Multi-Resource Scheduling of Parallel Jobs

Hongyang Sun

Vanderbilt University

The 13th Scheduling for Large Scale Systems Workshop
June 18-20 2018, Berkeley, CA, USA
Introduction

Single-resource scheduling

- Most traditional scheduling problems target a single type of resource (e.g., CPUs)

- For example: classic NP-complete problem of makespan minimization on identical machines ($P|\|C_{\text{max}}$)
 - List scheduling is $(2 - \frac{1}{P})$-approx. [Graham 1969]
 - Many other heuristics
Introduction

The case for multi-resource scheduling

- HPC systems embrace more heterogeneous components (e.g., CPU, GPU, FPGA, MIC, APU)
- Data-intensive applications drive architectural enhancement to support better data-transfer efficiency (e.g., High-Bandwidth Memory, Partitionable Cache, Burst Buffers)
- Power has become a first-class resource (e.g., due to thermal/cooling/energy constraints)

Optimal system/application performance may be achieved by scheduling two or more types of resources simultaneously
Focus of This Work

Simple algorithms (e.g., list) with **approximation guarantee**:

\[\rho\text{-approx.} \iff M_{\text{alg}} \leq \rho \cdot M_{\text{opt}} \] for all instances

Few **prior works** on multi-resource scheduling:

- **Rigid Job Scheduling** [Garey & Graham 1975]
 - Jobs have fixed resource requirements and execution times
 - \((d + 1)\)-approximation with \(d\) resource types

- **Job/DAG-Shop Scheduling** [Shmoy, Stein & Wein 1994]
 - Jobs have chains/DAGs of heterogeneous tasks
 - Each task requires a specific machine type to process
 - Tasks of each job must be processed **sequentially**
 - Polylog approximation in number of machines and job length
Outline

Introduction

Moldable Job Scheduling

Malleable Job Scheduling

Conclusion
Multi-Resource Scheduling of Moldable Jobs

1Jobs can be executed with different amounts of resources, but resource allocations cannot be changed during runtime.
Model and Objective

Model:

- System with d resource types; i-th type has $P(i)$ identical resources
- Set $\{1, 2, \ldots, n\}$ of independent jobs all released at time 0
- Each job j’s execution time $t_j(\vec{p}_j)$ depends on its resource allocation vector $\vec{p}_j = (p_j^{(1)}, p_j^{(2)}, \ldots, p_j^{(d)})$
- Assumption: non-increasing execution time

$$\vec{p}_j \preceq \vec{q}_j \ (\text{or } p_j^{(i)} \leq q_j^{(i)}, \forall i) \implies t_j(\vec{p}_j) \geq t_j(\vec{q}_j)$$

Objective:

- Find a moldable schedule, i.e., resource allocation vector \vec{p}_j and starting time s_j for each job j
 - minimize makespan: $T = \max_j (s_j + t_j(\vec{p}_j))$
 - subject to resource constraint: $\sum_{j \text{ active at time } t} p_j^{(i)} \leq P(i), \forall i, t$
Preliminaries

Definitions: for a given resource allocation $\mathbf{p} = (\bar{p}_1, \bar{p}_2, \cdots, \bar{p}_n)^T$

- **Total area (normalized):** $A(\mathbf{p}) = \sum_{j=1}^n \sum_{i=1}^d \frac{p_{j}^{(i)}}{p^{(i)}} \cdot t_j(\bar{p}_j)$
- **Maximum execution time:** $t_{\max}(\mathbf{p}) = \max_{j=1 \ldots n} t_j(\bar{p}_j)$
Definitions: for a given resource allocation \(p = (\vec{p}_1, \vec{p}_2, \ldots, \vec{p}_n)^T \)

- Total area (normalized): \(A(p) = \sum_{j=1}^{n} \sum_{i=1}^{d} \frac{p_j^{(i)}}{p^{(i)}} \cdot t_j(\vec{p}_j) \)
- Maximum execution time: \(t_{\max}(p) = \max_{j=1 \ldots n} t_j(\vec{p}_j) \)

Lower bound (on makespan): \(L(p, d) = \max \left(\frac{A(p)}{d}, t_{\max}(p) \right) \)

Proposition

The optimal makespan satisfies

\[
T_{\text{OPT}} \geq L_{\min}(d) = \min_p L(p, d)
\]
Two-Phase Approach [Turek et al. 1992]

