
On-the-fly scheduling vs.
reservation-based scheduling for
unpredictable workflows

Journal Title
XX(X):1–15
c©The Author(s) 2018

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Ana Gainaru1, Hongyang Sun1, Guillaume Aupy2, Yuankai Huo1, Bennett A. Landman1 and
Padma Raghavan1

Abstract
Scientific insights in the coming decade will clearly depend on the effective processing of large datasets generated by
dynamic heterogeneous applications typical of workflows in large data centers or of emerging fields like neuroscience.
In this paper, we show how these big data workflows have a unique set of characteristics that pose challenges for
leveraging HPC methodologies, particularly in scheduling. Our findings indicate that execution times for these workflows
are highly unpredictable and are not correlated with the size of the dataset involved or the precise functions used in the
analysis. We characterize this inherent variability and sketch the need for new scheduling approaches by quantifying
significant gaps in achievable performance. Through simulations, we show how on-the-fly scheduling approaches can
deliver benefits in both system-level and user-level performance measures. On average, we find improvements of up
to 35% in system utilization and up to 45% in average stretch of the applications, illustrating the potential of increasing
performance through new scheduling approaches.

Keywords
On-the-fly scheduling, reservation-based scheduling, neuroscience applications, unpredictable workloads

1 Introduction

High performance computing (HPC) has continued to
advance infrastructure with multi-core heterogeneous nodes
connected by fast networks with extensive storage capa-
bilities in order to enable computational, modeling and
simulation workflows to leverage massive levels of parallel
processing. Such computational modeling workflows have
predictable resource requirements, such as processing, stor-
age, etc., which are utilized by the runtime system to deliver
high performance.

Unlike traditional HPC workflows, in the last several
years, new scientific fields are emerging that develop
modeling and simulation workflows with unpredictable
resource requirements. One such field is neuroscience whose
workflows are broadly representative to this trend. In this
paper, we characterize emerging neuroscience workflows
that exhibit unpredictable resource requirements to inform
the challenges and opportunities they pose for HPC including
in particular scheduling.

Traditional scientific applications are focused on perfor-
mance and have successfully utilized the power of HPC
infrastructures. They include large monolithic applications
having hundreds of thousands lines of code that have been
developed by the community for years and that have been
tunned to scale on HPC systems. For example, the NAMD, a
widely used scientific application that implements a parallel
molecular dynamics code designed for high-performance
simulation of large biomolecular systems, contains over
200K lines of code and has been developed and tunned
by the community to achieve high performance on HPC

architectures for more than 20 years. In contrast, neuro-
science workflows focus around human subject studies and
put a higher emphasis on productivity than performance.
The many stages that compose a workflow have complex
and dynamic dependencies between them. Stages are usually
based on scripts and can change over time depending on the
needs of each analysis as well as due to new functionalities
that are being developed in order to gain scientific insight.

Reservation-based batch scheduling using priority queues
and backfilling algorithms is the current de facto solution in
implementing HPC schedulers. These systems are designed
for traditional scientific applications and can have sub-
optimal performance for unpredictable workflows. There
is currently a mismatch between the characteristics of
these workflows and how their characteristics could be
leveraged at runtime to deliver high performance unless
all limitations are better understood. This paper highlights
several essential differences between typical HPC scientific
applications and unpredictable workflows by providing an
in-depth analysis of the variability and unpredictability of the
latter. Computational resources at massive scale need to be
engaged in novel ways in order to accommodate the specific
needs. We show that, by introducing “on-the-fly” scheduling
into the runtime system, these workflows can leverage the
HPC resources to achieve improved performance at both

1Vanderbilt University, Nashville, TN, USA
2 Inria & Labri, Univ. of Bordeaux, Talence, France

Corresponding author:
Ana Gainaru, Vanderbilt University
Email: ana.gainaru@vanderbilt.edu

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

system and user levels, leading to better resource utilization
and faster scientific discoveries.

The main contributions of this paper are the following:

• A detailed characterization of the resource require-
ments of neuroscience workflows highlighting what
makes them fundamentally different compared to tra-
ditional HPC workloads. While we focus on neuro-
science, we believe the resource variability and unpre-
dictability of these workloads are characteristic of
applications in other emerging fields.
• An extensive set of simulation results that evaluate

current reservation-based batch schedulers for neu-
roscience workflows on both system-level and user-
level performance measures (e.g., system utilization
and average application stretch). We show that “on-
the-fly” approaches that do not use reservations can
be used successfully to deliver higher performance on
these highly variable and unpredictable workloads.
• An illustration of how “on-the-fly” scheduling can be

integrated into the current HPC runtime systems to
form hybrid schedulers with a focus on two possible
directions: reservation-free scheduling with priority
queues and scheduling based on ranges of resource
requirements.

The rest of this paper is organized as follows.
Section 2 presents an overview of HPC runtime systems
together with current theoretical and practical scheduling
strategies. Section 3 provides a detailed analysis of
neuroscience workflows highlighting characteristics typical
of unpredictable workloads and key differences from
traditional HPC applications. We show that these workflows
depend on intricate features within input data and classical
complexity functions can no longer be used to predict their
resource requirements. Section 4 presents the simulation
methodologies and describes the typical batch scheduler
used by HPC systems together with “on-the-fly” schedulers.
This section introduces the generation of synthetic workloads
that mimic the characteristics of neuroscience workflows,
the metrics to evaluate the performance, along with the
simulation results of the schedulers. The results highlight the
limitations of current HPC schedulers and demonstrate that
unlike traditional batch schedulers, “on-the-fly” scheduling
is able to more readily leverage the HPC resources to deliver
high performance at both system and user levels. Section
5 discusses potentially interesting directions to accelerate
these emerging fields either by including application-level
optimizations or by more complex features that could be
implemented in HPC schedulers. Finally, Section 6 provides
brief concluding remarks.

2 Background and related work

This section presents an overview of the current scheduling
solutions in HPC runtime systems from both theoretical
(Section 2.1) and practical (Section 2.2) perspectives. We
also highlight the challenge in scheduling for workloads with
unpredictable resource requirements (Section 2.3).

2.1 Theoretical work on HPC scheduling

Many theoretical problems of scheduling a batch of jobs
on a multiprocessor system have been shown to be NP-
complete (Garey and Johnson (1990)). Thus, much research
has been devoted to the design of approximation algorithms
and heuristic solutions. In the seminal work, Graham (1966)
showed that list scheduling, which arbitrarily orders the jobs
in a list and schedules them one by one onto the least-
loaded processor, is (2− 1

m)-approximation with respect to
the overall completion time of the jobs (a.k.a. makespan),
where m denotes the total number of processors that are
assumed to be identical. This result shows that list scheduling
essentially produces a makespan that is guaranteed to be no
longer than twice of the optimal solution. He also showed
that the longest job first (LJF) heuristic, which orders the
jobs in descending order of their execution times prior to
applying list scheduling, achieves (43 −

1
3m)-approximation

for makespan. When the objective is to minimize the sum
of response times of all jobs (a.k.a. total response time),
the problem turns out to be solvable in O(n log n) time
by the shortest job first (SJF) algorithm, which applies
list scheduling while ordering the jobs in ascending order
according to their execution times (Conway et al. (1967)).
Similar performance guarantees have also been obtained
under various other scheduling models, e.g., on non-identical
processors, with job release times, allowing preemptions.
The books by Pinedo (2008) and Brucker (2001) provide
comprehensive summary of these classical results.

