Scheduling Parallel Tasks under Multiple Resources: List vs. Pack

Hongyang Sun (speaker)1 Redouane Elghazi2
Ana Gainaru1 Guillaume Aupy3 Padma Raghavan1

1Vanderbilt University, USA
2École Normale Supérieure de Lyon, France
3Inria, LaBRI, Univ. Bordeaux, CNRS, Bordeaux-INP, France

This research is supported in part by NSF under award CCF 1719674

IPDPS’18@Vancouver, BC, Canada
May 21, 2018
Introduction

Single-resource scheduling

- Most traditional scheduling problems target a single type of resource (e.g., CPUs)

For example: classic NP-complete problem of makespan minimization on identical machines ($P||C_{max}$). List scheduling is $(2 - \frac{1}{P})$-approx. [Graham 1969]
Introduction

The case for multi-resource scheduling

- HPC systems embrace more heterogeneous components (e.g., CPU, GPU, FPGA, MIC, APU)
- Data-intensive applications drive architecture enhancement for better data-transfer efficiency (e.g., High-Bandwidth Memory, Partitionable Cache, Burst Buffers)

To achieve optimal system/application performance, multiple types of resources (e.g., CPU, GPU, memory, cache, I/O) should be scheduled simultaneously
A multi-resource scheduling model:

- System with d resource types; i-th type has $P^{(i)}$ identical resources
- Set $\{1, 2, \cdots, n\}$ of independent, moldable tasks released at time 0
- Each task j's execution time $t_j(\vec{p}_j)$ depends on its resource allocation vector $\vec{p}_j = (p_j^{(1)}, p_j^{(2)}, \cdots, p_j^{(d)})$
- Assumption: non-increasing execution time

$$\vec{p}_j \preceq \vec{q}_j \quad \text{(or } p_j^{(i)} \leq q_j^{(i)}, \forall i) \quad \implies \quad t_j(\vec{p}_j) \geq t_j(\vec{q}_j)$$

Scheduling objective:

- Find a moldable schedule, i.e., resource allocation vector \vec{p}_j and starting time s_j for each task j
 - minimize makespan: $T = \max_j(s_j + t_j(\vec{p}_j))$
 - subject to resource constraint: $\sum_{j \text{ active at time } t} p_j^{(i)} \leq P^{(i)}, \forall i, t$
Focus of This Work

Two scheduling paradigms:

- **List**: greedily schedule tasks in a list on first available resources
- **Pack**: partition tasks in packs to be scheduled one after another

▶ Simple yet efficient schedules favored by practical runtime systems
▶ Easily adopted to online or heterogeneous scheduling environments
Theoretically:

- Approximation ratios that increase linearly with number d of resource types
 - List-scheduling: $2d$-approx.
 - Pack-scheduling: $(2d + 1)$-approx.
- Strategy to transform multi-resource problem to single-resource problem to reduce computational complexity

Empirically:

- Experiments on Intel Xeon Phi Knights Landing (KNL) with 2 resource types (cores + high-bandwidth memory)
- Simulations with up to 4 resource types using synthetic workloads that extend classical speedup profiles
Outline

Introduction

Theoretical Analysis

Experimental Evaluation

Future Work
Definitions: for a given resource allocation \(\mathbf{p} = (\vec{p}_1, \vec{p}_2, \ldots, \vec{p}_n)^T \)

- Total task area (normalized): \(A(\mathbf{p}) = \sum_{j=1}^{n} \sum_{i=1}^{d} \frac{p^{(i)}_j}{P^{(i)}} \cdot t_j(\vec{p}_j) \)
- Maximum task execution time: \(t_{\text{max}}(\mathbf{p}) = \max_j t_j(\vec{p}_j) \)
Definitions: for a given resource allocation $\mathbf{p} = (\vec{p}_1, \vec{p}_2, \ldots, \vec{p}_n)^T$

- Total task area (normalized): $A(\mathbf{p}) = \sum_{j=1}^n \sum_{i=1}^d \frac{p_j^{(i)}}{p^{(i)}} \cdot t_j(\vec{p}_j)$
- Maximum task execution time: $t_{\text{max}}(\mathbf{p}) = \max_j t_j(\vec{p}_j)$

Analogous to *area bound* (T_1/P) and *depth bound* (T_∞) in single-resource scheduling.
Preliminaries

