GRAPH MINORS: WHEN BEING SHALLOW IS HARD

OBIAIRDSULLIVAN JOINT WORK WITH I. MUZI, M. P. O'BRIEN, AND F. REIDL

29th Cumberland Conference Vanderbilt University May 20, 2017

blair_sullivan@ncsu.edu http://www.csc.ncsu.edu/faculty/bdsullivan

Funded in part by the Gordon & Betty Moore Foundation Data Driven Discovery Initiative & the DARPA GRAPHS program

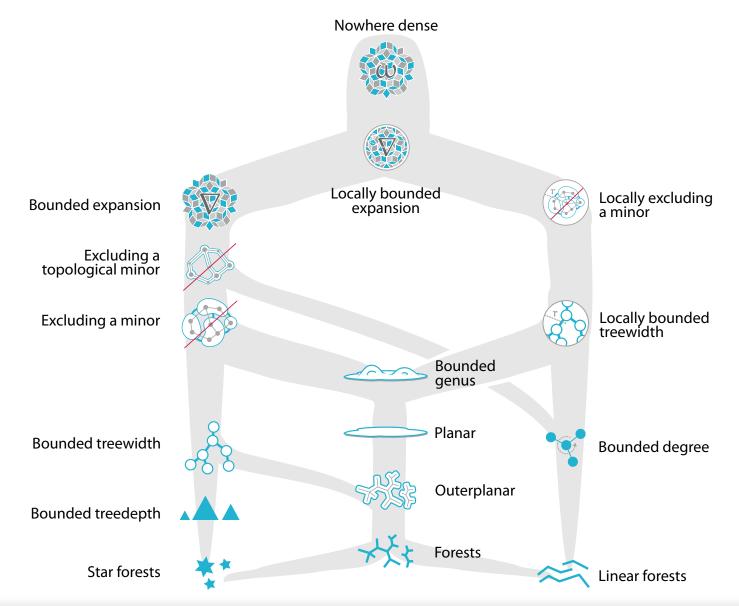
Motivation: Excluded Substructures

- Structural Graph Theory:
 - Forbidden Graph Characterizations
 - Turan-type Problems
 - Erdos-Hajnal Conjecture

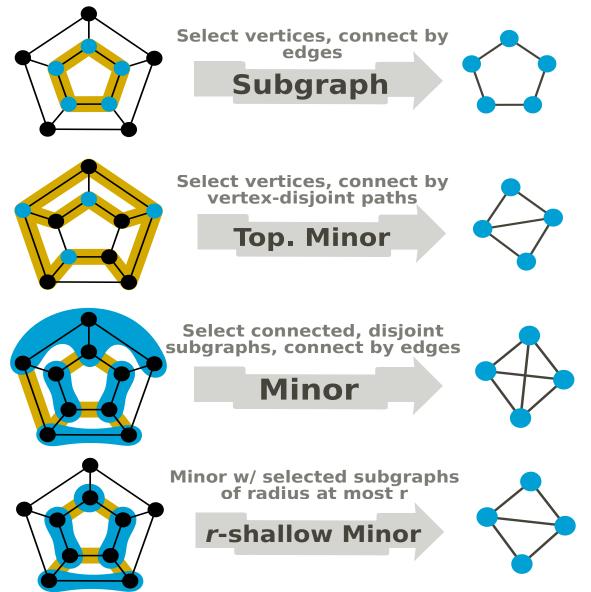
Algorithmic consequences!

- Robertson & Seymour: Graph Minors
 - Parameterized Complexity
 - Bidimensionality
 - Meta-Theorems (FPT algorithms for FO-/MSO-logics)
- Nešetřil & Ossona de Mendez: Sparse Classes
 - Bounded Expansion, Nowhere Dense

Sparse Graphs: Dense Substructures



A few definitions



• Minors: Bodlaender, Wolle, Kloster proved deciding if some minor has degeneracy/density at least *d* is NP-complete. But problem is FPT via R-S minor test).

