
URMILA: Dynamically Trading-off Fog and Edge Resources for Performance
and Mobility-Aware IoT Services

Shashank Shekhara,1, Ajay Chhokrab, Hongyang Sunb, Aniruddha Gokhaleb,∗, Abhishek Dubeyb, Xenofon
Koutsoukosb, Gabor Karsaib

aSiemens Corporate Technology, Princeton, NJ 08540, USA.
bVanderbilt University, Nashville, TN 37235, USA.

Abstract

The fog/edge computing paradigm is increasingly being adopted to support a range of latency-sensitive IoT services
due to its ability to assure the latency requirements of these services while supporting the elastic properties of cloud
computing. IoT services that cater to user mobility, however, face a number of challenges in this context. First,
since user mobility can incur wireless connectivity issues, executing these services entirely on edge resources, such
as smartphones, will result in a rapid drain in the battery charge. In contrast, executing these services entirely on fog
resources, such as cloudlets or micro data centers, will incur higher communication costs and increased latencies in the
face of fluctuating wireless connectivity and signal strength. Second, a high degree of multi-tenancy on fog resources
involving different IoT services can lead to performance interference issues due to resource contention. In order to
address these challenges, this paper describes URMILA, which makes dynamic resource management decisions to
achieve effective trade-offs between using the fog and edge resources yet ensuring that the latency requirements of the
IoT services are met. We evaluate URMILA’s capabilities in the context of a real-world use case on an emulated but
realistic IoT testbed.
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1. Introduction1

Traditional cloud computing is proving to be in-2

adequate to host latency-sensitive Internet of Things3

(IoT) applications due both to the possibility of vio-4

lating their quality of service (QoS) constraints (e.g.,5

due to the long round-trip latencies to reach the distant6

cloud) and the resource constraints (e.g., scarce battery7

power that drains due to the communication overhead8

and fluctuating connectivity). The fog/edge computing9

paradigm [1] addresses these concerns, where IoT ap-10

plication computations are performed at either the edge11
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layer (e.g., smartphones and wearables) or the fog layer12

(e.g., micro data centers or cloudlets, which are a collec-13

tion of a small set of server machines used to host com-14

putations from nearby clients), or both. The fog layer15

is effectively a miniaturized data center and hence sup-16

ports multi-tenancy and elasticity, however, at a limited17

scale and with significantly less variety.18

Despite the promise of fog/edge computing, many19

challenges remain unresolved. For instance, IoT appli-20

cations tend to involve sensing and processing of infor-21

mation collected from one or more sources in real-time,22

and in turn making decisions to satisfy the needs of the23

applications, e.g., in smart transportation to alert drivers24

of congestion and take alternate routes. Processing this25

information requires sufficient computational capabili-26

ties. Thus, relying exclusively on edge resources alone27

for these computations may not always be feasible be-28

cause one or both of the computational and storage re-29

quirements of the involved data may exceed the edge30

device’s resource capacity. Even if it were feasible, the31

battery power constraints of the edge device limit how32
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much intensive and for how long such computations can33

be carried out. In contrast, exclusive use of cyberforag-34

ing, i.e., always offloading the computations to the fog35

layer is not a solution either because offloading of data36

incurs communication costs, and when users of the IoT37

application are mobile, it is possible that the user may38

lose connectivity to a fog resource and/or may need to39

frequently hand-off the session between fog resources.40

In addition, the closest fog resource to the user may not41

have enough capacity to host the IoT application be-42

cause other IoT applications may already be running at43

that fog resource, which will lead to severe performance44

interference problems [2, 3, 4, 5] and hence degradation45

in QoS for all the fog-hosted applications.46

In summary, although the need to use fog/edge re-47

sources for latency-sensitive IoT applications is well-48

understood [6, 7], a solution that relies exclusively on49

a fog or edge resource is unlikely to deliver the desired50

QoS of the IoT applications, maintain service availabil-51

ity, minimize the deployment costs and ensure longevity52

of scarce edge resources, such as battery. These re-53

quirements are collectively referred to as the service54

level objectives (SLOs) of the IoT application. Thus,55

an approach that can intelligently switch between fog56

and edge resources while also supporting user mobility57

is needed to meet the SLO by accounting for latency58

variations due to mobility and execution time variations59

due to performance interference from co-located appli-60

cations. To that end, we present URMILA (Ubiquitous61

Resource Management for Interference and Latency-62

Aware services), which is a middleware solution to man-63

age the resources across the cloud, fog and edge spec-64

trum2 and to ensure that SLO violations are minimized65

for latency-sensitive IoT applications, particularly those66

that are utilized in mobile environments. Specifically,67

this paper significantly extends our earlier work on UR-68

MILA [9] and makes the following key contributions:69

• We provide an a priori estimate of the received70

signal strength that is then used at runtime to pre-71

dict the energy consumption and network latency72

in the mobile environment by choosing an appro-73

priate computing resource, i.e., edge or fog device.74

• We formulate an optimization problem that mini-75

mizes the cost to the fog provider and energy con-76

sumption on edge devices while adhering to SLO77

requirements.78

2The use of the terms fog and edge, and their semantics are based
on [8].

• We propose an algorithm to select the most suit-79

able fog server that will be used to execute the IoT80

application remotely, when the computation can81

be executed on the fog resource. The algorithm82

accounts for performance interference due to co-83

located but competing IoT applications on multi-84

tenant fog servers and deliver a run-time control85

algorithm for application execution that ensures86

SLOs are met in real time.87

• We evaluate our solution in a laboratory-sized real88

testbed using two emulated real-world IoT appli-89

cations that we developed.90

The rest of this paper is organized as follows: Sec-91

tion 2 discusses the application and the system models;92

Section 3 formulates the optimization problem and de-93

scribes the challenges we address. Section 4 explains94

the URMILA solution in detail; Section 5 provides em-95

pirical validation of our work; Section 6 describes re-96

lated work in comparison to URMILA; and finally Sec-97

tion 7 provides concluding remarks.98

2. System Model and Assumptions99

This section presents the system and application100

models for this research along with the assumptions we101

made.102

2.1. System Model103

Figure 1 is representative of a setup that our system104

infrastructure uses, which comprises a collection of dis-105

tributed wireless access points (WAPs). WAPs leverage106

micro data centers (MDCs), which are fog resources.107

URMILA maintains a local manager at each MDC, and108

they all coordinate their actions with a global, central-109

ized manager. The WAPs are interconnected via wide110

area network (WAN) links and hence may incur vari-111

able latencies and multiple hops to reach each other.112

The mobile edge devices have standard 2.4 GHz WiFi113

adapters to connect to the WAPs and implement well-114

established mechanisms to hand-off from one WAP to115

another. The edge devices are also provisioned with116

client-side URMILA middleware components including117

a local controller. We assume that mobile clients do not118

use cellular networks for the data transmission needs119

due to the higher monetary cost of cellular services and120

the higher energy consumption of cellular over wireless121

networks [10, 11].122
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Figure 1: System infrastructure model

