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Motivation: Excluded Substructures

• Structural Graph Theory: 
– Forbidden Graph Characterizations
– Turan-type Problems
– Erdos-Hajnal Conjecture

Algorithmic consequences!
• Robertson & Seymour: Graph Minors 
– Parameterized Complexity
– Bidimensionality
– Meta-Theorems (FPT algorithms for FO-/MSO-logics)

• Nešetřil & Ossona de Mendez: Sparse Classes
– Bounded Expansion, Nowhere Dense
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Sparse Graphs: Dense Substructures
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A few definitions
Select vertices, connect by

edges

Select vertices, connect by
vertex-disjoint paths

Select connected, disjoint
subgraphs, connect by edges

Subgraph

Top. Minor

Minor

Minor w/ selected subgraphs 
of radius at most r

r-shallow Minor



5

Prior Work: is densest substructure hard?

• Minors: Bodlaender, Wolle, Kloster proved deciding if some 
minor has degeneracy/density at least d is NP-complete. But 
problem is FPT via R-S minor test).
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But what if we need more localized structures?
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Prior Work: is densest substructure hard?

• Minors: Bodlaender, Wolle, Kloster proved deciding if some 
minor has degeneracy/density at least d is NP-complete. But 
problem is FPT via R-S minor test).

But what if we need more localized structures?

• Shallow Minors: Dvořák proved deciding if some r-shallow 
minor has degeneracy/density at least d is NP-complete – even 
in graphs with 𝛥 and d equal to 4! Thus, not FPT wrt d, but 
can be done in O*(4tw^2).
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Prior Work: is densest substructure hard?

• Minors: Bodlaender, Wolle, Kloster proved deciding if some 
minor has degeneracy/density at least d is NP-complete. But 
problem is FPT via R-S minor test).

But what if we need more localized structures?

• Shallow Minors: Dvořák proved deciding if some r-shallow 
minor has degeneracy/density at least d is NP-complete – even 
in graphs with 𝛥 and d equal to 4! Thus, not FPT wrt d, but 
can be done in O*(4tw^2).

• Subgraphs: Surprise! This is efficiently computable with flow-
based methods (Gallo et al, Goldberg).
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Shallow Topological Minors & Subdivisions

• r/2-shallow top. minors (STM): paths of length at most r 
• r-subdivision (SD): paths of length exactly r

Models consist of 
subdivision vertices & nails

½-shallow and 1-shallow top. minors are more general 
than subgraphs, but more local than 1-shallow minors –
can we find dense ones in poly-time?
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If I had a hammer (when you know the nails)
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Theorem: There is an O*(2n) algorithm for 
DENSEST-½-SHALLOWTOPMINOR (and 1-SD) when 
the nail set is fixed.
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It’s never as easy as it seems

Theorem: DENSE-r/2-SM and DENSE-r-SD are NP-hard 
for r ≥ 1, even on subcubic planar graphs plus an apex.
Idea: reduce from POSITIVE 1-IN-3SAT (which has a linear reduction from 
3SAT and is NP-hard even on planar formulas). So now we get to gadgeteer!
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Proof Sketch 

• Clauses become claws
• Variables become cycles with subdivided edges
• “Apex” attaches to cycle vertices 

Target density: 5m/(2m+1) 
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Proof Sketch 

• Clauses become claws – with center vertex replaced by triangle
• Variables become cycles with subdivided edges
• “Apex” attaches to cycle vertices 

Target density: 5m/(2m+1) 
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What if the treewidth is bounded?

Theorem: DENSE-r/2-STM and DENSE-r-SD 
are FPT parameterized by treewidth.

It’s tedious (but not “hard”) to describe a O*(2tw2) 
algorithm – quadratic dependence is because you 
have to keep track of which edges you’ve 
contracted. 

Theorem: DENSE-1-STM has 
no 2o(tw2)nO(1) algorithm (unless 
ETH fails).
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ETH lower bounds

“There are no subexponential algorithms for 3SAT”

Exponential Time Hypothesis [Impagliazzo et al, 1999]

There is a positive real s such that 3SAT with n variables and m
clauses cannot be solved in time 2sn(n + m)O(1).

This enables lower bounds on the complexity of problems in graphs 
of bounded treewidth: 

1) Do a standard NP-hardness reduction from 3SAT
2) Show the graph has treewidth O(√n)
3) Now, if you could do DP to solve the problem in O(2tw), we 

could run it on the reduction graph and solve SAT in O(2√n), 
contradicting ETH
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Proof Sketch
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Open Questions

• Can you beat our O*(2n) algorithm for ½-STM 
(e.g. O*((2-ε)n)? If not, can you prove a SETH 
lower bound?
• Is ½-STM easier than 1-STM in bounded 
treewidth? Or is there an ETH lower bound on ½-
STM showing O*(2tw2) is best possible?
• Is there a (sensible) structure between ½-STM 
and subgraphs where we can find the densest 
occurrence in poly-time?

This work is under review; the preprint is available on the ArXiv:
arvix.org/abs/1705.06796, “Being even slightly shallow makes life hard”
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Shameless Plug

Postdoc positions available!
2-4 openings likely in 2017-2020.

Know a great undergrad?
Encourage them to apply to NC State 

CSC and list me as faculty they’re 
interested in working with! 

We’re Hiring!

@BlairDSullivan blair_sullivan@ncsu.edu csc.ncsu.edu/faculty/bdsullivan