- **Phase 1**: Determines a resource allocation for each moldable job

- **Phase 2**: Constructs a rigid schedule based on the fixed resource allocations of all jobs
Phase 1: Resource Allocation

Goal: find allocation p^d_{\min} matching lower bound $L_{\min}(d) = \min_p L(p, d)$

Resource Allocation (RA_d)

- **Step (1).** For each job j:
 - Linearize all $P = \prod_{i=1}^{d}(P^{(i)} + 1)$ allocations
 - Remove ones with both higher execution time and larger area
 - Sort in order of increasing execution time and decreasing area

- **Step (2).** For all n jobs:
 - Traverse the n lists in $\leq nP$ steps by tracing $t_{\max}(p)$ at each step until dominated by $\frac{A(p)}{d}$ (v.s. exhaustive search in P^n time)

Complexity: $O(nP(\log P + \log n + d))$
Phase 1: Resource Allocation

Goal: find allocation p^d_{min} matching lower bound $L_{\text{min}}(d) = \min_p L(p, d)$

Resource Allocation (RA_d)

- **Step (1).** For each job j:
 - Linearize all $P = \prod_{i=1}^{d} (P^{(i)} + 1)$ allocations
 - Remove ones with both higher execution time and larger area
 - Sort in order of increasing execution time and decreasing area

- **Step (2).** For all n jobs:
 - Traverse the n lists in $\leq nP$ steps by tracing $t_{\text{max}}(p)$ at each step until dominated by $\frac{A(p)}{d}$ (v.s. exhaustive search in P^n time)

Complexity: $O(nP(\log P + \log n + d))$

Proposition

If a *rigid scheduling algorithm* R_d that uses p^d_{min} produces a makespan

$$T_{R_d}(p^d_{\text{min}}) \leq c \cdot L_{\text{min}}(d)$$

then the *two-phase algorithm* $\text{RA}_d + R_d$ is c-approximation
Phase 2: Rigid Scheduling

Two scheduling paradigms:

- **List Scheduling** \((\text{LS}_d)\): 2-approx. for \(d = 1\)
 - Greedily schedules jobs in a list with sufficient resources

- **Pack Scheduling** \((\text{PS}_d)\): 3-approx. for \(d = 1\)
 - Partitions jobs in packs to be scheduled one after another
Phase 2: Rigid Scheduling

Two scheduling paradigms:

- **List Scheduling** (LS_d): 2-approx. for $d = 1$
 - Greedily schedules jobs in a list with sufficient resources

- **Pack Scheduling** (PS_d): 3-approx. for $d = 1$
 - Partitions jobs in packs to be scheduled one after another

Proposition

For a set of rigid tasks with any fixed resource allocation p, we have

- **List Scheduling**: $T_{LS_d}(p) \leq 2d \cdot L(p, d)$
- **Pack Scheduling**: $T_{PS_d}(p) \leq (2d + 1) \cdot L(p, d)$
Proposition

The **two-phase algorithms** have the following approximation ratios:

\[
\text{RA}_d + \text{LS}_d \ (\text{List}) : 2d\text{-approx.}
\]
\[
\text{RA}_d + \text{PS}_d \ (\text{Pack}) : (2d + 1)\text{-approx.}
\]

Moreover, the **bounds are tight** for both algorithms.
Proposition

The **two-phase algorithms** have the following approximation ratios:

- \(\text{RA}_d + \text{LS}_d \) *(List)*: 2\(d\)-approx.
- \(\text{RA}_d + \text{PS}_d \) *(Pack)*: (2\(d\) + 1)-approx.

Moreover, the **bounds are tight** for both algorithms.