2.2. Application Model123

We describe our IoT application model via a use case,124

which comprises a soft real-time object detection, cog-125

nitive navigational assistance application targeted to-126

wards the visually impaired. Advances in wearable127

devices and computer vision algorithms have enabled128

cognitive assistance and augmented reality applications129

to become a reality, e.g., Microsoft’s SeeingAI (www.130

microsoft.com/en-us/seeing-ai) and Gabriel [1]131

that leverage Google Glass and cloudlets. However, be-132

cause these solutions are either still not available to the133

users or use discontinued technologies such as Google134

Glass, we have developed two applications, which are135

also used in empirically validating our research and de-136

scribed in Section 5.1. As the user moves, the applica-137

tion frequently captures video frames of the surround-138

ings using the wearable equipment, processes and ana-139

lyzes these frames, and subsequently provides feedback140

(e.g., audio and haptics) to the user in real-time to en-141

sure safe navigation. Note that our objective is not to142

replace service dogs or white canes but to augment the143

user’s understanding of the surroundings.144

Our use case belongs to a class of latency-sensitive145

IoT applications that are interactive or streaming in na-146

ture, such as augmented reality, online gaming, and147

cognitive assistance applications. The service level ob-148

jective (SLO) for the service comprises multiple parts.149

First, since quality of user experience is critical, feed-150

backs are needed in (soft) real-time and hence we have151

tight deadlines for each step. Our application is mod-152

eled as a composition of individual tasks or steps; for153

instance, in the case of computer vision applications,154

these steps can be frame capturing, frame processing155

and actuation actions.156

Since image processing is a compute- and memory-157

intensive application, it consumes the already scarce158

battery resources on a mobile device and hence the159

longevity of resources on edge devices is paramount.160

Although cyber-foraging enables a mobile application161

to be offloaded from the edge device to a fog/cloud node162

where it gets deployed and processed [12], this process163

itself is energy consuming because application state and164

logic needs to be transferred, and moreover it can be165

a platform-dependent issue, e.g., application binaries166

on different platforms may be different. Hence, in this167

work, we consider an approach where we have different168

versions of the service: one that can be deployed in con-169

tainerized form at the fog node and another that runs on170

the edge device, albeit a less accurate but more resource171

efficient, so the service execution can switch between172

these two modes in order to maintain a highly available173

service and to meet the SLOs.174

2.3. User Mobility and Client Session175

To make effective resource management decisions,176

URMILA must estimate user mobility patterns. Al-177

though there exist both probabilistic and determinis-178

tic user mobility estimation techniques, for this re-179

search we focus on the deterministic approach, where180

the source and destination are known (e.g., via cal-181

endar events) or provided by the user a priori. Our182

solution can then determine a fixed route (or alter-183

nate sets of routes) for a given pair of start and184

end locations by leveraging external services such185

as Open Street Maps (http://www.openstreetmap.186

org), Here APIs (https://developer.here.com/)187

or Google Maps APIs (https://cloud.google.188

com/maps-platform/). These are reasonable assump-189

tions for services like navigational assistance to the vi-190

sually impaired or for students in or near college cam-191

puses who are using mobility-aware IoT applications192

where user mobility is restricted to a relative small geo-193

graphical area, e.g., a couple of miles of user movement.194

Our future work will explore the probabilistic approach.195

When a user wants to use the application, a session is196

initiated, and the client-side application uses a RESTful197

API to inform URMILA about the start time, source and198

destination for the trip.199

3. URMILA Problem Formulation200

This section presents a formal description of the prob-201

lem we solve in this paper. The aim is to meet the SLO202

for the user (which includes assuring the response time203

and minimizing the energy costs for the edge device by204

ensuring longevity of resources such as battery power)205

while minimizing the deployment and operational costs206

for the service provider. The primary notations we have207

used in the description are summarized in Table 1.208
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Table 1: Primary Notations Used in Problem Formulation

For application execution of a user u at a period p
φ(u) bound on total response time or length of period
I(u) =

{1(u), . . . , L(u)}
sequence of periods, where L is the number of
periods in the user’s path

ttotal(u, p) total response time
tprocess(u) local pre/post-processing time of application
texecute(u, p) general execution time of application
tlocal(u) execution time when application is run locally
tnetwork(u, p) network latency
For MDCs, servers and wireless access points
gm global manager
lm local manager
M set of MDCs
s a server in an MDC
AP =

{ap1, . . . , apn}

set of wireless access points

ap0 virtual access point when user has no connection
ap(s) access point that hosts server s
ap(u, p) access point user u connects to at period p
tap(s),s server latency between ap(s) and server s
tapi ,ap j or
tap(u,p),ap(s)

latency between api or ap(u, p) and ap j or ap(s)

tu,ap(u,p) last-hop latency between user u and ap(u, p)
For deployments of user u’s application and associated costs
xu,s ∈ {0, 1} deployment variable of user u on server s
yu,s,p ∈ {0, 1} execution variable of user u on server s at period p
tremote(u, s, p) execution time of user u on server s at period p
tnetwork(u, s, p) total latency of user u on server s at period p
U(s) set of existing users on server s
Lmax(s) maximum duration U(s) will run on server s
Tdeploy(u, s) cost of deploying user u on server s
Ttrans f er(u, s) cost of state transfer of user u on server s
w(u, s) waiting time of user s when deployed on server s
Tuser(u, s) no. of local periods for deploying user u on server s
α(s) unit-time cost of powering on server s
β(s) unit-time cost of transferring state to server s
κ(u) per-period energy cost of local execution for user u
C(u) total cost of deploying user u

3.1. Formal Notation for the System Parameters209

For each user (or application3), u, let φ(u) denote the
user-specific bound on the acceptable response time in
each service period, which also defines the length of the
period. For our consideration, the total response time
experienced by the user at each period p can be ex-
pressed as the sum of the (local or remote) execution
time and the network latency (if executed remotely), i.e.,

ttotal(u, p) = tprocess(u) + texecute(u, p) + tnetwork(u, p)
(1)

where tprocess(u) is the required total time of all the tasks210

associated with the application running locally. This du-211

ration is fixed and independent of the execution mode212

and period, texecute(u, p) is the total execution time of213

all the compute intensive tasks related to the application214

that can be offloaded to the remote server. This dura-215

tion depends on whether the execution is on-device or216

3Since the mobile user is engaged using the features of a single ap-
plication, we will use the terms “user” and “application” interchange-
ably.

remote, and tnetwork(u, p) is the network latency for pe-217

riod p (which is included only if remote execution is218

involved). In the rest of the paper, texecute is referred to219

as the execution time of the application and tprocess as220

pre/post processing time of the application.221

The goal is to meet the SLO for the user, i.e., to en-222

sure ttotal(u, p) ≤ φ(u) for each period p in the user’s an-223

ticipated duration of application usage, while minimiz-224

ing the total cost (formulated in Section 3.2). Since we225

consider user mobility, this duration is typically from226

the start to the end of the user’s trip. Nonetheless, there227

is nothing to prevent us from applying the model even in228

the stationary state or after the user has reached his/her229

destination.230

Let tlocal(u) denote the execution time when the ap-231

plication of user u is run locally, which is fixed regard-232

less of the period and no network latency will be in-233

curred in this case. Additionally, we assume that the234

SLO can always be satisfied with local executions, i.e.,235

tprocess(u)+ tlocal(u) ≤ φ(u) for all u and p. This could be236

achieved by a lightweight mobile version of the appli-237

cation, such as MobileNet for real-time object detection238

on the mobile device, which is less compute-intensive239

and time-consuming, thereby ensuring the SLO albeit240

with a low detection accuracy.241

In our model, applications and fog resources are man-242

aged by a centralized authority known as the global243

manager (gm) hosted at a centralized cloud data center244

(CDC). This serves as URMILA’s portal for the users.245

We denote by AP = {ap1, ap2, . . . , apn} the set of Wire-246

less Access Points (WAPs) with a subset of them also247

hosting fog resources in the form of micro data centers248

(MDCs) or cloudlets. A WAP, ap ∈ AP, hosting an249

MDC, m ∈ M, implies that the access point ap is di-250

rectly connected to wired local area network involving251

all the servers of m. Such capabilities could be offered252

by college campuses or internet providers as wireless253

hotspots. We assume that the gm owns or has exclusive254

lease to a set M of MDCs. Note that M is a subset of AP255

since only some WAPs have an associated MDC. Each256

MDC contains a set of compute servers (possibly het-257

erogeneous) that are connected to their MDC’s associ-258

ated WAP. From a traditional cloud computing perspec-259

tive, since an application can be deployed and executed260

on the CDC, we model the CDC as a special MDC that261

is also contained in set M, and correspondingly, the set262

AP contains the access point that hosts the CDC as well.263

In this architecture, the network latency between any264

ap(s) ∈ AP that hosts a server s and the server itself265

is negligible, i.e., tap(s),s ≈ 0, as they are connected via266

fast local area network (LAN). The WAPs are connected267

to each other over a wide area network (WAN) and may268
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incur significant latency depending on the distance, con-269

nection type and number of hops between them. If a mo-270

bile user is connected to a nearby WAP, say api, which271

has an MDC that hosts the user’s application, then there272

is no additional access point involved. Otherwise, if the273

application is deployed on another MDC hosted by, say274

ap j, then the round trip latency tapi,ap j can be signifi-275

cant since the request/response will be forwarded from276

api to ap j. Moreover, due to mobility, the user could277

at times have no connection to any access point (e.g.,278

out of range). In this case, we assume the presence of a279

virtual access point ap0 to which the user is connected280

and define tap0,api = ∞ for any api ∈ AP. Obviously,281

the application will have to run locally to avoid SLO282

violations.283

In addition to the round trip latency, the selection of284

MDC and server to deploy the application can also sig-285

nificantly impact the application execution time, since286

the MDCs can have heterogeneous configurations and287

each server can host multiple virtualized services, which288

do not have perfect isolation and hence could interfere289

with each other’s performance.Each MDC, also con-290

tains a local manager lm responsible for maintaining a291

database of applications it can host, their network la-292

tencies for the typical load, and server type and load-293

specific application execution time models. Note that294

there could be a varying number of co-located appli-295

cations and hence a varying load on each server over296

time, but we assume that individual application’s work-297

load does not experience significant variation through-298

out its lifetime, which is a reasonable assumption for299

many streaming applications, such as processing con-300

stant size video frames.301

For our mobility model, we divide the travel du-302

ration for each user u into a sequence I(u) =303

{1(u), 2(u), . . . , L(u)} of periods that cover the user’s304

path of travel. The length of each period p ∈ I(u) is305

the same and sufficiently small so that the user is con-306

sidered to be constantly and stably connected to a partic-307

ular WAP ap(u, p) ∈ AP
⋃
{ap0} (including the virtual308

access point). Moreover, the last hop latency, tu,ap(u,p)309

between the user and this access point can be estimated310

based on the user’s position, channel utilization, and311

number of active users connected to that access point.312

3.2. Developing the Problem Statement313

To formalize the optimization problem we solve in314

this work, we define two binary variables that indicate315

the decisions for application deployment and execution316

mode selection. Specifically, xu,s = 1 if user u is de-317

ployed on server s and 0 otherwise, and yu,s,p = 1 if user318

u executes on server s at period p and 0 otherwise. Us-319

ing these two variables and our system model, we now320

express the total response time of an application and the321

total cost, and then present the complete formulation of322

the optimization problem.323

3.2.1. Characterizing the Total Response Time324

Recall from Equation (1) that the total response time325

for a user u at a period p consists of three parts, and326

among them the pre/post-processing time tprocess(u) is327

fixed. To express the execution time, let tremote(u, s, p)328

denote user u’s execution time if it is run remotely on329

server s at period p. Note that, due to the hardware330

heterogeneity and co-location of multiple applications331

on the server which can result in performance interfer-332

ence [13, 4, 14], this execution time will depend on the333

set of existing applications that are running on the server334

at the same time. This property is known as sensitiv-335

ity [15, 13, 3]. Similarly, the execution times for these336

users may in turn be affected by the application exe-337

cution of user u were it to execute on this server – a338

property known as pressure [15, 13, 3]. Techniques to339

estimate tremote(u, s, p) are described in Section 4.4.340

For the network latency, let tnetwork(u, s, p) denote the
total latency incurred by running the application re-
motely on server s at period p. We can express it as:

tnetwork(u, s, p) = tu,ap(u,p) + tap(u,p),ap(s) + tap(s),s (2)