While both LJF and SJF heuristics assume that the
job execution times are known a prior, it is not always
true in practice. To model the unknown execution times,
many papers have considered the online non-clairvoyant
scheduling model, which assumes no prior knowledge about
a job’s execution time until it successfully completes on a
processor. Since list scheduling is also applicable in this
scenario, it achieves a makespan that is (2− 1

m)-competitive
against an optimal offline scheduler. To minimize the total
response time, Motwani et al. (1993) showed that the round
robin (RR) algorithm, which at any time ensures that all
active jobs receive the same amount of processing time, is
(2− 2m

n+m)-competitive for scheduling a set of n batched
jobs. More sophisticated non-clairvoyant algorithms have
also been proposed (see, e.g., Shmoys et al. (1991); Chekuri
et al. (1997); Becchetti and Leonardi (2004)) with proven
competitive ratios under various objectives and scheduling
assumptions. We refer to Pruhs et al. (2004) for a survey of
results in this direction.

Another line of research to model the execution time
uncertainty is that of stochastic scheduling. Most work in
this scheduling paradigm assumes that the execution time
of a job follows a known probability distribution. In this
context, the shortest and longest expected processing times
first (SEPT and LEPT) algorithms, which are stochastic
variants of the SJF and LJF algorithms, are known to
minimize the expected total response time and expected
makespan, respectively, when the jobs’ execution times
follow exponential distributions (Bruno et al. (1981)). A
large body of work (see, e.g., Kleinberg et al. (1997); Goel
and Indyk (1999); Möhring et al. (1999)) has been done to
quantify the optimality and approximation under different

Prepared using sagej.cls

3

objectives and arbitrary execution time distributions. Niño
Mora (2009) gave a good survey of relevant results.

2.2 Current HPC scheduling in practice
The most commonly used resource managers in HPC are
based on various implementations of the Parallel Batch
System or more recently on Slurm (Yoo et al. (2003)).
Reservation-based batch scheduling using priority queues
and backfilling algorithms is the current de facto solution
in implementing HPC schedulers. Most implementations use
a four-step repetitive iteration algorithm in order to decide
which jobs to run and on what resources. A new cycle
is being triggered either by state changes, like starting,
ending and modifying a job or by reaching a timeout. In
the first step of the process, the scheduler communicates
with the resource manager, such as Torque (Mukherjee et al.
(2007)) or Slurm in order to update its information about
the cluster’s resources. Next, the scheduler decides which
jobs to start, in what order and where they will be executed.
Different policies are used to determine the exact method
used, but in all cases jobs are ordered in one or multiple
queues after which the scheduler attempts to execute them
on available nodes or cores in the cluster. For example, the
Moab (Capit et al. (2005)) scheduler calculates a priority
for each submitted job that can later be adjusted by system
administrators in order to target specific factors as being
more important than others. The jobs are then placed in one
queue ordered by the priority, after which Moab attempts
to start the jobs, beginning at the top and moving down the
queue. If a job cannot be started, Moab creates a reservation
for the given job and starts the backfill algorithm to find small
jobs in the queue that it will be able to start. If the chosen
job can be started, Moab switches to the job placement
algorithm by going through a simple elimination process:
i) all nodes that do not have enough resources to run the
job are eliminated from consideration (not enough memory
or not enough cores); ii) all nodes that cannot run the job
because of different policies are also removed (e.g. due to
reservations); iii) the remaining nodes are sorted based on
different priority requirements (e.g. given by administrators
to equalize node usage) and the top nodes/cores are selected
for execution. The last two steps in the scheduling process
are used for refreshing reservations and updating statistics.

There is a continuous trade-off between overall system
efficiency (increase cluster usage by scheduling primarily
large jobs) and application response (the time jobs need to
wait in queue to be executed). Different HPC schedulers use
different policies to deal with this trade-off by giving higher
priority to larger jobs and either using different backfilling
algorithms to execute smaller jobs or by adjusting priorities
depending on the time a job waited in the queue before being
scheduled for execution. Users submit jobs specifying the
amount of resources needed (number of nodes/cores as well
as optionally the type of nodes and/or the amount of memory
per core required by the application). The users must also
provide the expected runtime for each submitted job. The
scheduler takes all this information into account when setting
the job priorities as well as when choosing the set of nodes
for each execution. This workflow works well for scientific
applications since the amount of resources needed is known
in advanced with a fairly large probability and since there are

enough small jobs submitted so that backfilling algorithms
can hide the wasted cycles of the few less predictable jobs.

Clusters of commodity servers are currently a feasible
alternative to major computing platforms. These servers/data
centers use several computing frameworks, such as
MapReduce (Dean and Ghemawat (2008)) or Dryad (Isard
et al. (2007)), to simplify the usage of the cluster, each
working with a variety of different resource managers for
their job scheduling needs. The most common frameworks
include Hadoop, which uses YARN (Vavilapalli et al. (2013))
as its default resource manager, and Apache Spark (Zaharia
et al. (2016)), which comes with its own standalone resource
manager or with YARN or Mesos (Hindman et al. (2011)).
Unlike typical HPC resource managers, Mesos delegates
control over scheduling to the underlying frameworks. It
decides how many resources to propose to each framework
depending on the requests and different policies (like fair
sharing). The frameworks then decide which resources to
accept and which tasks to run on them. Another example
is YARN (Vavilapalli et al. (2013)), currently Hadoop’s
default resource manager. It decouples the programming
model from the resource management infrastructure, and
delegates it to application-level components. The global
resource manager matches cluster state against the resource
requirements reported by running applications. This allows
YARN to enforce global scheduling properties like priorities
for capacity or fairness purposes, but it generally requires
the scheduler to obtain an accurate understanding of
the applications’ resource requirements. Decentralized
scheduling models do not always lead to globally optimal
scheduling solutions, but for workloads that consist of fine-
grained tasks (as in MapReduce and Dryad), they typically
show good performance.

High-level frameworks like E-HEFT (Samadi et al.
(2018)) and Hive (Thusoo et al. (2010)) often treat a
workflow of MapReduce jobs as a DAG, each filtering,
aggregating, and projecting data at every stage of the
computation. E-HEFT takes into account the variety and
heterogeneity of virtual machines in a cloud computing
cluster (e.g., different bandwidths, transfer rates, and
processing capacities) and defines a schedule for running and
placing tasks so it minimizes the total execution time and the
unnecessary data transfers between virtual machines.

2.3 Scheduling challenges for unpredictable
workflows

HPC schedulers rely on accurate estimates for the requested
execution times. Reservation based scheduling, either by
using SJF, LJF or batch priority based algorithms cannot
deliver high performance when the estimates do not match
the actual runtime of the applications. Backfilling algorithms
are used to hide the wasted time caused by overestimation,
but their performance depends on the amount of available
small jobs in the waiting queue and on the size of
the difference between estimates and actual execution
times. Reservations guarantee fairness and global optimal
performance only when the execution times are known in
advance. For fields like neuroscience, this is not realistic (see
Section 3 for a detailed analysis). In our recent work, we have
started to develop reservation strategies for unpredictable

Prepared using sagej.cls

4 Journal Title XX(X)

(stochastic) workflows (Aupy et al. (2019)). This work is still
in its early phase and currently only focuses on minimizing
the expected makespan of a single job. Ultimately, we would
like to combine these strategies with the ones developed in
this new work. In this paper, we postpone the scheduling
decision to the moment a resource becomes available in
the system. Instead of using reservations to decide when an
application will run, we combine greedy scheduling with the
“on-the-fly” concept to propose novel scheduling solutions
that can be applied to workflows whose execution times are
unpredictable.