Definitions: for a given resource allocation \(\mathbf{p} = (\bar{p}_1, \bar{p}_2, \cdots, \bar{p}_n)^T \)

- Total task area (normalized): \(A(\mathbf{p}) = \sum_{j=1}^{n} \sum_{i=1}^{d} \frac{p_j^{(i)}}{P^{(i)}} \cdot t_j(\bar{p}_j) \)
- Maximum task execution time: \(t_{\text{max}}(\mathbf{p}) = \max_j t_j(\bar{p}_j) \)

Analogous to *area bound* \((T_1/P) \) and *depth bound* \((T_\infty) \) in single-resource scheduling

Lower bound (on makespan): \(L(\mathbf{p}, d) = \max \left(\frac{A(\mathbf{p})}{d}, t_{\text{max}}(\mathbf{p}) \right) \)

Proposition

The optimal makespan satisfies

\[
T_{\text{OPT}} \geq L_{\text{min}}(d) = \min_{\mathbf{p}} L(\mathbf{p}, d)
\]
Moldable Scheduling

Two-phase approach [Turek et al. 1992]:

▶ *Phase 1*: Determines a resource allocation for each moldable task

▶ *Phase 2*: Constructs a rigid schedule based on the fixed resource allocations of all tasks
Phase 1: Resource Allocation

Goal: find allocation p_{min}^d matching lower bound $L_{min}(d) = \min_p L(p, d)$

Resource Allocation (RA_d)

- **Step (1).** For each task j:
 - Linearize all $P = \prod_{i=1}^{d}(P^{(i)} + 1)$ allocations
 - Remove ones with both higher execution time and larger area
 - Sort in order of increasing execution time and decreasing area

- **Step (2).** For all n tasks:
 - Traverse the n lists in $\leq nP$ steps by tracing $t_{max}(p)$ at each step until dominated by $\frac{A(p)}{d}$ (v.s. exhaustive search in P^n time)

Complexity: $O(nP(\log P + \log n + d))$
Phase 1: Resource Allocation

Goal: find allocation p_{min}^d matching lower bound $L_{\text{min}}(d) = \min_p L(p, d)$

Resource Allocation (RA_d)

- **Step (1).** For each task j:
 - Linearize all $P = \prod_{i=1}^{d} (P^{(i)} + 1)$ allocations
 - Remove ones with both higher execution time and larger area
 - Sort in order of increasing execution time and decreasing area

- **Step (2).** For all n tasks:
 - Traverse the n lists in $\leq nP$ steps by tracing $t_{\text{max}}(p)$ at each step until dominated by $\frac{A(p)}{d}$ (v.s. exhaustive search in P^n time)

Complexity: $O(nP(\log P + \log n + d))$

Proposition

If a rigid scheduling algorithm R_d that uses p_{min}^d produces a makespan $T_{R_d}(p_{\text{min}}^d) \leq c \cdot L_{\text{min}}(d)$ then the two-phase algorithm $RA_d + R_d$ is c-approximation.
Phase 2: Rigid Scheduling

For a fixed resource allocation:

- **List Scheduling** (LS_d): 2-approx. for $d = 1$
 - Arrange all tasks in a list. Whenever an existing task completes, scan the list and schedule first task that fits (i.e., with sufficient resources in all dimensions)

- **Pack Scheduling** (PS_d): 3-approx. for $d = 1$
 - Sort all tasks in decreasing order of exec. time. Assign each task in sequence to last pack if fits (i.e., with sufficient resources in all dimensions). Otherwise, create a new pack.

Proposition

For a set of rigid tasks with fixed resource allocation p, we have

- **List Scheduling** ($T_{LS_d}(p)$) $\leq 2^d \cdot L(p, s)$
- **Pack Scheduling** ($T_{PS_d}(p)$) $\leq (2^d + 1) \cdot L(p, s)$

⇒ $RA_d + LS_d$ is 2d-approx. and $RA_d + PS_d$ is (2d + 1)-approx.

Moreover, the bounds are tight for the two algorithms.
Phase 2: Rigid Scheduling

For a fixed resource allocation:

- **List Scheduling** (LS_d): 2-approx. for $d = 1$
 - Arrange all tasks in a list. Whenever an existing task completes, scan the list and schedule first task that fits (i.e., with sufficient resources in all dimensions)

- **Pack Scheduling** (PS_d): 3-approx. for $d = 1$
 - Sort all tasks in decreasing order of exec. time. Assign each task in sequence to last pack if fits (i.e., with sufficient resources in all dimensions). Otherwise, create a new pack.

