\}\right) \\
=\sum_{i=1}^{5}\left|N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right)\right|+\sum_{j=1}^{2}\left|N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right)\right| \\
=\left|N_{G}\left(l_{1}\right) \cap V\left(M_{1}\right)\right|+\sum_{i \neq 1}\left|N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right)\right|+\sum_{j=1}^{2}\left|N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right)\right|
\end{array}
$$

Disjoint sets:

$$
\begin{array}{cl}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right) & i \neq 1 \\
\left(N_{G}\left(l_{1}\right) \cap V\left(M_{1}\right)\right)^{-} & \\
\sum_{v \in X}\left|N_{G}(v) \cap V\left(M_{1}\right)\right| & \left(X=\left\{l_{1}, l_{2}, l_{3}, I_{4}, I_{5}, b_{1}, b_{2}\right\}\right) \\
=\sum_{i=1}^{5}\left|N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right)\right|+\sum_{j=1}^{2}\left|N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right)\right| \\
= & \left|N_{G}\left(l_{1}\right) \cap V\left(M_{1}\right)\right|+\sum_{i \neq 1}\left|N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right)\right|+\sum_{j=1}^{2}\left|N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right)\right| \\
= & \left|\left(N_{G}\left(l_{1}\right) \cap V\left(M_{1}\right)\right)^{-}\right|+\sum_{i \neq 1}\left|N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right)\right|+\sum_{j=1}^{2}\left|N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right)\right|
\end{array}
$$

Disjoint sets:

$$
\begin{array}{ll}
& \begin{array}{ll}
N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right) & j \in\{1,2\} \\
N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right) & i \neq 1 \\
\left(N_{G}\left(l_{1}\right) \cap V\left(M_{1}\right)\right)^{-} & \\
& \sum_{v \in X}\left|N_{G}(v) \cap V\left(M_{1}\right)\right| \\
= & \left(X=\left\{l_{1}, l_{2}, l_{3}, I_{4}, I_{5}, b_{1}, b_{2}\right\}\right) \\
\sum_{i=1}^{5}\left|N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right)\right|+\sum_{j=1}^{2}\left|N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right)\right| \\
= & \left|N_{G}\left(l_{1}\right) \cap V\left(M_{1}\right)\right|+\sum_{i \neq 1}\left|N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right)\right|+\sum_{j=1}^{2}\left|N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right)\right| \\
= & \left|\left(N_{G}\left(l_{1}\right) \cap V\left(M_{1}\right)\right)^{-}\right|+\sum_{i \neq 1}\left|N_{G}\left(l_{i}\right) \cap V\left(M_{1}\right)\right|+\sum_{j=1}^{2}\left|N_{G}\left(b_{j}\right) \cap V\left(M_{1}\right)\right| \\
\leq & \left|V\left(M_{1}\right)\right|
\end{array}
\end{array}
$$

$$
\sum_{v \in X}\left|N_{G}(v) \cap V\left(M_{1}\right)\right| \leq\left|V\left(M_{1}\right)\right|
$$

$$
\sum_{v \in X}\left|N_{G}(v) \cap V\left(M_{h}\right)\right| \leq\left|V\left(M_{h}\right)\right| \quad h \neq 3
$$

$$
\sum_{v \in X}\left|N_{G}(v) \cap V\left(M_{h}\right)\right| \leq\left|V\left(M_{h}\right)\right| \quad h \neq 3
$$

$$
\sum_{v \in X}\left|N_{G}(v) \cap V\left(M_{h}\right)\right| \leq\left|V\left(M_{h}\right)\right| \quad h \neq 3
$$

$$
\sum_{v \in X}\left|N_{G}(v) \cap V\left(M_{h}\right)\right| \leq\left|V\left(M_{h}\right)\right| \quad h \neq 3
$$

$$
\begin{aligned}
\sum_{v \in X}\left|N_{G}(v) \cap V\left(M_{h}\right)\right| & \leq\left|V\left(M_{h}\right)\right|
\end{aligned} \quad h \neq 3
$$

$$
\begin{array}{ll}
\sum_{v \in X}\left|N_{G}(v) \cap V\left(M_{h}\right)\right| & \leq\left|V\left(M_{h}\right)\right|
\end{array} h \neq 3
$$

$$
\begin{aligned}
\sum_{v \in X}\left|N_{G}(v) \cap V\left(M_{h}\right)\right| & \leq\left|V\left(M_{h}\right)\right|
\end{aligned} \quad h \neq 3
$$