In particular, it includes the latency from the user to the
connected access point tu,ap(u,p), which we refer to as the
last-hop latency; the latency from the connected access
point to the serving access point tap(u,p),ap(s), which we
refer to as the WAN latency; and the latency from the
serving access point to the server that deploys the ap-
plication tap(s),s, which we refer to as the server latency.
The last latency is negligible, and the first two depend
on the user’s location at period p. Latency estimation
is discussed in Section 4.3. The total response time of
user u at period p can then be expressed as:

ttotal(u, p) = tprocess(u) +
(
1 −

∑
s

yu,s,p

)
tlocal(u)

+
∑

s

yu,s,p

(
tremote(u, s, p) + tnetwork(u, s, p)

)
(3)

In the above expression, the first line includes the con-341

stant pre/post-processing time as well as the execution342

time when the application runs locally, and the second343

line includes the execution time when it is run remotely344

as well as the incurred total network latency.345
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3.2.2. Characterizing the Total Cost346

The total cost consists of two parts: the server deploy-
ment cost and the user energy cost. On the deployment
side, running a server incurs operational costs, such as
power and cooling. Thus, the provider want to use as
few server-seconds as possible, so the deployment cost
depends on the duration a server remains running. For a
server s, let U(s) denote the set of existing users whose
applications are deployed on it, and the maximum time
up to which a server will run these applications depends
upon the longest running application, i.e., L(v), where L
is the number of periods in the user v’s path. We define
Lmax(s) to be the maximum time up to which these exist-
ing applications will run, i.e., Lmax(s) = maxv∈U(s) L(v).
The cost for deploying a new application u on server s
is proportional to the extra duration the server has to be
on and can be expressed as:

Tdeploy(u, s) = max
(
0, L(u) − Lmax(s)

)
(4)

In addition to the operational cost, deploying an ap-
plication on a server requires transferring its state over
the backhaul network from the repository in the CDC to
the MDC. The time to transfer the state of an application
u to a server s can be expressed as:

Ttrans f er(u, s) =
state(u)

b(s)
+ ci(u, s) (5)

where state(u) is the size of application u’s state, b(s)347

is the backhaul bandwidth from CDC to the MDC that348

hosts server s, and ci(u, s) is the initialization time of the349

application before it can start processing requests on the350

server. Hence, the waiting time (in terms of the number351

of periods) of the application before it can be executed352

remotely is w(u, s) =
⌈
Ttrans f er(u, s)/φ(u)

⌉
, where φ(u)353

is the duration of a period. Thus, we must have yu,s,p = 0354

for p ∈ [1(u), 1(u) + w(u, s)].355

On the user side, we know that executing the applica-
tion locally incurs higher power consumption than ex-
ecuting it remotely. Hence, the cost for user u can be
measured in terms of the total number of periods when
the application is being run locally, which is directly
proportional to the additional energy expended by the
mobile device had the application been run remotely
throughout the user’s travel. The number of local pe-
riods by deploying application u on server s can be ex-
pressed as:

Tuser(u, s) =

L(u)∑
p=1(u)

(
1 − yu,s,p

)
(6)

To combine the costs from different sources, we de-
fine α(s) and β(s) to be the unit-time costs of powering

on server s and transferring the state to server s, respec-
tively. Both values depend on the server and its corre-
sponding MDC. In addition, we define κ(u) to be the
per-period energy cost of local execution for user u (rel-
ative to remote executions), and its value depends on the
user’s application and mobile device. Thus, for a given
solution that specifies the application deployment (i.e.,
xu,s) and its execution mode for each period (i.e., yu,s,p),
the total cost can be expressed as:

C(u) =
∑

s

xu,s

(
α(s) · Tdeploy(u, s) + β(s) · Ttrans f er(u, s)

+ κ(u) · Tuser(u, s)
)

(7)

3.3. Optimization Problem356

Given the expressions for total response time (Equa-
tion (3)) and total cost (Equation (7)), the optimization
problem needs to decide, for each new user u, where to
deploy the application and which execution mode to run
the application in order to minimize the total cost sub-
ject to the response time constraints. Let V denote the
set of all existing applications on all servers at the time
of deploying u, i.e., V =

⋃
s U(s). The problem can be

formulated by the following integer nonlinear program
(INLP):

minimize C(u)
subject to ttotal(u, p) ≤ φ(u), ∀p (8)

ttotal(v, p) ≤ φ(v), ∀p, v (9)
xu,s, yu,s,p ∈ {0, 1}, ∀s, p (10)∑

s

xu,s ≤ 1 (11)

yu,s,p ≤ xu,s, ∀s, p (12)
yu,s,p = 0, ∀s, p ∈ [1(u), 1(u) + w(u, s)]

(13)

In particular, Constraints (8) and (9) require meeting the357

SLOs for user u as well as for all existing users at all358

times. Constraint (10) requires the decision variables to359

be binary. Constraint (11) requires the application to be360

deployed on at most one server. We enforce this con-361

straint because there is a high cost in transferring the362

application state from the CDC to an MDC server, ini-363

tializing and running it. Note that an application need364

not be deployed on any server, in which case it will be365

executed locally throughout the user’s travel duration.366

Constraint (12) allows the application to run remotely367

only on the server it is deployed at each period and Con-368

straint (13) restricts the remote executions to start only369

after the application state has been transferred.370
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Due to the NP-hardness of the above INLP problem,371

we rely on a greedy-based heuristic to solve it. Sec-372

tion 4.4.2 describes the proposed heuristic for server de-373

ployment and execution mode selection.374

4. URMILA: Design and Implementation375

This section presents the design and implementation376

of our URMILA dynamic resource management mid-377

dleware.378

4.1. Overview of URMILA’s Expected Runtime Behav-379

ior380

To better understand the rationale for URMILA’s de-381

sign and its architecture, let us consider the runtime in-382

teractions that ensue once a user session is initiated. The383

client-side application is assumed to be aware of UR-384

MILA and communicates with it to provide the start385

time, source and destination for the trip. URMILA386

computes the set of routes that the user may take us-387

ing the provided trip details. Then, based on instanta-388

neous loads on all fog nodes of the MDCs on the path,389

URMILA determines a suitable fog server (i.e., node)390

in an MDC on which the IoT application’s cloud/fog-391

ready task can be executed throughout the session, and392

deploys the corresponding task on that server. URMILA393

will not change this selected server for the rest of the394

session even if the user may go out of wireless range395

from it because the user can still reach it through a396

nearby WAP and by traversing the WAN links. This is397

reasonable for our approach due to the relatively smaller398

size of the geographical area covered by the mobile user.399

Latency
Estimation

Route
Calculation

Fog Node
Selection

Service
 Deployment

Deployment EngineRequest
<Src, Dest>

Figure 2: URMILA’s Component-based Architecture and Deploy-
ment

This approach and the architectural components in-400

volved in the process are depicted in Figure 2. This se-401

quence is repeated whenever a new user is added to the402

system. Selecting the appropriate fog server based on403

the instantaneous utilizations of the available resources,404

which are not known statically, while ensuring SLOs are405

met is a hard problem. URMILA’s key contribution lies406

in addressing this challenge, and intelligently adapting407

between the fog and edge resources based on user mo-408

bility and application SLO.409

As time progresses, for each period (or a well-defined410

epoch) of application execution, the client-side UR-411

MILA middleware determines the instantaneous net-412

work conditions and determines whether to process the413

request locally or remotely on the selected fog server414

such that the application’s SLO is met. This process415

continues until the user reaches the destination and ter-416

minates the session with the service, at which point the417

provisioned tasks on the fog resources can be termi-418

nated. The architecture for these interactions is pre-419

sented in Figure 3, where the controller component on420

the client-side middleware is informed by URMILA421

to opportunistically switch between fog-based or edge-422

based execution in a way that meets application SLOs.423

The remainder of this section describes how URMILA424

achieves these goals.425

Sensors

Actuators

Controller

Local Sensor Data
ProcessingService

Remote Sensor Data
ProcessingService

Sensors

Actuators

Edge Device Fog Device

Figure 3: URMILA’s Architecture for Decision Making

4.2. Route Computation426

This component is responsible for determining the427

user’s mobility pattern based on the methodology de-428

scribed in Section 2.3. In this paper, we leverage the429

Google Maps APIs for finding the shortest route be-430

tween the user’s specified start and destination loca-431

tions. It takes a tuple comprising the start and desti-432

nation GPS coordinates, and produces a list of GPS co-433

ordinates for the various steps along the route. This raw434

list of route points is re-sampled as per a constant ve-435

locity model (5 kilometers per hour, which is a typical436

average walking speed) with an interval equal to the re-437

sponse time deadline enforced by the SLO.438

4.3. Latency Estimation439

Recall that URMILA will choose to execute task(s)440

of the IoT application on the fog server if it can assure441

its SLO, which means that for every user and for every442

period/epoch of that user’s session, URMILA must be443

able to estimate the expected latency as the user moves444

along the route. Hence, once the route (or set of alter-445

nate routes) taken by the user is determined using mech-446

anisms like Google Maps, the Latency Estimator com-447

ponent of Figure 2 will estimate the expected latencies448

along the route.449
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This is a hard problem to address due to the dy-450