Proposition

For a set of rigid tasks with fixed resource allocation p, we have

- **List Scheduling**: $T_{LS_d}(p) \leq 2d \cdot L(p, s)$
- **Pack Scheduling**: $T_{PS_d}(p) \leq (2d + 1) \cdot L(p, s)$

$\Rightarrow RA_d + LS_d$ is $2d$-approx. and $RA_d + PS_d$ is $(2d + 1)$-approx.

Moreover, the bounds are tight for the two algorithms.
Transformation (TF):

- **Step (1).** *d-resource instance* $I \mapsto 1$-*resource instance* I'
 - I' has same number n of tasks and total resource $Q = \text{lcm}_{i=1}^{d} P^{(i)}$.
 - For any task j' in I': execution time $t_{j'}(q) = t_{j}(\lfloor \frac{q \cdot P^{(i)}}{Q} \rfloor)_{i=1 \ldots d}$ for all q.

- **Step (2).** Solve the *1-resource instance* I'

- **Step (3).** *1-resource solution* S' \mapsto *d-resource solution* S
 - For any task j in I: starting time is same $s_{j} = s_{j'}$.
 - Resource allocation is $\bar{p}_{j} = \lfloor \frac{q_{j'} \cdot P^{(i)}}{Q} \rfloor$ for all $i=1 \ldots d$.
Transformation (TF):

- **Step (1).** \(d \)-resource instance \(I \) \(\rightarrow \) 1-resource instance \(I' \)
 - \(I' \) has same number \(n \) of tasks and total resource \(Q = \text{lcm}_{i=1}^{d} P(i) \)
 - For any task \(j' \) in \(I' \): execution time \(t_{j'}(q) = t_j\left(\left\lfloor \frac{q \cdot P(i)}{Q} \right\rfloor_{i=1}^{d} \right) \forall q \)

- **Step (2).** Solve the 1-resource instance \(I' \)

- **Step (3).** 1-resource solution \(S' \) \(\rightarrow \) \(d \)-resource solution \(S \)
 - For any task \(j \) in \(I \): starting time is same \(s_j = s_{j'} \)
 - resource allocation is \(\tilde{p}_j = \left(\left\lfloor \frac{q_{j'} \cdot P(i)}{Q} \right\rfloor_{i=1}^{d} \right) \)

Performance: \(TF + RA_1 + LS_1 \) is \(2d \)-approx.
\(TF + RA_1 + PS_1 \) is \((2d + 1) \)-approx.

Complexity: Transform \(Q = \text{lcm}_i P(i) \) v.s. Direct \(P = \prod_i (P(i) + 1) \)
If \(P(i) = p \ \forall i \) \(\Rightarrow \) \(O(p) \) v.s. \(O(p^d) \)
Outline

Introduction

Theoretical Analysis

Experimental Evaluation

Future Work
Experimental Setup

Platform: Intel Xeon Phi 7230 Knights Landing (KNL)

- 64 cores
- 96GB slow memory (DDR)
- 16GB fast memory (MCDRAM)
 - 4-5x the bandwidth
 - 3 configuration modes

In flat mode, consider fast memory (like cores) as a type of limited resource shared by competing tasks

![Diagram showing memory configurations](image-url)
Experimental Setup

Platform: Intel Xeon Phi 7230 Knights Landing (KNL)

- 64 cores
- 96GB slow memory (DDR)
- 16GB fast memory (MCDRAM)
 - 4-5x the bandwidth
 - 3 configuration modes

In flat mode, consider fast memory (like cores) as a type of limited resource shared by competing tasks

Benchmarks: STREAM (*triad, write, ddot*)

- Create tasks of different sizes by varying array length and thus memory footprint as % of MCDRAM size
Experimental Results

Comparing different algorithms:

- Comparable performance for list- and pack-based solutions
- LPT (list) and FF (pack) perform generally better
- Transform-based solutions perform just as well
Experimental Results

Flat mode vs. cache mode:

- Managing fast memory directly as a resource (in flat mode) result in better performance than treating it as a cache for co-scheduled applications (due to possible interference).
Simulation Setup

Resources:

- Up to four different types (e.g., CPU, GPU, cache, memory, I/O)
- Amount of resources for each type: \((64, 32, 16, 8)\)