Task based schedulers as well as resource managers
designed for clusters of commodity servers take advantage
of the fact that their workloads consist of short tasks,
and only need to reallocate resources when tasks finish.
This reallocation happens frequently enough so that new
frameworks and tasks acquire their share quickly and
can start running without needing a reservation to ensure
their completion. Neuroscience applications do not share
properties with either HPC workloads or MapReduce tasks.
They typically run on a small number of processing units,
unlike HPC workloads that take advantage of the large
number of cores offered by an HPC machine. At the same
time, their execution takes large periods of time which makes
them less suited for MapReduce frameworks. In addition,
their resource requirements are wildly variable throughout
their execution and among instances of the same application.
In this paper, we highlight the limitation of these methods
and show the need for a new framework that can adapt
to stochastic resource requirements and a new paradigm in
exploiting HPC systems.

3 Characterization of neuroscience
workflows

In contrast to typical scientific applications, neuroscience
workflows are usually executed sequentially one after
another, and the execution of one workflow may require
the outputs of some previously completed ones. Moreover,
these dependencies are not fixed and can change over time
depending on the needs of the neuroscience community.
In addition to the dynamic dependencies created between
workflows, each workflow typically contains several stages,
whose executions depend on the characteristics of the input
data, such as size, image quality or similarity to some internal
parameters. The modular nature of neuroscience code both
within and between workflows can make the execution
time and input/output data traffic of the different instances
vary by several orders of magnitude. In this section, we
characterize the variability in the resource requirements of
neuroscience workflows and highlight their key differences
with typical scientific applications that create performance
bottlenecks when running on current HPC systems. Based on
this characterization, we then create several sets of synthetic
workloads that will be used to evaluate the performance of
different scheduling schemes for these emerging workflows.

3.1 Variability in resource requirements
Figure 1 shows the variability in the I/O traffic and walltime
of two neuroscience workflows, namely, a whole brain
segmentation workflow (also known as Multi-Atlas; Asman

and Landman (2014)) and a diffusion QA and pre-processing
workflow (also known as dtiQA v2; Lauzon et al. (2013)).
The figure shows 500 runs for each workflow within a period
of 6 months (from September 2014 to February 2015) on
the Vanderbilt high-performance computing cluster called
ACCRE. In both workflows, there are large variations in the
resource requirements, both in execution time (from 11 to
45 hours) and in the amount of data generated (from a few
MBs to tens of GBs for example). We believe such variability
is due to a combination of code-level changes (over larger
periods of time) and variations in the input data (for instances
closer in time).

In fact, the highly variable resource requirements shown
in Figure 1 represent a common phenomenon that is
observed for many workflows used by the neuroscience
community. Figure 2 plots the aggregate information about
the resource requirements for 31 representative neuroscience
workflows (Harrigan et al. (2016)) run on the ACCRE cluster
between 2013 and 2016. We can see that most of these
workflows show a large variation with more than one order
of magnitude in both execution time and I/O traffic. Even
workflows with smaller variations, such as the Generic fMRI
workflow that implements a functional connectivity analysis
method, still show around 20% variation for its execution
time and over 10% variation for the I/O traffic. Furthermore,
workflows that share similar execution time characteristic
do not necessarily share similar I/O characteristic, and vice
versa. For example, the Multi-Atlas and dtiQA workflows
have similar walltime patterns, ranging from 8-10 hours to
over 40 hours, both with an average of aprox 70 hours.
However they show very different I/O traffic patters, the
Multi Atlas workflow has a small variation of only around
10% (in the order of tens of MBs) while the dtiQA workflow
can generate as traffic between a few MBs to GBs of data
depending on the input data it receives.

3.2 Unpredictability of resource requirements
Being able to schedule jobs with accurate predictions of their
expected walltimes is the cornerstone of high-performance
computing. Backfilling algorithms can be used to fill the
gaps when the applications’ resource requirements are over-
estimated. However, backfilling only works if there are
enough small jobs, and even in that case, it can be inefficient
when there is a large difference between the estimate and the
actual execution time.

In this section, we focus on quantifying the unpredictable
nature of neuroscience workflows’ resource requirements.
We show that the traditional complexity analysis breaks
down for these workflows due to a lack of correlation
between the input size and the execution time. We then
provide some possible explanations on the source of such
unpredictability.

Time complexity analysis is commonly used in computer
science to measure or estimate the worse case running time
of a program or an algorithm. In general, the execution time
T (n) of an algorithm can be expressed as a function of
its input size n using the big-O notation, which provides
a mathematical tool to formally describe the asymptotic
behavior of an algorithm’s running time with the growth of
its input size. Figure 3 shows the execution times predicted
using linear regression for two well-known algorithms,

Prepared using sagej.cls

5

(a) Walltime for Multi-Atlas (b) I/O traffic for Multi-Atlas

(c) Walltime for dtiQA (d) I/O traffic for dtiQA

Figure 1. The amount of data generated per core and the walltime for 500 instances of a whole brain segmentation workflow
(Multi-Atlas) and a diffusion QA and pre-processing workflow (dtiQA v2) running on the ACCRE cluster between September 2014
to February 2015. The instances are ordered by their submission time. The scatter plots show a great variability, from a few MB to
several GB for the I/O traffic and from a few hours to more than 40 hours for the walltime.

Figure 2. Range of walltime (in red) and I/O traffic (in green) for
31 representative neuroscience workflows running on the
ACCRE cluster between 2013 and 2016. The workflows are
sorted by their median walltime. Vertical lines show the intervals
between the minimum walltimes and the maximum walltimes,
bins show the 10th to 90th percentiles, and the horizontal lines
highlight the medians.

quicksort and dense matrix-matrix multiplication, based on
a number of sample runs with different input sizes. Note
that for these two algorithms, a complexity analysis gives
us the worse case complexity (respectively O(n log n) and
O(n1.5)∗). As expected, when the size of the input data is
n, the time complexities for the two algorithms follow the
prediction. In addition, one can notice the robustness of the

complexity of these algorithms to their input data. Indeed in
both case the mean squared errors (MSE) to the complexity
functions are small (< 0.01).

In an attempt to similarly quantify the time complexity
of neuroscience workflows, we looked at a number of
commonly used functions up to the cubic order of input
size: n 7→ 1, n 7→ log n, n 7→ n, n 7→ n log n, n 7→ n2, n 7→
n2 log n, n 7→ n3, and tried to use them to fit our execution
datasets with different input size n. The execution time
of an algorithm with complexity O(f(n)) can be roughly
defined by the equation a · f(n) + b. To obtain the constants
hidden behind the big-O with the best fitting curves, we ran
a regression algorithm using all the six complexity classes
above for each neuroscience workflow and chose the one that
gives the smallest mean squared error. Note that in when
discussing complexity, generally one consider the worse
case complexity. However here we interpolate the average
complexity since we want to study how predictable the
execution time can be. We show that even in this “nicer”
setup, the algorithms are not data-robust.