$$
\begin{aligned}
& \sum_{v \in X}\left|N_{G}(v) \cap V\left(M_{h}\right)\right| \leq\left|V\left(M_{h}\right)\right| \\
& \sum_{v \in X}\left|N_{G}(v) \cap V\left(M_{3}\right)\right| \leq\left|V\left(M_{3}\right) \backslash\left\{z^{-}\right\}\right| \\
& \sum_{v \in X}\left|N_{G}(v) \cap V\left(Q_{j}\right)\right| \leq\left|V\left(Q_{j}\right) \backslash\left\{w_{j}\right\}\right| \quad j \in\{1,2\}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{v \in X}\left|N_{G}(v) \cap V\left(M_{h}\right)\right| \leq\left|V\left(M_{h}\right)\right| \\
& \sum_{v \in X}\left|N_{G}(v) \cap V\left(M_{3}\right)\right| \leq\left|V\left(M_{3}\right) \backslash\left\{z^{-}\right\}\right| \\
& \sum_{v \in X}\left|N_{G}(v) \cap V\left(Q_{j}\right)\right| \leq\left|V\left(Q_{j}\right) \backslash\left\{w_{j}\right\}\right| \quad j \in\{1,2\}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{v \in X}\left|N_{G}(v) \cap V\left(M_{h}\right)\right| \leq\left|V\left(M_{h}\right)\right| \\
& \sum_{v \in X}\left|N_{G}(v) \cap V\left(M_{3}\right)\right| \leq\left|V\left(M_{3}\right) \backslash\left\{z^{-}\right\}\right| \\
& \sum_{v \in X}\left|N_{G}(v) \cap V\left(Q_{j}\right)\right| \leq\left|V\left(Q_{j}\right) \backslash\left\{w_{j}\right\}\right| \quad j \in\{1,2\}
\end{aligned}
$$

$$
\sum_{v \in X}\left|N_{G}(v)\right| \leq|V(G)|-3
$$

Second and third cases: T has 6 leaves, but only 3 branch vertices.

Second and third cases: T has 6 leaves, but only 3 branch vertices.

Fourth and fifth cases: T has 4 branch vertices (and therefore 6 leaves)

Fourth and fifth cases: T has 4 branch vertices (and therefore 6 leaves)

Fourth and fifth cases: T has 4 branch vertices (and therefore 6 leaves)

(T5) P is as short as possible, subject to (T1)-(T4).

Fourth and fifth cases: T has 4 branch vertices (and therefore 6 leaves)

(T5) P is as short as possible, subject to (T1)-(T4).

Fourth and fifth cases: T has 4 branch vertices (and therefore 6 leaves)

(T5) P is as short as possible, subject to (T1)-(T4).

Fourth and fifth cases: T has 4 branch vertices (and therefore 6 leaves)

(T5) P is as short as possible, subject to (T1)-(T4).

FUTURE WORK

FUTURE WORK

- We think we've proven the entire conjecture (currently editing).

FUTURE WORK

- We think we've proven the entire conjecture (currently editing).
- Algorithmically, we suspect we can guarantee either the spanning tree or the low-degree independent set in polynomial time.

FUTURE WORK

- We think we've proven the entire conjecture (currently editing).
- Algorithmically, we suspect we can guarantee either the spanning tree or the low-degree independent set in polynomial time.
- Open question once this is done:

FUTURE WORK

- We think we've proven the entire conjecture (currently editing).
- Algorithmically, we suspect we can guarantee either the spanning tree or the low-degree independent set in polynomial time.
- Open question once this is done: Reduce the degree of this polynomial.

FUTURE WORK

- We think we've proven the entire conjecture (currently editing).
- Algorithmically, we suspect we can guarantee either the spanning tree or the low-degree independent set in polynomial time.
- Open question once this is done: Reduce the degree of this polynomial (will likely be in the teens).

FUTURE WORK

- We think we've proven the entire conjecture (currently editing).
- Algorithmically, we suspect we can guarantee either the spanning tree or the low-degree independent set in polynomial time.
- Open question once this is done: Reduce the degree of this polynomial (will likely be in the teens).
- This algorithm might not find the tree with the fewest branch vertices.

FUTURE WORK

- We think we've proven the entire conjecture (currently editing).
- Algorithmically, we suspect we can guarantee either the spanning tree or the low-degree independent set in polynomial time.
- Open question once this is done: Reduce the degree of this polynomial (will likely be in the teens).
- This algorithm might not find the tree with the fewest branch vertices.
- Can it be done for certain classes of graphs?

FUTURE WORK

- We think we've proven the entire conjecture (currently editing).
- Algorithmically, we suspect we can guarantee either the spanning tree or the low-degree independent set in polynomial time.
- Open question once this is done: Reduce the degree of this polynomial (will likely be in the teens).
- This algorithm might not find the tree with the fewest branch vertices.
- Can it be done for certain classes of graphs? And/or within some margin?

Thank you for your attention!