Tightness instance (for list):

- \(n = 2d \) jobs, and \(P^{(i)} = 2P \) for each resource type \(i \)
- All jobs have the following profiles:
 1. \(t_j(0, \cdot, 0, P, 0, \cdot, 0) = 1 \), where \(P \) appears in position \(\left\lceil \frac{j}{2} \right\rceil \)
 2. \(t_j(P + 1, 0, \cdot, 0) = \frac{P-1}{P+1} \)
- \(\text{RA}_d + \text{LS}_d \) chooses allocation (2), since allocation (1) is dominated in both execution time and area, thus all jobs are executed **sequentially**
- OPT chooses allocation (1), thus is able to run all jobs **in parallel**
- \(\frac{T_{\text{RA}_d+\text{LS}_d}}{T_{\text{OPT}}} = 2d \frac{P-1}{P+1} \rightarrow 2d \text{ as } P \rightarrow \infty \)
Transformation (TF):

- **Step (1).** \(d \)-resource instance \(I \) \(\leadsto \) 1-resource instance \(I' \)
 - \(I' \) has same number \(n \) of jobs and total resource \(Q = \text{lcm}_{i=1}^{d} P^{(i)} \)
 - For any job \(j' \) in \(I' \): execution time \(t_{j'}(q) = t_{j}(\lfloor \frac{q \cdot P^{(i)}}{Q} \rfloor)_{i=1}^{d} \) \(\forall q \)

- **Step (2).** Solve the 1-resource instance \(I' \)

- **Step (3).** 1-resource solution \(S' \) \(\Rightarrow \) \(d \)-resource solution \(S \)
 - For any job \(j \) in \(I \): starting time is same \(s_{j} = s_{j'} \)
 - resource allocation is \(\vec{p}_{j} = (\lfloor \frac{q_{j'} \cdot P^{(i)}}{Q} \rfloor)_{i=1}^{d} \)

Example

Given \(P^{(1)} = 4, P^{(2)} = 8, P^{(3)} = 16 \) \(\Rightarrow \) \(Q = \text{lcm}(4, 8, 16) = 16 \)
Step (1): \(t_{j'}(8) = t_{j}(2, 4, 8) \)
Step (3): \(q_{j'} = 4 \) \(\Rightarrow \) \(\vec{p}_{j} = (1, 2, 4) \)
The transformation process preserves the approximation ratios:

\[\text{TF} + \text{RA}_1 + \text{LS}_1 \ (\text{List}) \ : \ 2d\text{-approx.} \]
\[\text{TF} + \text{RA}_1 + \text{PS}_1 \ (\text{Pack}) \ : \ (2d + 1)\text{-approx.} \]
Transformation

Proposition

The transformation process preserves the approximation ratios:

\[TF + RA_1 + LS_1 \ (\text{List}) \ : \ 2d\text{-approx.} \]
\[TF + RA_1 + PS_1 \ (\text{Pack}) \ : \ (2d + 1)\text{-approx.} \]

Complexity: If \(P(i) = p \ \forall i = 1 \ldots d \)

- Transformation \(\propto Q = \text{lcm}_i P(i) = p \)
- Direct Solution \(\propto P = \prod_i (P(i) + 1) = p^d \)

Significantly faster for large \(d \)
Multi-Resource Scheduling of Malleable Jobs2

2Jobs can be executed with varying amount of resources during runtime
Model and Objective

Model:

- System with d resource types; i-th type has $P^{(i)}$ identical resources
- Set $\{1, 2, \ldots, n\}$ of independent jobs with arbitrary release time
- Each job j is represented as a DAG of heterogeneous tasks, each of unit size
- Tasks can be executed in parallel, but each task can only be executed by a resource of corresponding type

Objective:

- Find a malleable schedule, i.e., resource allocation vector $\vec{p}_j(t) = (p^{(1)}_j(t), p^{(2)}_j(t), \ldots, p^{(d)}_j(t))$ and set of tasks $V_j(t)$ to execute for each job j at any time t
- minimize makespan: $T = \max_j c_j$ (c_j is completion time of j)
- subject to resource and precedence constraints
Preliminaries

Definitions for any job j:

- **Work of resource type i**: $T_{1,j}^{(i)}$
- **Critical-path length**: $T_{\infty,j}$
- **Release time**: r_j

Definitions for job set:

- **Total work of resource type i**: $T_1^{(i)} = \sum_j T_{1,j}^{(i)}$
- **Maximum critical-path length**: $T_{\infty} = \max(r_j + T_{\infty,j})$

Analogous to *total area and maximum execution time* in moldable model
Preliminaries

Definitions for any job \(j \):

- Work of resource type \(i \): \(T_{1,j}^{(i)} \)
- Critical-path length: \(T_{\infty,j} \)
- Release time: \(r_j \)

Definitions for job set:

- Total work of resource type \(i \): \(T_1^{(i)} = \sum_j T_{1,j}^{(i)} \)
- Maximum critical-path length: \(T_{\infty} = \max(r_j + T_{\infty,j}) \)