Out of all the workflows considered, only five workflows
have relatively high correlation (> 0.7) between the
observed execution time and the best execution time obtained

∗For multiplication of two k × k matrices, the input size is n = O(k2) and
the execution time is T = O(k3) = O(n1.5).

Prepared using sagej.cls

6 Journal Title XX(X)

(a) Quicksort

(b) Matrix-matrix multiplication

Figure 3. Fitted curves for the running times of (a) quicksort (b)
dense matrix-matrix multiplication with different input sizes. Blue
dots represent an execution of an randomly generated instance
with the corresponding input size and walltime. Red line
represents the fitted curve using linear regression.

Table 1. Neuroscience workflows that present either a high
correlation or a low MSE between the observed execution time
and the interpolatation “execution time as a function of input
data”.

Workflow Name Workflow Description Correlation MSE
fMRIQA v2 Functional QA and pre-processing 0.82 3.95
MAGM Normalize v1 Fusion of structure and diffusion 0.06 5.81
Bedpost v1 Probabilistic diffusion tractography 0.89 1861
pasmri v1 Diffusion model fitting 0.88 13264
dtiQA v2 Diffusion QA and pre-processing 0.64 1049.76
Multi-Atlas Whole brain segmentation 0.04 3795.97

with the interpolation. Only three workflows have a MSE
lower than ten. Table 1 presents details for the two best
correlation workflows (Bedpost and pasmri), two best MSE
workflows (fMRIQA and MAGM), and two interesting
workflows: Multi Atlas and dtiQA. Note that except for one
workflow (fMRIQA v2), which has a relatively low error
(MSE = 3.95) and high correlation (Pearson value of 0.82),
the others do not show a good fit.

Figures 4 shows the scatter plots for three neuroscience
workflows: the one with high correlation value and the
lowest MSE (the fMRIQA v2, a QA for functional magnetic
resonance imaging code); and the workflows presented in
Figure 1: the Multi-Atlas whole segmentation code and
the diffusion QA and pre-processing workflow; and their
respective best fitted curve. Each blue dot represents a
running instance from the logs with the corresponding
execution time and input data size, and the red line represents
the curve given by the best fitting complexity class (n log n,
constant and n2 log n respectively in this particular cases).

Generally speaking, the traditional complexity analysis
breaks down for neuroscience workflows. One possible
explanation is that the time complexity for these workflows
may be dictated by both the “size” and some measure
of “quality” of the input data. For example, the Multi-
Atlas workflow uses a statistical label fusion algorithm to
achieve brain segmentation by fusing 10 to 25 registered
atlases iteratively under the expectation maximization (EM)
fashion (Wang and Yushkevich (2013); Asman and Landman
(2014)). It is conceivable that the execution time for a
specific instance of the Multi-Atlas workflow could well
depend on the input image quality and on how similar the
input image is to the registered atlas entities, which go
beyond the simple “size” of the input data.

3.3 Performance vs. productivity
The HPC runtime system receives multiple neuroscience
workflows submitted by several users at every given moment
of time. Figure 5 presents the usage statistics per day for
the neuroscience workflows during one year of ACCRE
activity. An average day sees up to 5 to 10 different users
submitting more than 100 workflows. Different days show
different patterns with a large variety in the number of
computational and I/O resources needed. Interestingly, a
higher number of workflows executed in a day does not
always correspond to a higher I/O traffic. While overall
this pattern is not much different than running traditional
scientific applications, HPC centers generally expect many
small applications to accompany a few very large ones. In
this regard, the traffic and computational variations are much
more predictable since they are dictated by a few very large
well-known HPC applications. In contrast, the neuroscience
workloads contains a large variety of basic workflows, each
with its own variable behavior.

The neuroscience community builds each workflow in
several stages and chains several workflows together by
requiring the input of one to be generated by others. Both
stages as well as the dependencies between the workflows are
dynamic and can change from one run to the next depending
on each study’s requirements. Unlike traditional scientific
applications that are monolithic and tuned for giving the
best performance on HPC systems, neuroscience workflows
focus on productivity more than performance. Therefore,
HPC systems need to be able to deal with highly dynamic
workflows with unpredictable resource requirements.

4 Running unpredictable workloads on
HPC systems

As we have seen in the previous section, traditional com-
plexity analysis breaks down for neuroscience workflows and
there seems to be no general rule that can be leveraged to
model and predict their resource requirements. This poses
a grand challenge for the HPC runtime systems, which rely
on accurate estimations of an application’s resource usage
to make scheduling decisions. In this Section we try to
demonstrate this challenge. One possible way to resolve
this problem is to let the neuroscience community develop
optimization and profiling tools that allow these workflows
to adapt to the needs of current HPC systems. However,
this solution will be expensive, since typical neuroscience

Prepared using sagej.cls

7

(a) Functional QA and pre-processing (fMRIQA v2)

(b) Whole brain segmentation (Multi-Atlas)

(c) User-specific probabilistic tractography
(dtiQA v2)

Figure 4. Scatter plot of several runs for three functions and
their best fitting functions (n logn, constant, and n2 logn,
respectively), the blue dots represent different runs of the given
function with the corresponding execution times and input sizes,
and the red line represents the best fitting curve.

workflows are in constant change of development with
multiple modules implemented in different programming
and scripting languages. Any workflow-specific optimization
will inevitably involve ad-hoc strategies, and will be gener-
ally hard to debug and profile.

Instead of application-level optimizations, we consider
adapting the scheduling solution in the runtime system to
cope with the resource variability and unpredictability in
neuroscience workflows. To that end, we use simulation to
mimic the behavior of reservation-based batch scheduling,
which is widely used in runtime systems such as the ones in
ACCRE and other HPC centers. Additionally, we simulate
two simplified “on-the-fly” schedulers that do not make
reservations and instead schedule neuroscience workflows
dynamically as resources become available. The goal of

Figure 5. Number of functions and total I/O traffic per day for 7
months on the ACCRE system (system utilization is 84% on
average).

our simulation is to highlight the potential performance
improvements that can be achieved for these unpredictable
workloads instead of the performance bottleneck as is
currently imposed by the scheduling solutions.

In this section, we first describe how we generate
workloads that have behaviors close to neuroscience
workloads (Section 4.1). Then, in Section 4.2, we present
our implementation of the schedulers used for the study. We
describe different metrics for the evaluation in Section 4.3
before comparing the different schedulers using our synthetic
workloads in Section 4.4.

4.1 Synthetic workload generation
To better understand the performance of the current HPC
schedulers, we created synthetic workloads based on our
characterization of the neuroscience workflows presented in
Section 3.

First of all, we generate jobs that all require the same
number of computing nodes, which are equivalent to
generating sequential jobs each executed on a single node.
While this behavior is not typical for traditional HPC
applications, it is common for neuroscience workflows,
which tend to demand a fixed and small number of cores
(e.g., less than 100) for efficiency purpose. Additionally,
we extract the runtime behavior of these workflows by
constructing four execution time distribution patterns as
presented in Figure 6.