namic nature of the Wi-Fi channels and the dynamically451

changing traffic patterns (due to changing user densi-452

ties) throughout the day. To that end, URMILA employs453

a data-driven model that maps every route point on the454

path to an expected latency to be observed at that point.455

One of the salient features of this estimation model is456

its adaptability, i.e., the model is refined continuously457

in accordance with the actual observed latencies.458

The estimated latency is made up of three parts (see459

Equation (2)): the last-hop latency to a WAP along the460

route, the WAN latencies to reach the fog server from461

the ingress WAP by traversing the WAN links, and the462

task execution time on the fog server (See Section 4.4).463

Estimating Last-hop Latency tu,ap(u,p): The last hop464

latency itself is affected primarily by channel uti-465

lization, number of active users and received signal466

strength [16]. This component estimates the latency467

tnetwork(u, s, p) observed by user u at any period p along468

the route on any given server s. Initially, we assume that469

the channel utilization and the number of active users470

do not impact the latency significantly. As the routes471

get profiled, we maintain a database that stores network472

latencies for different coordinates and times of the day.473

Whenever a request arrives with known route segments,474

the latency can be estimated by querying this database.475

Equation (14) can be used to compute the signal
strength, where p̂ (resp. p̂0) is the mean received power
at a distance d (resp. d0) from the access point, and γ
is the path loss exponent. Among these parameters, p̂0
and d0 depend on the access point and are known a pri-
ori for typical access points. The path loss exponent γ
depends on the environment, and its typical values for
free space, urban area, sub urban area and indoor (line
of sight) are 2, 2.7 to 3.5, 3 to 5 and 1.6 to 1.8, respec-
tively [17].

p̂(d) = p̂0(d0) − 10γ log
d
d0

(14)

The client device selects a WAP with the highest sig-476

nal strength and sticks to it till the strength drops below477

a threshold. The network becomes unreliable if the re-478

ceived signal strength falls below -67dBm for streaming479

applications [16], which we use as the threshold for UR-480

MILA. We also use existing well-known methods for481

determining the signal strength based on received power482

and distance from an access point [17]. Using this to-483

gether with the calculated route and WAP’s data, the la-484

tency estimator is able to calculate the last-hop latency485

for each period/epoch along the route.486

Estimating WAN Latency tap(u,p),ap(s): The WAN la-487

tency between two access points depends on the link ca-488

pacity connecting the nodes and the number of hops be-489

tween them. We use another database to maintain the490

latencies between different access points.491

Estimating Total Latency: Based on the computed492

individual components, a map of total network latency493

can then be generated for every period/epoch along the494

route.495

4.4. Fog Server Selection496

To avoid the high cost involved in transferring appli-497

cation state and initialization, URMILA performs a one-498

time fog server selection within a fog layer, and reserves499

the resource for the entire trip duration plus a margin to500

account for the deviation from the ideal mobility pat-501

tern. To determine the right fog server to execute the502

task, besides having accurate latency estimates, we also503

need an accurate estimate for task execution on the fog504

server that will end up being selected, which will de-505

pend on the instantaneous co-located workloads on that506

server and the incurred performance interference.507

To accomplish this, we leverage the INDICES [7]508

performance metric collection and interference model-509

ing framework. However, the INDICES framework has510

a few limitations. In particular, it was designed for vir-511

tual machines (VMs). In this work, in order to have512

lower initialization cost compared to VMs [18], we rely513

on Docker containers. Hence, as a part of URMILA, we514

integrated INDICES while extending the framework for515

interference-aware Docker container deployment.516

In addition, modern hardwares are equipped with non517

uniform memory access (NUMA) architecture which518

forces the performance estimation and scheduling tech-519

niques to consider memory locality. Different applica-520

tions have different levels of performance sensitivity on521

NUMA architectures [19]. Thus, we needed a mecha-522

nism that is able to benchmark applications on different523

NUMA nodes and predict their performance and sched-524

ule them accordingly. Moreover, recent advancement525

in Resource Director Technology (RDT) [20] that in-526

cludes Cache Monitoring Technology (CMT) and Mem-527

ory Bandwidth Monitoring (MBM) provides further in-528

sights about system resource consumption for memory529

bandwidth and last-level cache utilization, which can be530

leveraged for better performance estimation. We ac-531

count for all of these factors in URMILA. Our recent532

work on the FECBench framework addresses several533

of the limitations in INDICES and provides a holistic,534

end-to-end performance monitoring and model building535

framework [21], however, FECBench was not ready for536

use in the URMILA research.537

URMILA’s fog server selection process consists of an538

offline performance modeling stage and an online server539
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selection stage as depicted in Figure 4.540

Performance
Monitoring

Performance
Model Learning

(Offline)

Performance 
Estimation 

Network Latency 
Estimation 

State Transfer
Cost Estimation

Server
Selection 
Algorithm 

Online

Figure 4: URMILA’s Fog Server Selection Process

4.4.1. Offline Performance Model Learning541

URMILA uses a data-driven approach [? ] in its542

run-time decision making for which it requires an of-543

fline training stage to develop a performance model for544

each latency-sensitive application task that is expected545

to be executed on the fog server. More precisely, in or-546

der to calculate texecute(u, p) in Equation (1), we need to547

develop a performance model to predict tremote(u, s, p),548

the remote execution time of the application on a server.549

This model depends on the following two factors:550

1. Hardware Heterogeneity: Our edge and fog re-551

sources are composed of heterogeneous hardware552

with different server architectures and configura-553

tions. Each application’s performance can vary554

significantly from one platform to another [2].555

Therefore, we need an accurate benchmark of per-556

formance for each hardware platform.557

2. Performance Interference: Although hypervisors/558

virtual machine monitors and cgroups in case of559

Linux containers provide a high degree of security,560

fault, and environment isolations, there still exist a561

number of interference sources [13, 4, 14], such as562

shared last-level cache, interconnect network, disk563

and memory bandwidth which are difficult to parti-564

tion. This has a profound impact on the remote ex-565

ecution time (tremote(u, s, p)), arising from the sen-566

sitivity to the co-located applications and its pres-567

sure on those applications [15, 13, 3].568

To develop a performance model required for deter-
mining tremote(u, s, p), we first benchmark the execution
time tisolation(u,w) of each latency-sensitive application
u on a specific hardware type w in isolation. This way,
we can account for the hardware heterogeneity of our re-
source spectrum. We then execute the application with
different co-located workload patterns and learn its im-
pact, denoted by function gu, on the system-level and
obtain micro-architectural metrics as follows:

Xnew
w = gu(Xcur

w ) (15)

where Xcur
w and Xnew

w denote the vectors of the selected569

metrics before and after running application u on hard-570

ware w, respectively.571

Modern hardware architectures provide access to572

many performance metrics. Based on our sensitivity573

analysis and to provide a broadly applicable and easily574

reproducible approach, we selected the following met-575

rics in vector Xcur
w for performance modeling:576

• System Metrics: CPU utilization, memory utiliza-577

tion, network I/O, disk I/O, context switches and578

page faults.579

• Hardware Counters: Retired instructions per sec-580

ond (IPS), cache utilization, cache misses, last-581

level cache (LLC) bandwidth and memory band-582

width.583

• Scheduler Metrics: Scheduler wait time and sched-584

uler I/O wait time.585

Another key consideration that we applied for perfor-586

mance modeling is NUMA-awareness with CPU core587

pinning. On modern multi-chip servers, the memory is588

divided and configured locally for each processor. The589

memory access time is lower when accessed from local590

NUMA node compared to when accessed from remote591

NUMA node. Hence, it is desirable to model the perfor-592

mance per NUMA node and schedule the Docker con-593

tainers accordingly. We achieve this by collecting the594

performance metrics per NUMA node and then, wher-595

ever possible, developing sensitivity and pressure pro-596

files at the NUMA node level instead of at the system597

level. The benefit of this approach is validated in Fig-598

ure 5. We observe from the figure that CPU core pinning599

reduces the performance variability, however, if NUMA600

node is not accounted for, it could lead to worse perfor-601

mance due to data locality issues.602
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Figure 5: Execution Time Comparison due to Core Pinning and
NUMA