• Minors: Bodlaender, Wolle, Kloster proved deciding if some minor has degeneracy/density at least *d* is NP-complete. But problem is FPT via R-S minor test).

But what if we need more *localized* structures?

 Minors: Bodlaender, Wolle, Kloster proved deciding if some minor has degeneracy/density at least *d* is NP-complete. But problem is FPT via R-S minor test).

But what if we need more *localized* structures?

Shallow Minors: Dvořák proved deciding if some r-shallow minor has degeneracy/density at least *d* is NP-complete – even in graphs with Δ and *d* equal to 4! Thus, not FPT wrt *d*, but can be done in O^{*}(4^{tw²}).

 Minors: Bodlaender, Wolle, Kloster proved deciding if some minor has degeneracy/density at least *d* is NP-complete. But problem is FPT via R-S minor test).

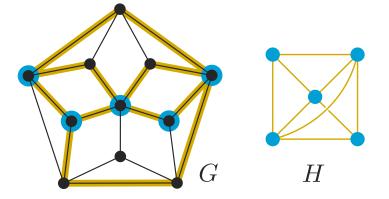
But what if we need more *localized* structures?

- Shallow Minors: Dvořák proved deciding if some r-shallow minor has degeneracy/density at least *d* is NP-complete even in graphs with Δ and *d* equal to 4! Thus, not FPT wrt *d*, but can be done in O^{*}(4^{tw²}).
- **Subgraphs:** Surprise! This is efficiently computable with flow-based methods (Gallo et al, Goldberg).

Shallow Topological Minors & Subdivisions

- r/2-shallow top. minors (STM): paths of length at most r
- *r*-subdivision (SD): paths of length exactly *r*

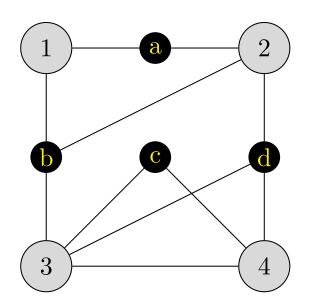
Models consist of *subdivision vertices* & *nails*

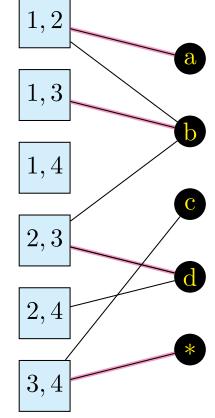


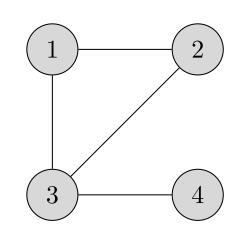
¹/₂-shallow and 1-shallow top. minors are more general than subgraphs, but more local than 1-shallow minors – *can we find dense ones in poly-time*?

If I had a hammer (when you know the nails)

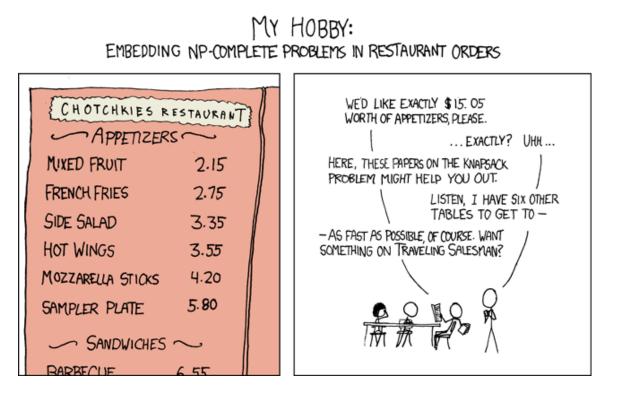
Theorem: There is an $O^*(2^n)$ algorithm for DENSEST- $\frac{1}{2}$ -SHALLOWTOPMINOR (and 1-SD) when the nail set is fixed.