In the first pattern (Figure 6a), the execution time of the
workloads is normally distributed with an average of 8 hours
spanning from a few minutes up to 15 hours. The other three
patterns divide the jobs into two categories, small and large,
with the execution time of small jobs ranging from a few
minutes to one hour and that of large job ranging from 3 to 15
hours. The second pattern (Figure 6b) has an equal amount of
small and large jobs submitted over time in the system. The
third pattern (Figure 6c) has 80% of the jobs in the system
being large, while the forth pattern (Figure 6d) has 80% of
the total jobs being small.

While analyzing the execution logs from the ACCRE
cluster, we noticed that, on average, around 16% of the total
neuroscience workflows were underestimated, requesting
around 90% of their needed execution times (this number
is found in the logs after resubmission). For all the other
job submissions, workflows are typically overestimated,
requesting in average 20% more than the actual execution

Prepared using sagej.cls

8 Journal Title XX(X)

(a) Normal distribution with an average of 8hs

(b) Equal number of small and large jobs

(c) Workload with 80% large jobs

(d) Workload with 20% large jobs

Figure 6. Job size distributions for four types of simulated
workflows.

times. Let us define the estimation ratio (ER) to be

ER =
estimated execution time

actual execution time
(1)

To simulate the above trend on execution time estimation,
we created a random variable ER for estimation ratio that
follows a normal distribution. The mean ofER is µER = 1.2
and we chose a standard deviation so that 10-15% of the

(a) Mostly underestimated submissions
(ER = 0.3)

(b) Mostly accurate estimates (ER = 1)

(c) Mostly overestimated submissions (ER = 1.3)

Figure 7. Job size distributions (blue) and estimated execution
time distributions (green) for three values of the estimation ratio.

generated values are below 1. In practice, this corresponds
to a standard deviation σER = 0.2.

To understand the effects of overestimation and underes-
timation on job scheduling, we try different values for the
mean µER: from 0.5 to 1.7. For example, µER = 1 means
that most jobs will have an estimated time close to the actual
execution time. In this case, the number of submissions with
underestimated execution times will on average be equal to
the number of submissions that overestimate the execution
times (for normal distribution the median is equal to the
mean). In case of underestimation in the RBS scheme, almost
all jobs after the first resubmission will succeed since the
increased estimation will likely exceed the actual execution
time. On the other hand, small values for µER (e.g., 0.5) will
result in a high number of jobs being underestimated with a
requested time equal to 30% to 70% of the actual execution
time. In this case, most jobs might need to be resubmitted
more than once when scheduled by RBS in order to complete
successfully. In contrast, large values for µER (e.g., 1.5) intu-
itively lead to more jobs having overestimation in execution

Prepared using sagej.cls

9

time, thus completing on their first submissions. We show the
estimation execution time distribution in comparison to the
walltime distribution of our generated workloads in Figure 7.
Illustrated is the second workload pattern from Figure 6.

We construct workloads by using the four execution time
distribution patterns from Figure 6 with different estimated
times by changing the ER value as defined in Equation (1).

Job submissions follow the Poisson process with an inter-
arrival time that follows the exponential distribution with a
mean of a 8 minutes, as observed on the ACCRE cluster.

4.2 Simulated schedulers
We implement three schedulers: one reservation-based batch
scheduler (RBS) as currently used by many runtime systems
in HPC centers, and two “on-the-fly” schedulers that use the
shortest estimated job first (SEJF) and longest estimated job
first (LEJF) policies, respectively, coupled with imperfect
resource estimation. The following describes the principles
of these three schedulers in more detail.

First, the reservation-based scheduler RBS follows the
steps described in Section 2. It gives high priorities to
long jobs or jobs that have waited in the queue for more
than a threshold (e.g., every 20 minutes the priority is
increased) and uses backfilling algorithms to schedule short
jobs that have low priorities. Each job is required to have
a requested time provided by the user upon submission.
RBS uses the requested times to determine when computing
nodes will become available and schedules reservations
for the high-priority jobs (e.g., the first 100 jobs in the
queue based on their priorities). Specifically, for each high-
priority job, a time slot corresponding to its requested
time is reserved on the least-loaded node according to the
existing reservations and their respective requests. Small jobs
also receive reservations towards the end of the schedule
due to their low priority; they can also be scheduled
opportunistically in the gaps that are created by jobs that
finish sooner than their requested times. Any running job
whose actual execution time is higher than the requested
time will be killed by RBS and needs to be re-submitted by
the user with a larger request. A new schedule is triggered
whenever there are available resources in the system or when
a new job is submitted.

On the other hand, the two “on-the-fly” schedulers
do not create reservations. Instead, they schedule jobs
dynamically in an online manner as resources become
available. Specifically, all submitted jobs are first placed in
a queue with priorities determined by their requested times.
The SEJF policy assigns higher priority to short jobs and
the LEJF policy assigns higher priority to long jobs. Each
time a computing node becomes available, for example, due
to a job finishing or when the node completes maintenance
cycles, the job with the highest priority in the queue is
selected for execution on the node. Note that both SEJF
and LEJF only use the jobs’ requested times for assigning
priorities and for selecting the job to execute next, but not
for making resource reservations in the system, thus no
job will ever be killed. The two “on-the-fly” schedulers are
inspired by the SJF and LJF policies in online scheduling
with known job execution times (See Section 2.1), which
are known for optimizing the application-level performance
(e.g., job response time) and system-level performance (e.g.,

makespan or utilization), respectively. The difference here
is that the estimated/requested times of the jobs are used
instead of the actual execution times, which are unknown to
the schedulers beforehand.

We point out that the reservation-based scheduler is
designed with the principle to balance application-level and
system-level metrics. Thus, for traditional HPC applications,
its performance is expected to lie in between that offered by
SJF and LJF in terms of metrics, such as average response
time and utilization. For neuroscience workflows that have
highly variable and unpredictable resource requirements, the
reservation-based scheduler might show worse performance
for both application-level and system-level metrics compared
to the two “on-the-fly” scheduling schemes. Section 5
presents simulation results that compare the performance of
the three schedulers on neuroscience workloads.

4.3 Evaluation metrics

We will now formally define the metrics for evaluating
the performance of the schedulers. We first introduce some
notations with regard to the jobs and their schedules.
Consider an HPC system that has m identical computing
nodes. A set J = {J1, J2, . . . , Jn} of n jobs is submitted
to the system over time. Each job Jj ∈ J is characterized
by three parameters: the submission (or arrival) time sj ,
the requested processing time ej and its actual execution
time pj . For the reservation-based scheduler, if pj > ej , then
the job fails and needs to be resubmitted. For simplicity of
simulation, we assume that job resubmission is automated
and does not require human intervention. Once a job fails,
it is automatically placed in the waiting queue again with
a new larger requested time. The total running time of the
job in the system, denoted by tj , includes all the time the
job has run, including the failed and successful executions.
A job completes after the first successful execution with
a completion time of cj . For each job Jj , we define the
following metrics:

• Response time rj = cj − sj : the total time elapsed
between the job’s submission and completion;

• Stretch (or slowdown) dj = rj/pj : the ratio between
the response time and the actual processing time.