Lastly, we learn the performance deterioration (com-
pared to isolated performance), denoted by function fu,
for application u under the new metric vector Xnew

w on
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hardware w to predict its execution time on the fog
server under the same conditions:

tremote(u,w) = tisolation(u,w) · fu(Xnew
w ) (16)

603

We apply supervised machine learning techniques to604

learn both functions gu and fu using the following se-605

quence of steps:606

• Feature Selection: We adopted the Recursive Fea-607

ture Elimination (RFE) approach using Gradient608

Boosted Regression Trees [22] as a way to select609

the optimal set of features and reduce training time.610

We performed RFE in a cross-validation loop to611

find the optimal number of features that minimizes612

a loss function (mean squared).613

• Correlation Analysis: To further reduce the train-614

ing time by decreasing the dimensions of the fea-615

ture vector, we used the Pearson Coefficient to616

eliminate highly dependent metrics with a thresh-617

old of ±0.8.618

• Regression Analysis: We used the off-the-shelf619

Gradient Tree Boosting curve fitting method due620

to its ability to handle heterogeneous features and621

its robustness to outliers.622

Note that Equations (15) and (16) can be applied to-623

gether to model both sensitivity and pressure for ap-624

plication deployment on each server in order to calcu-625

late tremote(u,w), which is then used as an estimate for626

the remote execution time tremote(u, s, p) of application627

u on server s containing hardware w. The learned per-628

formance models for different applications are then dis-629

tributed to the different MDCs for each of the hardware630

type w that they contain. Since MDCs typically contain631

just a few heterogeneous server types, we do not antic-632

ipate a large amount of performance model dissemina-633

tion.634

4.4.2. Online Server Selection635

The online stage performs server selection for an ap-636

plication, which is done in a hierarchical fashion as fol-637

lows. First, when a user initiates a session, the global638

manager gm residing at the CDC initiates the fog server639

selection process as soon as it receives a request from640

the client application. It calculates the route of the user641

as described in Section 4.2. Recall that the goal is to de-642

termine the expected execution time of the application643

task on each fog server in the most appropriate MDC644

using the performance model developed in the offline645

stage such that the SLOs for the existing applications646

can still be met despite expected performance interfer-647

ence. Thus, once URMILA knows the route and the648

access points the user will be connected to, the gm then649

queries the local manager lm of each MDC, which in650

turn queries each of their servers to find the expected651

execution time of the target application using the per-652

formance model developed in the offline stage such that653

the SLOs for the existing applications can still be met.654

Finally, the gm combines this information with the la-655

tency estimates from Section 4.3 to determine the ex-656

ecution mode of the application to satisfy the response657

time constraints at each step of the route. This allows658

us to estimate the cost incurred by the user (i.e., Tuser in659

Equation (6)).660

To solve the optimization problem, we still need to661

estimate the deployment cost (i.e., Tdeploy in Equation662

(4)) and the transfer cost (i.e., Ttrans f er in Equation (5)).663

The deployment cost is based on the trip duration, which664

we can again obtain from the user mobility as described665

in Section 4.2. To reduce transfer cost, we use Docker666

container images that consist of layers, and each layer667

other than the last one is read only and is made of a668

set of differences from the layer below it. Thus, with a669

base image (such as Ubuntu 16.04) already present on670

the server, we only need the delta layers (that dictate671

state(u) in Equation (5)) to be transferred for the appli-672

cation to be reconstructed at the fog location.673

Algorithm 1 shows the pseudocode for selecting a674

fog server s∗ and deciding a tentative execution-mode675

plan y∗[p] for a user u at each period/epoch p in the676

route, where y∗[p] = 1 indicates remote execution and677

y∗[p] = 0 indicates local execution. Besides deciding678

on the server to deploy the target application, the algo-679

rithm also suggests a tentative execution-mode plan at680

each step of the application execution. This execution681

plan will be used for cost estimation by the global man-682

ager and is subject to dynamic adjustment at run-time683

(See Section 4.5).684

Specifically, the algorithm goes through all servers685

(Line 3), and first checks whether deploying the target686

application u on a server s will result in SLO violation687

for each existing application v on that server, as speci-688

fied by the user’s response time bound φ(v) (Lines 4-15).689

For each application v, its total response time consists690

of a fixed pre-processing time tprocess, an execution time691

and a network latency. Since it may have a variable net-692

work latency and a variable execution time depending693

on the user’s location and choice of execution mode, we694

should ideally check for its SLO at each period of its695

execution. However, doing so may incur unnecessary696

overhead on the global manager since the execution-697

mode plan for v is also tentative. Instead, the algorithm698
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Algorithm 1: Fog Server Selection
Input: Target application u and other information on the user’s

route, networks, servers and their loads
Output: Server s∗ to deploy u and a tentative execution mode

vector y∗[p] ∈ {0, 1} for each period p during the user’s
route

1 begin
2 Initialize costmin ← ∞, s∗ ← ∅, and y∗[p]← 0 ∀p;
3 for each server s do
4 Xcur ← GetCurrentS ystemMetrics(s);
5 Xnew ← gu(Xcur);
6 V ← GetListO f ExistingApplications(s);
7 for each application v ∈ V do
8 tprocess ← GetPreProcessingT ime(v);
9 tisolation ← GetIsolatedExecT ime(v, s);

10 tremote ← tisolation · fv(Xnew);
11 tS LO

network ← GetPercentileLatency(v, s);
12 if tprocess + tremote + tS LO

network > φ(v) then
13 skip s;
14 end
15 end
16 Initialize y[p]← 0 ∀p; // execute locally by default;
17 tprocess ← GetPreProcessingT ime(u);
18 tisolation ← GetIsolatedExecT ime(u, s);
19 tremote ← tisolation · fu(Xnew);
20 Tdeploy ← GetDeploymentCost(u, s);
21 Ttrans f er ← GetS tateTrans f erCost(u, s);
22 for each period p in the route do
23 tS LO

network(p)← GetPercentileLatency(u, s, p);
24 if tprocess + tremote + tS LO

network(p) ≤ φ(u) then
25 y[p]← 1; // execute this period remotely;
26 end
27 end
28 Tuser ← ComputeUserCost(y);
29 cost ← α · Tdeploy + β · Ttrans f er + κ · Tuser;
30 if cost ≤ costmin then
31 costmin ← cost;
32 s∗ ← s and y∗ ← y;
33 end
34 end
35 end

considers the estimated network SLO percentile latency699

tS LO
network (e.g., 90th, 95th, 99th) while assuming that in the700

worst case the application always executes remotely for701

the execution time, i.e., tremote. This approach provides702

a more robust performance guarantee for existing appli-703

cations in case of unexpected user mobility behavior.704

Subsequently, for each feasible server, the algorithm705

evaluates the overall cost of deploying the target appli-706

cation u on that server (Lines 16-29) and chooses the707

one that results in the least cost (Lines 30-33). Note708

that the overall cost consists of the server deployment709

cost Tdeploy and application state transfer cost Ttrans f er,710

both of which are fixed for a given server, as well as the711

user’ energy cost Tuser, which could vary depending on712

the execution mode vector y. Hence, to minimize the713

overall cost, the algorithm offloads the execution to the714

remote server as much as possible subject to its SLO715

being met (Lines 22-27).716

4.5. RunTime Phase717

The deployment phase outputs the network address718

of the fog server where the application will be deployed719

and a list of execution modes as shown in Algorithm 1.720

This information is relayed to the client-side middle-721

ware, which then starts forwarding the application data722

to the fog server as per the execution mode at every step.723

However, the execution mode list is based on the ex-724

pected values of the network latencies, and hence can725

be different from the actual value.726

The runtime phase minimizes the SLO violations due727

to inaccurate predictions by employing a robust mode728

selection strategy that updates the decision at any step729

based on the feedback from previous steps. As shown730

in Figure 3, the Controller obtains sensor data and se-731

lects appropriate mode for processing the data. The pro-732

cessed data is transformed and fed back to actuators733

which provides the user with output using the chosen734

medium (voice description of the classified object in our735

use case application).736

The Controller consists of a process, Mode Selec-737

tor, which is responsible for gathering sensor data, se-738

lecting appropriate mode and monitoring the timing739

deadline violations. Mode Selector is modeled using740

Mealy machine, Msel as shown in Figure 6. Msel con-741

sists of 7 symbolic states with Idle being the initial742

state. From Idle state, the state machine transitions743

to SyncWithSLO state after receiving Start event. The744

transition from SyncWithSLO is caused by the activa-745

tion of TimeOut(t2) event that pushes the state machine746

into GatheringSensorData while emitting GetSen-747

sorData event. This event activates a system level pro-748

cess to pull data from various sensors. If this task is749

not completed in t3 secs, the TimeOut(t3) event forces750

the state machine back to SyncWithSLO. If the task of751

acquiring sensor data finishes before deadline, the state752

machine transitions to SelectingMode while produc-753

ing EvaluateConn event.754

EvaluateConn starts another asynchronous process,755

p, to acquire signal strength level and check the esti-756

mated execution mode. If the execution mode is remote757

and signal strength is above the threshold, only then re-758

mote mode is selected at run time, which is signaled759

by this asynchronous task by emitting SwitchToRemote760

event, that enables Msel to jump to SendingData. How-761

ever, in the past if for the same access point, both the762

conditions were met and yet timing deadline had failed,763
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Figure 6: Mode Selector State Machine