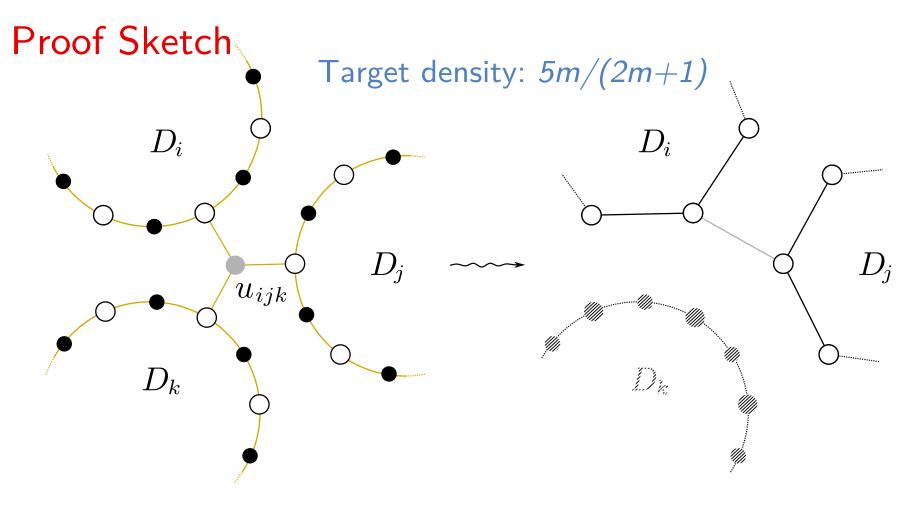


It's never as easy as it seems

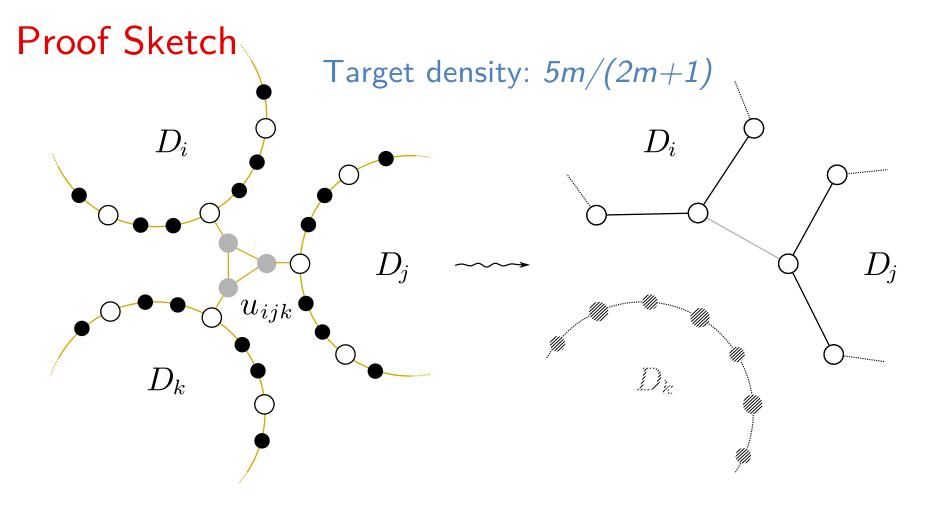


Theorem: DENSE-r/2-SM and DENSE-r-SD are NP-hard for $r \ge 1$, even on subcubic planar graphs plus an apex.

Idea: reduce from POSITIVE 1-IN-3SAT (which has a linear reduction from 3SAT and is NP-hard even on planar formulas). So now we get to gadgeteer!



- Clauses become claws
- Variables become cycles with subdivided edges
- "Apex" attaches to cycle vertices



- Clauses become claws with center vertex replaced by triangle
- Variables become cycles with subdivided edges
- "Apex" attaches to cycle vertices

What if the treewidth is bounded?

Theorem: DENSE-r/2-STM and DENSE-r-SD are FPT parameterized by treewidth.

It's tedious (but not "hard") to describe a $O^*(2^{tw^2})$ algorithm – quadratic dependence is because you have to keep track of which edges you've contracted.

Theorem: DENSE-1-STM has no $2^{o(tw^2)}n^{O(1)}$ algorithm (unless ETH fails).

