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Spanning trees

Leaf of a tree: degree 1

Branch vertex of a tree: degree � 3

Hamiltonian paths are a special kind of spanning tree

Max degree 2 (except K2 and K1)
2 leaves (except K1)
No branch vertices

Some spanning trees are “close” to being a Hamiltonian path, in a
few di↵erent ways:

Low maximum degree
Few leaves
Few branch vertices

Throughout the talk, spanning trees are more “desirable” the fewer branch
vertices they have.

What conditions might lead to a desirable spanning tree?
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One possible condition: independent sets

A desirable spanning tree is reached by adding edges

A large independent set is reached by removing edges

Given the right parameters, one or the other must exist.

But there’s more...

Independent sets may have many outgoing edges.

Can we choose one that does not?
We can if we remove enough edges!

Given the right parameters, there is either a desirable spanning tree or a
large independent set with few outgoing edges.

And of course...it helps if the graph is claw-free.

What are the best possible parameters?
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Theorem (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.

Then G contains either a spanning tree with at most k branch vertices, or
an independent set of 2k + 3 vertices. This is best possible.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k branch vertices, or
an independent set of 2k + 3 vertices with at most |V (G )|� 3 outgoing
edges. This is best possible.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k + 2 leaves, or an
independent set of k + 3 vertices whose degrees add up to at most
|V (G )|� k � 3.

Warren Shull Emory University Joint work with Ron GouldOn Spanning Trees with few Branch Vertices May 21, 2017 26 / 169



Theorem (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k branch vertices,

or

an independent set of 2k + 3 vertices. This is best possible.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k branch vertices, or
an independent set of 2k + 3 vertices with at most |V (G )|� 3 outgoing
edges. This is best possible.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k + 2 leaves, or an
independent set of k + 3 vertices whose degrees add up to at most
|V (G )|� k � 3.

Warren Shull Emory University Joint work with Ron GouldOn Spanning Trees with few Branch Vertices May 21, 2017 27 / 169



Theorem (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k branch vertices, or
an independent set of 2k + 3 vertices.

This is best possible.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k branch vertices, or
an independent set of 2k + 3 vertices with at most |V (G )|� 3 outgoing
edges. This is best possible.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k + 2 leaves, or an
independent set of k + 3 vertices whose degrees add up to at most
|V (G )|� k � 3.

Warren Shull Emory University Joint work with Ron GouldOn Spanning Trees with few Branch Vertices May 21, 2017 28 / 169



Theorem (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k branch vertices, or
an independent set of 2k + 3 vertices.

This is best possible.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k branch vertices, or
an independent set of 2k + 3 vertices with at most |V (G )|� 3 outgoing
edges. This is best possible.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k + 2 leaves, or an
independent set of k + 3 vertices whose degrees add up to at most
|V (G )|� k � 3.

Warren Shull Emory University Joint work with Ron GouldOn Spanning Trees with few Branch Vertices May 21, 2017 29 / 169



Theorem (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k branch vertices, or
an independent set of 2k + 3 vertices.

This is best possible.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.

Then G contains either a spanning tree with at most k branch vertices, or
an independent set of 2k + 3 vertices with at most |V (G )|� 3 outgoing
edges. This is best possible.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k + 2 leaves, or an
independent set of k + 3 vertices whose degrees add up to at most
|V (G )|� k � 3.

Warren Shull Emory University Joint work with Ron GouldOn Spanning Trees with few Branch Vertices May 21, 2017 30 / 169



Theorem (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k branch vertices, or
an independent set of 2k + 3 vertices.

This is best possible.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k branch vertices,

or

an independent set of 2k + 3 vertices with at most |V (G )|� 3 outgoing
edges. This is best possible.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k + 2 leaves, or an
independent set of k + 3 vertices whose degrees add up to at most
|V (G )|� k � 3.

Warren Shull Emory University Joint work with Ron GouldOn Spanning Trees with few Branch Vertices May 21, 2017 31 / 169



Theorem (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k branch vertices, or
an independent set of 2k + 3 vertices.