In particular, the stretch metric proportionately relates a job’s
total elapsed time in the system (due to actual execution,
waiting in the queue and failures) to its actual processing
demand, which better reflects the user’s psychological
expectation (i.e., user is willing to wait longer for larger
jobs). Therefore, stretch is often considered a fairer metric
compared to the simple response time metric and has been
favored by recent studies.

We simulate scheduling scenarios using different neuro-
science workloads generated in Section 3 to better under-
stand the performance of different scheduling schemes. For
this purpose, we monitor the performance metrics to char-
acterize the efficiency at both user level and system level.
From the users’ perspective, we consider the average stretch
of all jobs, and from the system’s perspective, we consider
the utilization of resources. Both metrics are defined below:

Prepared using sagej.cls

10 Journal Title XX(X)

Average job stretch: D =
1

n

∑
j

di (2)

System utilization: U =

∑
j pj

m(maxj cj −minj sj)
(3)

In the simulation, we make 10 runs for each scheduling
scenario by randomly generating jobs from the synthetic
probability distributions. We then report the average per-
formance metrics presented above for the three considered
schedulers.

4.4 Performance evaluation
In this section, we evaluate the performance of the
reservation-based scheduler (RBS) and the two “on-the-fly”
schedulers (SEJF, LEJF) (see Section 4.2) on neuroscience-
type of workloads with variable and unpredictable resource
requirements that we generated in Section 4.1.

As we have seen, for such workloads, the requested time
generally depends on domain knowledge. Without a robust
way of estimating their execution times, users typically
resort to ad-hoc methods that suite the particular application
domain. For instance, the Medical-image Analysis and
Statistical Interpretation (MASI) Lab† at Vanderbilt uses the
the average walltime of the last few runs of a neuroscience
workflow as its estimated time. If the submitted job has
a timeout failure, the estimated time is increased by 30-
50% from the previous request. Based on the execution log
we analyzed, this method causes more than 10% of all job
submissions to fail due to insufficient time request. From
the user’s perspective, choosing smaller estimated execution
times leads to higher probabilities of job failures while
choosing larger estimations likely incurs longer waiting
times and/or higher cost of using the resources.

Figure 8 presents the utilizations of the system for the
four workloads while varying µER from 0.5 to 1.7. All the
workloads contain a total of 800 functions and a simulation
time window between 24 and 48 hours depending on the
inter arrival time. First, we observe that the two “on-the-fly”
schedulers have similar performance with a small variation in
utilization as we change the values of µER. This is because
the estimated times are only used for ordering the jobs and
not for reservations, and they are generally proportional to
the actual execution times. The best system utilization (as
achieved by the LEJF scheduler) varies between 45% and
90% for the four workloads, depending on the execution time
distribution and the ratio between large and small jobs.

The RBS scheduler has a lower system utilization between
20% and 65%, due to a large number of incurred failures (up
to 1600) which are considered wasted time. As the estimated
execution time increases (higher µER values), the number of
failures reduces and more jobs finish successfully. However,
larger estimations create more gaps in reservations caused by
the difference between the overestimated time and the actual
time. These gaps represent wasted time as well, unless they
are filled by small jobs using the backfilling algorithm. For
each workload, there is a trade-off between the time wasted
due to failures and the time wasted due to the gaps caused by
overestimation and not having enough small jobs to backfill.
The highest utilization is reached when the total number of

failures falls between 50 and 200 (which represents 6% to
25% of total submitted jobs) for the workload containing
mostly large jobs (Figures 8a and 8c). After this point,
not enough small jobs are available to fill the gaps caused
by the overestimations. Workloads with many small jobs
(Figures 8b and 8d) do not show a decrease in utilization
even under high execution time overestimation (e.g., with
µER ≥ 1.5). Overall, in all cases, the typical HPC scheduler
(represented by the batch scheduler with an ER of 1.2)
shows a decrease in utilization of 35% for workloads with
a large number of small jobs and a decrease of 45% when
large jobs dominate the submission queue.

Figure 9 presents the average stretch of the jobs for
the four workloads while varying µER from 0.5 to 1.7.
Recall that the stretch of a job represents the ratio between
the job’s response time (including all failed runs) and its
actual execution time. We can see that the two “on-the-
fly” schedulers have an average stretch between 1 and 3,
suggesting that jobs complete within 3 times of their actual
execution time. Additionally, the two schedulers do not show
high variation in the average stretch for different µER values
since they do not incur any failures. In particular, the SEJF
scheduler, by favoring small jobs, tends to reduce the average
waiting time of the jobs, which translates to lower average
stretch, since the longer waiting times for the large jobs
are hidden by their high execution times. For LEJF, large
jobs are favored and small jobs are delayed from starting
their executions. Hence, the stretches for the small jobs will
increase substantially compared to the decrease in stretch for
the large jobs. This is visible in workloads dominated by
large jobs (Figures 9a and 9c), where there is a gap between
the performance of SEJF and LEJF.

The RBS scheduler can leverage backfilling to partially
hide the increase in waiting times for small jobs. However,
its performance is generally worse compared to that of the
“on-the-fly” schedulers. As the number of failures decreases,
the average completion time for all jobs decreases, resulting
in lower average stretch. If enough small jobs are available
to the backfilling algorithm, then larger values of µER will
result in lower waiting times for these smaller jobs. In this
case, Figure 9d shows that the performance of RBS can
come close to that achieved by the “on-the-fly” schedulers
as long as jobs request more time than needed and the
system has enough small jobs to fill in the gaps caused by
such overestimation. This trend will continue until the the
backfilling algorithm runs out of small jobs, at which point
the waiting time for the large jobs will begin to dominate the
average stretch. This behavior can be observed in three out of
the four workloads (Figures 9a, 9b and 9c), and we expect it
to hold for the last workload as well if we keep increasing the
estimation (µER). On average, the RBS scheduler increases
the average stretch by around 2x and the average waiting time
by around 3x compared to “on-the-fly” schedulers.

5 Towards robust HPC schedulers
Current HPC schedulers require a good understanding of
the resource needs of all applications in order to efficiently
use the computational power of large-scale machines. They

†https://my.vanderbilt.edu/masi/

Prepared using sagej.cls

https://my.vanderbilt.edu/masi/

11

(a) Uniform distribution with an average of 8hs (b) Equal number of small and large jobs

(c) Workload with 80% large jobs (d) Workload with 20% large jobs

Figure 8. System utilization of the three schedulers under different average estimation ratios (µER) for each of the four workloads.
The lines use the left axes and represent the utilization (as the ratio of total time spent in useful computing over total simulation time
on all nodes). The bars use the right axes and represent the number of job failures caused by resource underestimation under RBS.

are designed primarily for applications that run on many
computing nodes for long periods of time while sharing the
system with a few other small applications. In addition, HPC
schedulers assume applications are submitted with accurate
estimated processing times compared to the actual walltime
and that failure impact is minimized by checkpointing.

Neuroscience workflows show resource variability in all
aspects of their execution, in the amount of computation
time, of memory usage and of generated I/O. Their patterns
change throughout their lifetime and are heavily application-
dependent. In addition, their processing requirements are
relatively uniform, with most of the parallelism being in the
SPMD form. While each neuroscience workflow runs on a
small number of computing nodes, the same workflow can
be executed with very different input data (like the case of
Multi Atlas that runs with different fMRI images).