ETH lower bounds

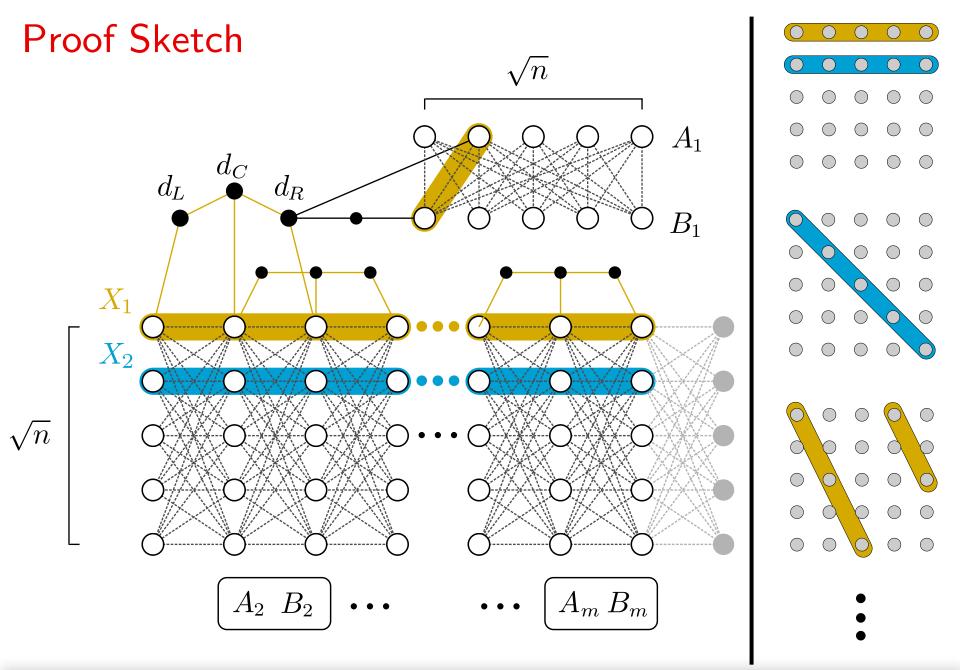
"There are no subexponential algorithms for 3SAT"

Exponential Time Hypothesis [Impagliazzo et al, 1999]

There is a positive real s such that 3SAT with n variables and m clauses cannot be solved in time $2^{sn}(n + m)^{O(1)}$.

This enables lower bounds on the complexity of problems in graphs of bounded treewidth:

- 1) Do a standard NP-hardness reduction from 3SAT
- 2) Show the graph has treewidth $O(\sqrt{n})$
- 3) Now, if you could do DP to solve the problem in $O(2^{tw})$, we could run it on the reduction graph and solve SAT in $O(2^{\sqrt{n}})$, contradicting ETH



Open Questions

- Can you beat our O^{*}(2ⁿ) algorithm for ½-STM (e.g. O^{*}((2-ε)ⁿ)? If not, can you prove a SETH lower bound?
- Is $\frac{1}{2}$ -STM easier than 1-STM in bounded treewidth? Or is there an ETH lower bound on $\frac{1}{2}$ -STM showing O^{*}(2^{tw²}) is best possible?
- Is there a (sensible) structure between ½-STM and subgraphs where we can find the densest occurrence in poly-time?

This work is under review; the preprint is available on the ArXiv: arvix.org/abs/1705.06796, "Being even slightly shallow makes life hard"

Shameless Plug

NC STATE Engineering

PUTTING THEORY INTO PRACTICE

We're Hiring!

Postdoc positions available! 2-4 openings likely in 2017-2020. Know a great undergrad? Encourage them to apply to NC State CSC and list me as faculty they're interested in working with!

The College of Engineering congratulates **Dr. Blair D. Sullivan** on her Moore Investigator Award

@BlairDSullivan

blair_sullivan@ncsu.edu

csc.ncsu.edu/faculty/bdsullivan