then local mode will be selected as long as client device764

is connected to the same access point.765

After getting SwitchToRemote event, Msel initiates766

data sending service by producing SendData event and767

moves to SendingData. The state machine waits for t0768

to receive the acknowledgment for the transmitted data769

by the server. If the acknowledgment does not arrive, it770

jumps to ExecutingLocal, whereas in the other case,771

the state machine transitions to ExecutingRemote and772

waits for the final response. If the response comes773

within t4 secs, state machine jumps to SyncWithSLO774

and waits for the next cycle. However, if the response775

does not come within the deadline, an SLO violation is776

noted.777

If the asynchronous process, p, produces Switch-778

ToLocal or does not emit any signal within time779

interval t5 then Msel jumps to ExecutingLocal780

from SelectingMode. While transitioning to781

ExecutingLocal, the state machine generates an782

event, ProcessDataLocal to trigger local data process-783

ing service. If the data is not processed with in t1784

secs, TimeOut(t1) forces the state machine to move to785

SyncWithSLO and SLO violation is noted again. On786

the other hand if t1 deadline is not violated, state ma-787

chine also moves to back SyncWithSLO and waits till788

the next cycle starts.789

5. Experimental Validation790

We now present the results of empirically evaluat-791

ing URMILA’s capabilities and validating the claims we792

made by answering the following questions:793

• How effective is URMILA’s execution time esti-794

mation on heterogeneous hardware? §5.3.1795

• How effective is URMILA’s connectivity and net-796

work latency estimation considering user mobil-797

ity? §5.3.2798

• How effective is URMILA in assuring SLOs?799

§5.3.3800

• How much energy can URMILA save for mobile801

user?§5.3.3802

• How does URMILA compare to other algo-803

rithms?§5.3.3804

5.1. IoT Application Use Case805

We assume the applications are containerized and can806

be deployed across edge and fog/cloud thereby elimi-807

nating the need to continuously re-deploy the applica-808

tion logic between the fog and edge devices. However,809

for platforms such as Android cannot yet run contain-810

ers, a separate implementation for Android device and811

fog/cloud are used and it is just a matter of dynamically812

(de)activating the provisioned task on either the edge or813

fog device based on URMILA’s resource management814

decisions.815

For the experimental evaluation, we use the cogni-816

tive navigational assistance use case from Section 2.2.817

Since similar use cases reported in the literature are not818

available for research or use obsoleted technologies, and819

also to demonstrate the variety in the edge devices used,820

we implemented two versions of the same application.821

The first implementation uses an Android smartphone822

that inter-operates with a Sony SmartEyeGlass, which823

is used to capture video frames as the user moves in a824

region and provides audio feedback after processing the825

frame. The second version comprises a Python applica-826

tion running on Linux-based board devices such as Min-827

nowBoard with a Web camera. The edge-based and fog-828

based image processing tasks implement MobileNet and829

Inception V3 real-time object detection algorithms from830

Tensorflow, respectively.831

For our evaluations we assume that users of URMILA832

will move within a region, such as a university campus,833

with distributed WAPs or wireless hotspots owned by834

internet service providers some of which will have an835

associated MDC. We also assume an average speed of836

5 kms/hour or 3.1 miles/hour for user mobility while837

accessing the service.4 Note that URMILA is not re-838

stricted to this use case alone nor to the considered user839

mobility speeds. Empirical validations in other scenar-840

ios remain part of our future work.841

5.2. Experimental Setup842

We create two experimental setups to emulate real-843

istic user mobility for our IoT application use case as844

follows:845

4https://goo.gl/cMxdtZ
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First Setup: We create an indoor experimental sce-846

nario with user mobility emulated over a small region847

and using our Android-based client. The Android client848

runs on a Motorola Moto G4 Play phone with a Qual-849

comm Snapdragon 410 processor, 2 GB of memory and850

Android OS version 6.0.1. The battery capacity is 2800851

mAh. It is connected via bluetooth to Sony SmartEye-852

glass SED-E1 which acts as both the sensor for captur-853

ing frames and the actuator for providing the detected854

object as feedback. The device can be set to capture the855

video frames at variable frames per second (fps). We856

used a Raspberry Pi 2B running OpenWRT 15.05.1 as857

our WAP, which operates at a channel frequency of 2.4858

GHz.859

We set the application SLO to 0.5 second based on a860

previous study, which reported mean reaction times to861

sign targets to be 0.42-0.48 second in one experiment862

and 0.6-0.7 second in another [23]. Accordingly, we863

capture the frames at 2 fps, while the user walking at864

5 kms/hour expects an update within 500 ms if the de-865

tected object changes.866

Second Setup: We emulate a large area containing867

18 WAPs, four of which have an associated MDC. We868

experiment with different source and destination scenar-869

ios and apply the latency estimation technique to es-870

timate the signal strength at different segments of the871

entire route. We then use three OpenWRT-RaspberryPi872

WAPs to emulate the signal strengths over the route by873

varying the transmit power of the WAPs at the handover874

points, i.e., where the signal strength exceeds or drops875

below the threshold of -67 dBm. We achieve this by876

creating a mapping of the received signal strength on877

the client device at the current location and varying the878

transmit power of the WAP from 0 to 30 dBm.879

For the client, we use our second implementation880

comprising Minnowboard Turbot, which has an Intel881

Atom E3845 processor with 2 GB memory. The device882

runs Ubuntu 16.04.3 64-bit operating system and is con-883

nected to a Creative VF0770 webcam and Panda Wire-884

less PAU06 WiFi adapter on the available USB ports. In885

this case too, we capture the frames at 2 fps with a frame886

size of 224x224. To measure the energy consumption,887

we connect the Minnowboard power adapter to a Watts888

Up Pro power meter. We measure the energy consump-889

tion when our application is not running, which on av-890

erage is 3.37 Watts. We then run our application and891

measure the power every second. By considering the892

power difference in both scenarios, we derive the energy893

consumption per period for a duration of 500 ms.894

Application Task Platform: The Android device895

runs Tensorflow Light 1.7.1 for the MobileNet task. The896

Linux client runs the task in a Docker container. We use897

this model so that we can port the application across898

platforms and benefit from Docker’s near native perfor-899

mance [24]. We use Ubuntu 16.04.3 containers with900

Keras 2.1.2 and Tensorflow 1.4.1.901

Micro Data Center Configuration: For the deploy-902

ment, we use heterogeneous hardware configurations903

shown in Table 2. The servers have different number of904

processors, cores and threads. Configurations F, G and905

H also support hyper-threads but we disabled them in906

our setting. We randomly select from a uniform distri-907

bution of the 16 servers specified in Table 2 and assign908

four of them to each MDC. In addition, for each server,909

the interference load and their profiles are selected ran-910

domly such that the servers have medium to high load911

without any resource over-commitment, which is typi-912

cal of data centers [25]. Although the MDCs are con-913

nected to each other over LAN in our setup, to em-914

ulate WANs with multi-hop latencies, we used www.915

speedtest.net on intra-city servers for ping latencies916

and found 32.6 ms as the average latency. So, we added917

32.6 ms ping latency with a 3 ms deviation between918

WAPs using the netem network emulator.919

The Docker guest application has been assigned 2 GB920

memory and 4 CPU-pinned cores. For our experimen-921

tation, we use a server application that listens on TCP922

port for receiving the images and sending the response.923

Please note, our framework is independent of the com-924

munication mechanism as long as we have an accurate925

measure of network latency for the size of data trans-926

ferred. Thus, we could also support UDP (unreliable)927

and HTTP (longer latency).928

The size of a typical frame in our experiment929

is 30 KB. For the co-located workloads that cause930

performance interference, we use 6 different test931

applications from the Phoronix test suite (www.932

phoronix-test-suite.com/), which are either CPU,933

memory or disk intensive, and our target latency-934

sensitive applications, which involve Tensorflow infer-935

ence algorithms.936

5.3. Empirical Results937

To obtain the response time, we need the edge-based938

task execution time, and the fog-based execution time939

plus network delay. In Equation (3), there are three main940

components, tlocal(u), tremote(u, s) and tnetwork(u, s, p) and941

we need accurate estimates of all three at deployment942

time such that we could adhere to SLO requirements.943

tlocal(u) has negligible variations as long as the client944

device is running only the target application u which is945

a fair assumption for the mobile devices.946

When the MinnowBoard Linux client device pro-947

cesses a 224x224 frame, the measured mean execution948
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Table 2: Server Architectures

Conf sockets/cores/
threads/ GHz

L1/L2/L3
Cache(KB)