Analogous to total area and maximum execution time in moldable model

Lower bound (on makespan):

Proposition

The optimal makespan satisfies

\[
T_{OPT} \geq \max \left(T_{\infty}, \max_i \frac{T_1^{(i)}}{P(i)} \right)
\]
Two-Level Approach

At each step t:

- **Phase 1**: Resource Estimator computes for each job j a resource desire vector $\vec{d}_j(t) = (d^{(1)}_j(t), d^{(2)}_j(t), \ldots, d^{(d)}_j(t))$

- **Phase 2**: Job Scheduler based on desires of all jobs and system policy determines for each job j a resource allocation vector $\vec{p}_j(t) = (p^{(1)}_j(t), p^{(2)}_j(t), \ldots, p^{(d)}_j(t))$

- **Phase 3**: Task Scheduler schedules ready tasks of each job using allocated resources

This approach can also be applied to non-clairvoyant, adaptive scheduling
Algorithm

Adaptive Greedy (AG\(d\)): 2-approx. for \(d = 1\)

- **Phase 1:** Resource Estimator
 - Use instantaneous parallelism as resource desire
 - \(d_j^{(i)}(t) = \text{number of ready tasks of type } i \text{ for job } j \text{ at time } t\)

- **Phase 2:** Job Scheduler
 - Use dynamic equi-partitioning [McCann et al. 1993]
 - Satisfy jobs with low desires
 - Equally partition remaining resources on high-desire jobs

- **Phase 3:** Task Scheduler
 - Schedule ready tasks of each type greedily, i.e.
 - if \(p_j^{(i)}(t) = d_j^{(i)}(t)\), schedule all ready tasks
 - if \(p_j^{(i)}(t) < d_j^{(i)}(t)\), schedule any \(p_j^{(i)}(t)\) ready tasks

Desire, allocation and scheduling are handled independently for different resource types
Proposition

The Adaptive Greedy algorithm achieves

\[T_{AG_d} \leq \sum_{i=1}^{d} \frac{T_1^{(i)}}{P(i)} + \left(1 - \frac{1}{P_{\text{max}}} \right) T_{\infty} \]

and is therefore \(d + 1 - \frac{1}{P_{\text{max}}} \)-approximation, where \(P_{\text{max}} = \max_i P(i) \)

Moreover, the bound is tight for the algorithm.
Proposition

The Adaptive Greedy algorithm achieves

\[T_{AG_d} \leq \sum_{i=1}^{d} \frac{T_{1}(i)}{P(i)} + \left(1 - \frac{1}{P_{\text{max}}}\right) T_\infty \]

and is therefore \((d + 1 - \frac{1}{P_{\text{max}}}) \)-approximation, where \(P_{\text{max}} = \max_i P(i) \)

Moreover, the bound is tight for the algorithm

Tightness instance (as \(m \to \infty \)):

- \(AG_d \) chooses “wrong” tasks and uses different resources sequentially
- OPT picks “right” tasks and uses different resources in parallel
- Same bound even applies to randomized algorithms
- Lookahead may help 😊
Outline

Introduction

Moldable Job Scheduling

Malleable Job Scheduling

Conclusion
Conclusion

Now is a good time to revisit multi-resource scheduling problems
Conclusion

Now is a good time to revisit multi-resource scheduling problems

Open Question 1: List/greedy-scheduling for moldable jobs

- Rigid jobs: \((d + 1)\)-approx. [Garey and Graham, 1975]
- Moldable jobs: \(2d\)-approx. [Sun et al. 2018]
- Malleable jobs: \((d + 1 - 1/P_{\text{max}})\)-approx. [He et al. 2007]
 (Represented as DAGs containing unit-size tasks of different types)

- Can we achieve \((d + 1)\)-approx. for moldable jobs (possibly with an alternative resource allocation strategy or a more coupled design/analysis of resource allocation and rigid scheduling), or is it inherently harder?

Open Question 2: Moldable job scheduling under general models

- 2-Pack Sol.: \((1.5 + \epsilon)\)-approx. [Mounié et al. 2004, Jansen 2012]
- Precedence constraints: e.g., \((3 + \sqrt{5})\)-approx. [Lepère et al. 2001]

- Could these single-resource results be extended to multi-resource?