This is best possible.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k branch vertices, or
an independent set of 2k + 3 vertices...

with at most |V (G )|� 3 outgoing
edges. This is best possible.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k + 2 leaves, or an
independent set of k + 3 vertices whose degrees add up to at most
|V (G )|� k � 3.

Warren Shull Emory University Joint work with Ron GouldOn Spanning Trees with few Branch Vertices May 21, 2017 32 / 169



Theorem (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k branch vertices, or
an independent set of 2k + 3 vertices.

This is best possible.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k branch vertices, or
an independent set of 2k + 3 vertices with at most |V (G )|� 3 outgoing
edges.

This is best possible.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k + 2 leaves, or an
independent set of k + 3 vertices whose degrees add up to at most
|V (G )|� k � 3.

Warren Shull Emory University Joint work with Ron GouldOn Spanning Trees with few Branch Vertices May 21, 2017 33 / 169



Theorem (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k branch vertices, or
an independent set of 2k + 3 vertices. This is best possible.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k branch vertices, or
an independent set of 2k + 3 vertices with at most |V (G )|� 3 outgoing
edges. This is best possible.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k + 2 leaves, or an
independent set of k + 3 vertices whose degrees add up to at most
|V (G )|� k � 3.

Warren Shull Emory University Joint work with Ron GouldOn Spanning Trees with few Branch Vertices May 21, 2017 34 / 169



K

m

K

m

K

m

K

m

K

m

K

m

K

m

k + 1

Connected and claw-free

Any spanning tree must have a branch vertex in this triangle...

...and each of these others...

...for a minimum of k + 1 branch vertices.
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|V (G )| = m(k + 3) + 2k = mk + 3m + 2k

independent set|X |  k + 3 + k = 2k + 3
X

x2X
deg(x) � (k + 3)(m � 1) + 3k

= mk � k + 3m � 3 + 3k

= mk + 3m + 2k � 3 = |V (G )|� 3
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Theorem (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k branch vertices, or
an independent set of 2k + 3 vertices. This is best possible.

Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k branch vertices, or
an independent set of 2k + 3 vertices with at most |V (G )|� 3 outgoing
edges. This is best possible.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k + 2 leaves, or an
independent set of k + 3 vertices whose degrees add up to at most
|V (G )|� k � 3.
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Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k branch vertices, or
an independent set of 2k + 3 vertices with at most |V (G )|� 3 outgoing
edges. This is best possible.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k + 2 leaves, or an
independent set of k + 3 vertices whose degrees add up to at most
|V (G )|� k � 3.

Corollary

Let G be a connected claw-free graph. Then G contains either a spanning
tree with at most 2 leaves, or an independent set of 3 vertices with at
most |V (G )|� 3 outgoing edges.
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Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k branch vertices, or
an independent set of 2k + 3 vertices with at most |V (G )|� 3 outgoing
edges. This is best possible.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k + 2 leaves, or an
independent set of k + 3 vertices whose degrees add up to at most
|V (G )|� k � 3.

Corollary

Let G be a connected claw-free graph. Then G contains either a spanning
tree with at most 2 leaves (0 branch vertices), or an independent set of 3
vertices with at most |V (G )|� 3 outgoing edges.
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Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k branch vertices, or
an independent set of 2k + 3 vertices with at most |V (G )|� 3 outgoing
edges. This is best possible.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k + 2 leaves, or an
independent set of k + 3 vertices whose degrees add up to at most
|V (G )|� k � 3.

Theorem (Matsuda, Ozeki, Yamashita 2012)

Let G be a connected claw-free graph. Then G contains either a spanning
tree with at most 1 branch vertex, or an independent set of 3 vertices with
at most |V (G )|� 3 outgoing edges.
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Conjecture (Matsuda, Ozeki, Yamashita 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k branch vertices, or
an independent set of 2k + 3 vertices with at most |V (G )|� 3 outgoing
edges. This is best possible.

Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k + 2 leaves, or an
independent set of k + 3 vertices whose degrees add up to at most
|V (G )|� k � 3.

Theorem (Matsuda, Ozeki, Yamashita 2012)

Let G be a connected claw-free graph. Then G contains either a spanning
tree with at most 1 branch vertex, or an independent set of 5 vertices with
at most |V (G )|� 3 outgoing edges.
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Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k + 2 leaves, or an
independent set of k + 3 vertices whose degrees add up to at most
|V (G )|� k � 3.