Mem Type/
MHz/GB

Count

A 1/4/2/2.8 32/256/8192 DDR3/1066/6 1
B 1/4/2/2.93 32/256/8192 DDR3/1333/16 2
C 1/4/2/3.40 32/256/8192 DDR3/1600/8 1
D 1/4/2/2.8 32/256/8192 DDR3/1333/6 1
E 2/6/1/2.1 64/512/5118 DDR3/1333/32 7
F 2/6/1/2.4 32/256/15360 DDR4/2400/64 1
G 2/8/1/2.1 32/256/20480 DDR4/2400/32 2
H 2/10/1/2.4 32/256/25600 DDR4/2400/64 1

times for MobileNet and Inception V3 are 434 ms and949

698.6 ms, with standard deviations of 8.6 ms and 12.9950

ms, respectively.951

Since we have already measured the efficacy of952

NUMA-aware deployment in Figure 5, we employ953

NUMA-awareness in all the experimental scenarios.954

5.3.1. Accuracy of Performance Estimation955

We report on the accuracy of the offline learned per-956

formance models. For tremote(u, s), in addition to hard-957

ware type w, we also consider the server load. We first958

measure tisolation(u,w) for each hardware type given in959

Table 2, and the results are shown in Figure 7a. We960

observe that the CPU speed, memory and cache band-961

width and the use of hyper-threads instead of physi-962

cal cores play a significant role in the resulting perfor-963

mance. Thus, the use of a per-hardware configuration964

performance model is a key requirement met by UR-965

MILA. We also profile the performance interference us-966

ing gradient tree boosting regression model with tools967

we developed in [7].968

Figure 7b shows the estimation errors on different969

hardwares, which are well within 10% and hence can970

be used in our response time estimations by allowing971

for a corresponding margin of error.972

5.3.2. Accuracy of Latency Estimation973

We evaluate the accuracy of URMILA’s network la-974

tency estimation module that calculates tnetwork(u, s, p).975

From Equation (2), there are two main components to it:976

last-hop latency, tu,ap(u,p) and WAN latency, tap(u,p),ap(s).977

tap(u,p),ap(s) remains stable over a duration of time [26,978

27] which is sufficient for URMILA scenarios and we979

emulate these as described in Section 5.2. Thus, we are980

left with tu,ap(u,p). As the received signal strength is a key981

factor for last hop latency, we determine γ for Equation982

(14) for a typical access point described in Section 5.2983

for the indoor environment of our lab. We used the An-984

droid device to measure signal strength and network la-985

tency for the used data transfer size. Figure 8a shows986
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Figure 7: Performance Estimation Model Evaluations

the results where we found γ to be 1.74, inline with the987

expected indoor value of 1.6-1.8 as described in Sec-988

tion 4.3. Figure 8b, affirms our assertion that network989

latency remains near constant within a fixed range of990

received signal strength.991

Next, we measure network latency for five different992

routes on our selected campus area with 18 WAPs. We993

chose γ = 2 for outdoors [17] and generated varied sig-994

nal strengths for the entire path on five routes. Using995

these values, we setup the WAPs such that the client de-996

vice experiences WAP handovers and regions with no997

connectivity. Figure 9 shows the results for the five998

routes (R1–R5). The shaded areas show the regions999

with no network connectivity and regions with differ-1000

ent colors show connectivity to different WAPs. The1001

green line is the signal strength and the black line is the1002

mean latency. There are gaps in latency values, which1003

indicate that the client device is performing handover to1004

the access point. We observe from these plots that even1005

though the mean latency values are low when connected1006

to the wireless network, there are large latency devia-1007

tions. For example, on route R1 at t = 400s, the mean1008
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Figure 8: Signal Strength and Network Latency Variations with Dis-
tance

latency is 52ms but the 99th percentile latency is 384ms.1009

Hence, for ensuring SLOs, we need to use the required1010

SLO percentile values from our database of network la-1011

tencies on the user’s route as described in Algorithm 1.1012

5.3.3. Efficacy of URMILA’s Fog Server Selection1013

We evaluate how effective is URMILA’s server selec-1014

tion technique in ensuring that SLOs are met. We eval-1015

uate the system for the five routes described above and1016

set four of the 18 available access points as MDCs and1017

assign servers as described in Section 5.2. We compare1018

URMILA against different mechanisms. One approach1019

is when we perform everything locally (Local), and an-1020

other approach is the maximum network coverage (Max1021

Coverage) algorithm, where the server is selected based1022

on the network connectivity.1023

For this set of experiments, we keep the deployment1024

(Equation (4)) and transfer (Equation (5)) costs constant1025

in our Algorithm 1 for all the scenarios. We also set the1026

required SLO at 95th percentile of the desired response1027

time of 500ms (2 fps). We then optimize for energy con-1028

sumption (Equation (6)) while meeting the constraints1029

(Equations (8)-(13)).1030

Figure 10a reveals that if we run higher accuracy In-1031

ception as the target application, the Local mode always1032

misses the deadline of 500ms, however, the lower accu-1033

racy MobileNet always meets the deadline (Figure 10b).1034

Nevertheless, from Figure 11 we observe that while ex-1035

ecuting higher accuracy Inception V3 algorithm, UR-1036

MILA consumed 39.61% less energy compared to Lo-1037

cal mode on an average . Figure 10d shows that UR-1038

MILA meets the SLO 95% of the time for all routes1039

while consuming 9.7% less energy in comparison to1040

Max Coverage (Figure 10c).1041

The Max Coverage algorithm performed worse than1042

URMILA for energy consumption and on 4 out of 51043

routes for response time consumes 9.7%. For these ex-1044

periments Least loaded performs at par with URMILA.1045

Please note as URMILA considers both the server load1046

and and network coverage, it will perform at least at par1047

to the other two techniques for assuring SLOs.1048

We now demonstrate the scenario when URMILA1049

performs better that Least loaded. In our current exper-1050

imental setup, we considered there is similar latencies1051

between the access points tap(u,`),api and for the last hop,1052

tu,ap(u,`) channel utilization and connected users are less.1053

However, this is not usually the case. Thus, we intro-1054

duce use a latency value of 100.0ms with 10% devia-1055

tion for some of the access points. In real deployments,1056

URMILA will be aware of this latency by WAP to WAP1057

measurements. Thus, as depicted in Figure 12, for Least1058

Loaded, SLOs will be violated even for best perform-1059

ing server due to the ignorance about the network com-1060

munication delay. However, URMILA’s robust runtime1061

component is aware of the deployment plan and per-1062

forms execution locally for the WAPs that cannot meet1063

the constraints.1064

In the above experiments, we considered that there is1065

sufficient gap between when the user requests the ser-1066

vice and when she actually needs it. However, this may1067

not be true and we need to consider the transfer and ini-1068

tialization costs of Equation (5). We setup Docker pri-1069

vate registry and shaped the network bandwidth such1070

that we could do the measurements for image overlays1071

being transferred of different sizes. Table 3 depicts the1072

same.1073

Table 3: Transfer and Initialization Cost Measurements

Image
Size
(MB)

Duration
at 10 Mbps

Duration
at 1 Mbps

Cached - 13.2s 13.46s
Overlay 1 111 31.6s 127.08s
Overlay 2 440 50.26s 261.87s

6. Related Work1074

Since URMILA considers the three dimensions of1075

performance interference issues, mobility-aware re-1076

source management and exploiting edge/fog holisti-1077

cally, we provide a sampling of the prior work in these1078

areas and compare the URMILA solution with these ef-1079

forts. An earlier, shorter version of the URMILA work1080
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Figure 9: Observed Mean, Std Dev, 95th and 99th Percentile Network Latencies and Received Signal Strengths on Emulated Routes

appears in [9]. This paper significantly improves upon1081

the earlier version by providing an optimization prob-1082

lem formulation, more details on the latency estimation1083

and effects of corepinning, and detailed steps during1084

run-time. To the best of our knowledge, we have not1085

found any prior efforts that consider all these three di-1086

mensions simulataneously.1087

6.1. Performance Interference-aware Resource Opti-1088

mization1089

There have been a number of prior efforts that1090

account for performance interference during server1091

selection to host cloud jobs. Bubble-Flux [4] is1092

a dynamic interference measurement framework that1093

performs online QoS management while maximizing1094

server utilization and uses a dynamic memory bubble1095

for profiling by pausing other co-located applications.1096

Freeze’nSense [28] is another approach that performs a1097

short duration freezing of interfering co-located tasks.1098

The advantage of an online solution is that an a priori1099

knowledge of the target application is not required and it1100

does not need additional hardware resources for bench-1101

marking. Although in these works, a priori knowledge1102

of the target application is not required nor extra bench-1103

marking efforts, pausing (even for short duration) of co-1104

located applications is not desirable and in several cases1105

not even possible as these applications will have their1106

own SLOs to be met.1107

DeepDive [29] is a benchmarking based effort1108

that identifies the performance interference profile by1109

cloning the target VM and benchmarking it when1110

QoS violations are encountered. However, this is too1111

expensive an operation to be employed at run-time.1112

Paragon [2] is a heterogeneity- and interference-aware1113

data center scheduler the applies analytical techniques1114

to reduce the benchmarking workload. URMILA falls1115

in this category of work, nevertheless, it goes a step fur-1116

ther and also considers scheduler-specific metrics which1117

play a significant role in accurate performance estima-1118

tion on multi-tenant platforms.1119
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Figure 12: Response Time Comparison for Route R5 when one of the
WAP is Experiencing Larger Latency