Workload (synthetic):

- **Extended Amdahl’s law**: \(s_0 \sim \mathcal{U}(0, 0.2)\)

 (i) \(1 / \left(s_0 + \sum_{i=1}^{d} \frac{s_i}{p(i)} \right) \); (ii) \(1 / \left(s_0 + \frac{1-s_0}{\prod_{i=1}^{d} p(i)} \right) \); (iii) \(1 / \left(s_0 + \max_{i=1..d} \frac{s_i}{p(i)} \right) \)

- **Extended power law**: \(\alpha_i \sim \mathcal{U}(0.3, 1)\)

 (i) \(1 / \left(\sum_{i=1}^{d} \frac{s_i}{(p(i))^{\alpha_i}} \right) \); (ii) \(\prod_{i=1}^{d} (p(i))^{\alpha_i} \); (iii) \(1 / \left(\max_{i=1..d} \frac{s_i}{(p(i))^{\alpha_i}} \right) \)

![Different colors indicate different resources](image)

(i) sequential (ii) collaborative (iii) concurrent
Simulation Results

Performance (makespan normalized w.r.t lower bound):

- Ratios increase with d, but far below theoretical bounds
- List algorithms perform better, but gap reduces as d increases
- Transform-based solutions perform slightly better
Simulation Results

Complexity (running time of algorithms):

- Pack algorithms run slightly faster than list algorithms
- Direct solutions increase drastically with d
- Transform-based solutions orders of magnitude faster (esp. $d \geq 3$)
Simulation Results

Transform-based pack scheduling offers fast, efficient, and easy-to-implement solutions when managing a large number of resources.

Complexity (running time of algorithms):

- Pack algorithms run slightly faster than list algorithms.
- Direct solutions increase drastically with d.
- Transform-based solutions orders of magnitude faster (esp. $d \geq 3$).
Outline

Introduction

Theoretical Analysis

Experimental Evaluation

Future Work
Open Questions

Performance of list-scheduling under multi-resources

- Rigid jobs: \((d + 1)\)-approx. [Garey and Graham, 1975]
- Moldable jobs: \(2d\)-approx. [This work, with algo. lower bound]
- Malleable jobs: \((d + 1)\)-approx. [He et al. 2007]
 (Represented as DAGs containing unit-size tasks of different types)

- Can we achieve \((d + 1)\)-approx. for moldable jobs (possibly with a more coupled design/analysis of resource allocation and rigid scheduling), or is it inherently harder?
Open Questions

Performance of list-scheduling under multi-resources

- Rigid jobs: \((d + 1)\)-approx. [Garey and Graham, 1975]
- Moldable jobs: \(2d\)-approx. [This work, with algo. lower bound]
- Malleable jobs: \((d + 1)\)-approx. [He et al. 2007]
 (Represented as DAGs containing unit-size tasks of different types)

- Can we achieve \((d + 1)\)-approx. for moldable jobs (possibly with a more coupled design/analysis of resource allocation and rigid scheduling), or is it inherently harder?

Performance of general models for moldable task scheduling

- 2-Pack Sol.: \((1.5 + \epsilon)\)-approx. [Mounié et al. 2004, Jansen 2012]
- Precedence constraints: e.g., \((3 + \sqrt{5})\)-approx. [Lepère et al. 2001]

- Could these results be extended to multi-resource scheduling?
Open Questions

Performance of list-scheduling under multi-resources

- Rigid jobs: \((d + 1)\)-approx. [Garey and Graham, 1975]
- Moldable jobs: \(2d\)-approx. [This work, with algo. lower bound]
- Malleable jobs: \((d + 1)\)-approx. [He et al. 2007]
 (Represented as DAGs containing unit-size tasks of different types)

- Can we achieve \((d + 1)\)-approx. for moldable jobs (possibly with a more coupled design/analysis of resource allocation and rigid scheduling), or is it inherently harder?

Performance of general models for moldable task scheduling

- 2-Pack Sol.: \((1.5 + \epsilon)\)-approx. [Mounié et al. 2004, Jansen 2012]
- Precedence constraints: e.g., \((3 + \sqrt{5})\)-approx. [Lepère et al. 2001]

- Could these results be extended to multi-resource scheduling?

Other practical applications of multi-resource scheduling
- e.g., cache partitioning, bandwidth allocation, burst buffer sharing?