Theorem (Gould, S. 2017)

Let G be a connected claw-free graph. Then G contains either a spanning
tree with at most 2 branch vertices, or an independent set of 7 vertices
with at most |V (G )|� 3 outgoing edges.
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Theorem (Kano, et. al. 2012)

Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k + 2 leaves, or an
independent set of k + 3 vertices whose degrees add up to at most
|V (G )|� k � 3.

Theorem (Gould, S. 2017)

Let G be a connected claw-free graph. Then G contains either a spanning
tree with at most 2 branch vertices, or an independent set of 7 vertices
with at most |V (G )|� 3 outgoing edges.

Proof:

Let G be a connected claw-free graph.
By contradiciton, assume G has neither a spanning tree with at most
2 branch vertices, nor an independent set of 7 vertices with at most
|V (G )|� 3 outgoing edges.
By the theorem of Kano et. al. above (with k = 4), G has a spanning
tree with at most 6 leaves.
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Let k be a non-negative integer and let G be a connected claw-free graph.
Then G contains either a spanning tree with at most k + 2 leaves, or an
independent set of k + 3 vertices whose degrees add up to at most
|V (G )|� k � 3.

Theorem (Gould, S. 2017)

Let G be a connected claw-free graph. Then G contains either a spanning
tree with at most 2 branch vertices, or an independent set of 7 vertices
with at most |V (G )|� 3 outgoing edges.

Proof:
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By contradiciton, assume G has neither a spanning tree with at most
2 branch vertices, nor an independent set of 7 vertices with at most
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Among spanning trees with at most 6 leaves, choose a tree T such that:

(T1) T has as few branch vertices as possible.

(T2) T has as few leaves as possible, subject to (T1).

(T3) TBA

(T4) The parts of T in-between branch vertices are as small as possible.

How many di↵erent structures could T possibly have?
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First case: T has only 5 leaves (the fewest possible):

path

path path

path path path

path
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Second and third cases: T has 6 leaves, but only 3 branch vertices.

path

path path path path

path path path

path

path path path path

path path path

(T3) If choosing between trees of these two types, we always choose one of
the first type.
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Fourth and fifth cases: T has 4 branch vertices (and therefore 6 leaves)

path path path path path

path path path path

path path path path

path path

path pathpath
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First case:

Choose independent set X

Partition the tree

(N
G

(l1) \ V (M1))�

N

G

(l
i

) \ V (M1) i 6= 1
N

G

(b
j

) \ V (M1) j 2 [2]
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First case:

Choose independent set X
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First case:

Consider one part

Show certain neighbor sets must be disjoint
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Disjoint sets:

N

G

(b
j

) \ V (M1) j 2 {1, 2}
N

G

(l
i

) \ V (M1) i 6= 1
(N

G

(l1) \ V (M1))�

X

v2X
|N

G

(v) \ V (M1)| (X = {l1, l2, l3, l4, l5, b1, b2})

=
5X

i=1

|N
G

(l
i

) \ V (M1)|+
2X

j=1

|N
G

(b
j

) \ V (M1)|

= |N
G

(l1) \ V (M1)|+
X

i 6=1

|N
G

(l
i

) \ V (M1)|+
2X

j=1

|N
G

(b
j

) \ V (M1)|

=
��(N

G

(l1) \ V (M1))
���+

X

i 6=1

|N
G

(l
i

) \ V (M1)|+
2X

j=1

|N
G

(b
j

) \ V (M1)|

 |V (M1)|
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Second and third cases: T has 6 leaves, but only 3 branch vertices.
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Fourth and fifth cases: T has 4 branch vertices (and therefore 6 leaves)

(T5) P is as short as possible.
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FUTURE WORK

We think we’ve proven the entire conjecture (currently editing).

Algorithmically, we suspect we can guarantee either the spanning tree
or the low-degree independent set in polynomial time.

Open question once this is done: Reduce the degree of this
polynomial.

This algorithm might not find the tree with the fewest branch
vertices.

Can it be done for certain classes of graphs? And/or within a certain
factor?
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Thank you for your attention!
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