Our experiments presented in Section 4.4 show that the
current HPC scheduler reaches only up to 65% in system
utilization compared to “on-the-fly” schedulers and have an
average decrease of over 2 times in workflow stretch. In
addition, if these workflows would run together with other
scientific applications that generally use a large number
of nodes and have long execution times, the neuroscience
workflows will have even lower priority in the execution.

We next present two directions for adapting the current
batch schedulers to the needs of unpredictable workloads
such as the ones developed by the neuroscience community.
One direction looks at workflow-level analysis in order to

understand and contain their unpredictability and adapts
the current schedulers without dramatically changing the
paradigm. The second direction focuses on “on-the-fly”
schedulers and how they can be implemented to deliver high
performance to all types of workloads encountered by an
HPC system.

5.1 Workflow-level analysis
In order to understand the degree of variability and unpre-
dictability in performance within neuroscience workflows,
we manually inspect a widely used neuroscience workflow,
namely, Multi-Atlas (Wang and Yushkevich (2013); Asman
and Landman (2014)), a whole brain segmentation code.
Multi-Atlas is a well understood neuroscience workflow that
is used as a preprocessing step for many other workflows
(for example all functional connectivity analysis programs
require the annotated brain generated by Multi-Atlas as
an input). It is designed to automatically label objects of
interest in fMRI images based on expert-labeled images. The
technique uses multiple expert-segmented example images,
called atlases, to register them to a target image. The
deformed atlas segmentations obtained after the first step
are afterwards combined using label fusion. The whole brain
segmentation workflow used by the MASI lab uses a total
of 15 expert-labeled images for each Multi-Atlas instance.
These 15 images are chosen from a dataset of 45 existing
expert-labeled fMRI images based on similarity to the target

Prepared using sagej.cls

12 Journal Title XX(X)

(a) Uniform distribution with an average of 8hs (b) Equal number of small and large jobs

(c) Workload with 80% large jobs (d) Workload with 20% large jobs

Figure 9. Average job stretch of the three schedulers under different average estimation ratios (µER) for each of the four
workloads. The lines use the left axes and represent the average stretch (as the ratio of job response time over its actual execution
time). The bars use the right axes and represent the number of jobs failures caused by resource underestimation under RBS.

image. Errors produced by label transfer for each of the 15
chosen images are reduced by label fusion that combines the
results produced by all atlases into a consensus solution.

For each neuroscience workflow, two sources of variability
need to be investigated: ill conditioning and stability. Ill
conditioning characterizes the degree of variability caused
by the properties of the input data, while stability measures
the variability in execution time and resource consumption
intrinsic to the algorithm being used, independent of the
input data and parameters. In order to minimize the noise
caused by the hardware in an HPC system, we ran Multi-
Atlas on only one node using the same underlining hardware
and found that the stability of Multi-Atlas is very high
compared to the overall variability caused by different input
data, with the code dependent variability of less than 10%.
For the rest of the section, we will focus on analyzing the ill
conditioning propriety of the workflow.

We analyzed logs that contain information about different
Multi-Atlas runs on one node of the ACCRE cluster. After
filtering out the killed and failed jobs as well as execution
outliers, our database has 1011 instances of the Multi-Atlas
runs, with the start and end times for the four phases of
the workflow together with the list of the 15 atlases chosen
for each instance. Among the four phases, the registration
and fusion phases have the longest execution times in the
order of hours while the pre- and post-processing phases
run only for tens of minutes. There is some execution time
variability in the pre- and post-processing phases. However,

Figure 10. Correlation between the fusion and registration
phases of the Multi-Atlas workflow in relation to the total
execution time for each instance.

it is insignificant compared to the variation in the fusion
phase. The registration has much less variation compared
to the fusion phase and shows little correlation with the
total execution time of the workflow. Figure 10 shows the
walltimes of the registration and fusion phases in relation to
the total execution times for each of the 1011 Multi-Atlas
instances. The fusion phase can run for less than an hour to
tens of hours and shows a strong correlation with the total
execution time of Multi-Atlas.

Prepared using sagej.cls

13

Figure 11. Accuracy (percentage of corrected predicted
workflows over total number of workflows) for predicting ranges
of performance.

The fusion phase of Multi-Atlas assigns labels based
on the results given in the registration phase for each
atlas in an iterative process. As long as the labels have
changed compared to the previous loop, the algorithm uses
a weighted vote on the label of each segment based on each
atlas registration and adjust weight of each atlas based on
current labeling. We analyzed the choice of the 15 atlases
in connection to the walltime of each instance. Results
show that the choice is not correlated to performance (there
are instances that chose the same 15 atlases and show
drastically different walltimes). Each atlas is chosen based
on a similarity value to the target image given by the Pearson
correlation. This similarity value indicates how close the
target image is to the set of 15 altases used for registration.
When adding this information into the analysis, we were able
to predict ranges of performance with reasonable accuracy.
In particular, we divide the overall execution time range of
all Multi-Atlas instances into a number of smaller ranges.

The higher the Pearson correlation values between the
target image and the atlases (regardless of which 15 out of
the 45 are chosen), the better the performance of the fusion
phase. Using this relationship, we could predict good or bad
performance runs with good accuracy. Figure 11 shows the
prediction accuracy depending on the number of ranges used
(i.e., how narrow or wide the performance ranges are).

Despite the promise in the workflow-level analysis above,
it requires tremendous effort to understand the performance
bottlenecks. For Multi-Atlas, we used logs from over 1000
runs to extract behavior characteristics and several extra
runs to test our theories. Yet it is only one of commonly
used workflows with code that is relatively stable, straight-
forward and can be executed in a few hours. Other
neuroscience workflows that require days to run or that
are in constant development changes, as well as complex
workflows that use multiple modules (some implemented in
different programming languages) will be harder to analyze
and understand. Overall, workflow-level analysis is possible,
but continuous effort needs to be dedicated in order to keep
up with the fast pace changes in code development.

5.2 Hybrid schedulers for HPC
The results in the previous section show that “on-the-fly”
schedulers can achieve better performance when dealing
with neuroscience workflows due to the fact that these
schedulers do not require accurate estimates for the job

execution times. Neuroscience workflows generally use
the capabilities of an HPC system in the SPMD mode,
where each program runs on a small number of computing
nodes. The uniformity in the use of computing nodes
makes resource reservations unnecessary, thus allowing
“on-the-fly” schedulers to work better on workloads with
unpredictable resource requirements.

Reservation-based batch schedulers rely on backfilling to
hide the wasted time caused by overestimation and cause job
failures due to underestimation. Accurate estimates are the
cornerstone for high performance. In addition, backfilling
algorithms also require accuracy since they choose jobs
based on the provided estimates. The literature has shown
that the performance of backfilling algorithms is directly
related to how well the execution times of small jobs can
be estimated (Feitelson et al. (2005)).

Workflow-level analysis can be applied to contain the
unpredictability in resource requirements for neuroscience
workflows. Similarly to our analysis of Multi-Atlas,
performance ranges can be used instead of accurate estimates
to design new scheduling methods that can be integrated into
current batch schedulers. However, hard-wiring workflows
to optimize an application for a specific dataset and cluster
architecture is hindered by the shift in architecture design
for current HPC systems and will not serve a dynamic
community like neuroscience.