6.2. Mobility-aware Resource Management1120

MOBaaS [30] is a mobile and bandwidth prediction1121

service based on dynamic Bayesian networks. Sousa et1122

al. [6] utilize MOBaaS to enhance the follow-me cloud1123

(FMC) model, where they first perform mobility and1124

bandwidth prediction with MoBaaS and then apply a1125

multiple attribute decision algorithm to place services.1126

However, this approach needs a history of mobility pat-1127

terns by monitoring the users. URMILA currently uses1128

a deterministic path for the user, which provides a more1129

accurate and efficient solution. However, future work1130

will explore probabilistic routes taken by the mobile1131

user.1132

MuSIC defines applications as location-time work-1133

flows, and optimizes their QoS expressed as the power1134

of the mobile device, network delay and price [31]. Like1135

MuSIC, URMILA aims to minimize energy consump-1136

tion of edge devices, communication costs, and cost of1137

operating fog resources. Unlike MuSIC, which evalu-1138

ates its ideas via simulations, URMILA has been eval-1139

uated empirically. In addition, MuSIC assumes certain1140

variations in network patterns without applying any pre-1141

diction/estimation methodology, while URMILA pro-1142

vides concrete capabilities to predict/estimate network1143

behavior.1144

Additional prior work includes [32], which consid-1145

ers different classes of mobile applications and apply1146

three scheduling strategies on fog resources. Likewise,1147

Wang et al. [33] account for user mobility and pro-1148

vide both offline and online solutions for deploying ser-1149

vice instances considering a look-ahead time-window.1150

Both these approaches do not consider edge resources1151

for optimization as we do in URMILA. Similarly, ME-1152

VoLTE [34] is an approach to offload video encoding1153

from mobile devices to cloud for reducing energy con-1154

sumption. However, the approach does not consider la-1155

tency issues when offloading.1156

6.3. Resource Management involving Fog/Edge Re-1157

sources:1158

Cloudlet [1] is a miniature data center closer to the1159

user, possibly just one wireless hop away, that is meant1160

to overcome the latency issues faced by edge-based ap-1161

plications that must use centralized cloud resources that1162

are many network hops away. This vision was refined1163

into a three tier architecture [8] comprising the edge, fog1164

and cloud tiers. This is the model used by URMILA.1165

CloudPath [35] expands on the cloud-fog-edge ar-1166

chitecture [8] by proposing the notion of path comput-1167

ing comprising n tiers between the edge and the cloud,1168

where applications can be dynamically hosted to meet1169

their processing and storage requirements. CloudPath1170

requires applications to be stateless and made up of1171

short-lived functions – similar to the notion of function-1172

as-a-service, which is realized by serverless comput-1173

ing solutions with state in externalized databases. We1174

believe that the research foci of CloudPath and UR-1175

MILA are orthogonal; the CloudPath platform and its1176

path computing paradigm can potentially be used by1177

URMILA to host its services and by incorporating our1178

optimization algorithm in CloudPath’s platform.1179

The LAVEA project [36] comes close to our vision of1180

URMILA yet their goals are complementary. LAVEA1181
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supports a video analytics framework that executes in1182

the fog/edge hierarchy similar to URMILA. They use a1183

slightly different terminology referring to the edge de-1184

vices as mobile devices, and fog devices as edge de-1185

vices. “Edge-first” (i.e., execute on the fog resources)1186

is the main philosophy for LAVEA. Like CloudPath,1187

LAVEA also leverages serverless computing thereby1188

requiring stateless applications. LAVEA focuses on1189

scheduling and prioritizing tasks on the fog resources1190

when multiple, independent client jobs get offloaded1191

to fog nodes. It also supports coordination among1192

fog nodes. While URMILA can certainly benefit from1193

LAVEA’s fog node scheduling algorithms, it focuses on1194

ensuring SLOs of individual services and makes every1195

effort to maintain high availability of the service by ex-1196

ecuting it either on the edge or the fog node, and more-1197

over, also allows mobility of users.1198

Precog [37] is another edge-based image recognition1199

system. Like URMILA they also recognize the need to1200

conserve battery resources on edge devices and hence1201

can perform selective image recognition on the edge de-1202

vices. To speed up execution on fog nodes, they sup-1203

port the notion of the so called recognition cache, which1204

prefetch only parts of the trained models that are used to1205

recognize images. Unlike Precog, URMILA performs1206

these tasks by maintaining two different versions of the1207

service: one that can execute on the edge and one on the1208

fog, and dynamically switches between them to meet1209

the SLOs.1210

Our prior work called INDICES [7] is an effort that1211

exploits the cloud-fog tiers. INDICES decides the best1212

cloudlet (i.e., fog resource) and the server within that1213

cloudlet to migrate a service from the centralized cloud1214

so that SLOs are met. INDICES does not handle user1215

mobility and its focus is only on selecting an initial1216

server on a fog resource to migrate to. It does not deal1217

with executing tasks on the edge device. Thus, UR-1218

MILA’s goals are to benefit from INDICES’ capabilities1219

by exploiting its initial server selection in the fog layer1220

and extend it by intelligently adapting between fog and1221

edge resources while supporting user mobility.1222

7. Conclusion1223

Although fog/edge computing have enabled low la-1224

tency edge-centric applications by eliminating the need1225

to reach the centralized cloud, solving the performance1226

interference problem for fog resources is even harder1227

than traditional cloud data centers. User mobility am-1228

plifies the problem further since choosing the right fog1229

device becomes critical. Executing the service at all1230

times exclusively on the edge devices or fog resources1231

is not an alternative either. This paper presented UR-1232

MILA to holistically address these issues by adaptively1233

using edge and fog resources to make trade-offs while1234

satisfying SLOs for mobility-aware IoT applications.1235

7.1. Discussion and Broader Impact1236

URMILA has broader applicability beyond cognitive1237

assistance application that is evaluated in this work. For1238

instance, URMILA can be used in cloud gaming (such1239

as Pokemon GO), 3D modeling, graphics rendering, etc.1240

We could apply URMILA for energy efficient route se-1241

lection and navigation. For that, we can easily modify1242

Algorithm 1 to find the most energy efficient route.1243

By no means does URMILA address all the chal-1244

lenges in this realm and our future work will involve: (a)1245

considering probabilistic routes taken by the user; (b)1246

evaluating URMILA in other applications, e.g., smart1247

transportation where the speed is higher and distances1248

covered are larger so choosing only one fog server at ini-1249

tialization may not be feasible; (c) leveraging the ben-1250

efits stemming from upcoming 5G networks; and (d)1251

showcasing URMILA’s strengths in the context of mul-1252

tiple competing IoT applications.1253

The software and experimental setup of URMILA is1254

available in open source at github.com/doc-vu.1255

7.2. Opportunities for Future Work1256

The following form the dimensions of our future1257

work.1258

Last Hop latency: For un-profiled routes, we only1259

considered received signal strength for wireless network1260

latency estimation. However, channel utilization and1261

connected users play a significant role in latency varia-1262

tions. To overcome this potentially less accurate latency1263

estimation, we can collect these metrics from WAPs, but1264

this will require access to their data. Other option is to1265

use a predictive approach based on data collected for1266

other profiled routes.1267

Speed of mobility and route determination: For1268

the user mobility, we considered constant speed mobil-1269

ity and deterministic routes, however, in general the user1270

can deviate from the ideal route and have a varying ve-1271

locity. This may render the initial deployment plan sub-1272

optimal. We account for this in our server allocation,1273

but, the runtime algorithm can further be improved to1274

intelligently adjust the route plan based on current dy-1275

namics and probabilistic routes.1276

Overhead: URMILA incurs cost for both the client1277

device and the service provider due to metric collection1278

on each server. The overhead of INDICES monitoring1279

agents [7] is ≈ 1%. We also need to maintain a database1280
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of performance metrics at each MDC and the gm needs1281

to perform learning. In addition, the cost of profiling1282

each new application may not be insignificant depend-1283

ing on the lifespan of the application, However, this is1284

a one time cost and is required for overcoming perfor-1285

mance interference. On the client device, we made a1286

conscious effort to not to use GPS coordinates while the1287

user is mobile. This is because GPS has significant en-1288

ergy overhead and we did not want our application to be1289

limited to navigational applications. In addition, turn-1290

ing on wireless and handovers are expensive. However,1291

most mobile devices have their wireless service turned1292

on these days, so we do not consider it as additional1293

cost.1294

Serverless Computing: Since we target container-1295

ized stateless applications, we could potentially make1296

our solution apt for serverless computing, wherein the1297

same containers are shared by multiple users and the1298

application scale as the workload varies, and are highly1299

available.1300

Future Direction: Apart from what we discussed,1301

our solution can be enhanced by controlling frame rates1302

based on the user needs and location. We considered1303

monolithic applications, we could allocate services with1304

multiple components that are deployed across the spec-1305

trum optimally. In future, we could address concerns re-1306

lated to trust, privacy, billing, fault tolerance and work-1307

load variations.1308
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