“On-the-fly” schedulers do not require accurate estimates
for the job processing times and can adapt to different
workloads as long as all jobs require a similar number of
computing nodes. While this requirement might seem strict,
many of the current HPC systems already follow this trend.
For example, out of the workloads that ran on the XSEDE
systems (Towns et al. (2014)) in 2017, over 20% represented
serial codes and more than half of the jobs ran on only one
node with a significant proportion of them running on 32 or
fewer processes/threads per node (Simakov et al. (2018)).

Commodity clusters are an alternative to traditional HPC
systems and can use “on-the-fly” approaches to schedule
tasks. These resource managers expect applications that can
easily be decomposed into fine-grained tasks that execute
for short periods of time. In addition, while MapReduce
frameworks do not require execution time estimates from
users, they do require resource usage (memory, storage,
communication) in order to offer good performance. The
resource requirements of neuroscience workflows change
throughout their execution and cannot be predicted in
advance. We believe MapReduce frameworks could be
adapted to include the stochastic nature of emerging
scientific workflows. The scheduling literature contains
studies that have analyzed the way mixed workloads
can be ran on HPC platforms (one such example is
done by Ayyalasomayajula and Maschhoff (2016)). All
these studies assume a mix of HPC and MapReduce
type of workloads. The study by Ayyalasomayajula and
Maschhoff (2016) used Mesos under which YARN is
run for MapReduce workloads and a modified version
of Slurm for Cray Graph Engine (CGE) that does real-
time analytics for large and complex graph problems.
Both frameworks are configured to interact with Mesos
for acquiring resources to launch their jobs, which allows
dynamic resource partitioning between the two. Slurm was

Prepared using sagej.cls

14 Journal Title XX(X)

(a) System utilization (b) Average workflow stretch

Figure 12. System utilization and average workflow stretch for a hybrid scheduler that combines “on-the-fly” scheduling and
reservation-based batch scheduling.

extended to permit leasing of resources on an as-needed basis
from Mesos controlled cloud computing cluster. The CGE
analytics workloads consist of multiple small tasks that can
be easily monitored and adjusted for performance either by
killing a task that is running longer than expected or allowing
space after the end of one task for a possible execution of
another that shares data. We expect large codes that execute
for hours and have a uniform resource consumption during
this time will not perform well on such systems.

Either adding a framework for neuroscience-like work-
loads into Mesos or isolating them and designing “on-the-
fly” schedulers that can be integrated into the current HPC
runtime system could lead to improvements in both system-
level and user-level performance metrics. For demostrative
purposes, we envision in this section a hybrid solution that
combines “on-the-fly” scheduling with reservation-based
batch scheduling. Specifically, the hybrid scheduler monitors
the resource requirements of jobs waiting in the queue and
switches between two modes depending on their charac-
teristics. If all jobs share similar processing characteristics,
then “on-the-fly” schedulers can be used. Otherwise, soft
reservations will be created while backfilling algorithms
will opportunistically schedule the heterogeneous workflows
whenever possible. These workflows need not guarantee
the accurate estimates of their execution times and will be
checkpointed if they run out of reservations. Indeed, check-
pointing solutions are generally used to alleviate the resource
wastage caused by underestimation. However, when using
simple batch schedulers, each time a job is killed it needs
to go through the waiting queue in order to be scheduled
again. In our hybrid solution, the runtime is responsible for
checkpointing and restarting a job as soon as possible. We
simulated this hybrid approach by running a synthetic work-
load of 300 jobs with the distribution from Figure 6a each
running on one node, with 30 large monolithic applications
running on 50% of the machine. We used either SEJF or
LEJF to implement the “on-the-fly” mode of the runtime
system. The results, which are presented in Figure 12, show
that our hybrid approach can improve both system utilization
and average stretch in most scenarios.

It is important to note that while this paper focuses
on neuroscience workflows, significant classes of non-
monolithic applications share the same characteristics. The

study by Weidner et al. (2016) looks at a range of
applications that are driven by adaptive algorithms that can
require different resources depending on their input data and
parameters. Specifically, they show how the execution time
of a Kalman-Filter application can differ by several hours
depending on the model’s initial conditions and how an AMR
simulation of a molecular cloud might require additional
compute time to increase the resolution in an area of interest.

Lastly, we point out that more sophisticated middleware
solutions might yield even better results if HPC sched-
ulers could be designed for workloads with variable and
unpredictable resource requirements. “On-the-fly” schedul-
ing offers an attractive paradigm that deserves further analy-
sis, possibly in combination with other flexible solutions. For
example, being able to schedule based on ranges of execution
times instead of a fixed estimate will allow workflows like
Multi-Atlas to achieve higher performance on HPC systems.

6 Conclusion
In this paper, we have analyzed an emerging type of
scientific workflows with highly variable and unpredictable
resource requirements using the field of neuroscience as an
example. By analyzing their execution time characteristics,
we have shown that reservation-based batch scheduling,
which is currently implemented in HPC systems, cannot
provide high performance, and that “on-the-fly” scheduling
offers promising results in both system-level and user-
level performance measures. We have illustrated how such
“on-the-fly” scheduling can be integrated into the runtime
solution in combination with reservation-based scheduling
to form hybrid schedulers to cope with the workload
heterogeneity for future HPC systems. In the future, we plan
to use our preliminary results to investigate more complex
scheduling methods that are adapted to the unpredictable
nature of these applications without posing a negative impact
on current large-scale scientific applications.

Acknowledgement
We thank the VUIIS Center for Computational Imaging for sharing
de-identified logs without patient or investigator identifiable data.
This research was supported in part by National Science Foundation
grant CCF1719674 and Vanderbilt Institutional Fund.

Prepared using sagej.cls

15

References

Asman AJ and Landman BA (2014) Hierarchical performance
estimation in the statistical label fusion framework. Medical
Image Analysis 18(7): 1070 – 1081.

Aupy G, Gainaru A, Honoré V, Raghavan P, Robert Y and Sun
H (2019) Reservation strategies for stochastic jobs. In: IEEE
International Parallel and Distributed Processing Symposium.

Ayyalasomayajula H and Maschhoff K (2016) Experiences running
mixed workloads on cray analytics platforms. Cray User Group
Conference .

Becchetti L and Leonardi S (2004) Nonclairvoyant scheduling to
minimize the total flow time on single and parallel machines.
Journal of the ACM 51(4): 517–539.

Brucker P (2001) Scheduling Algorithms. 3rd edition. Berlin,
Heidelberg: Springer-Verlag. ISBN 3540415106.

Bruno J, Downey P and Frederickson GN (1981) Sequencing tasks
with exponential service times to minimize the expected flow
time or makespan. Journal of the ACM 28(1): 100–113.

Capit N, Costa GD, Georgiou Y, Huard G, Martin C, Mounie G,
Neyron P and Richard O (2005) A batch scheduler with high
level components. In: CCGrid. pp. 776–783.

Chekuri C, Motwani R, Natarajan B and Stien C (1997)
Approximation techniques for average completion time
scheduling. In: SODA. New Orleans, LA, USA, pp. 609–618.

Conway R, Maxwell W and Miller L (1967) Theory of Scheduling.
Addison-Wesley.

Dean J and Ghemawat S (2008) MapReduce: Simplified data
processing on large clusters. Commun. ACM 51(1): 107–113.

Feitelson DG, Rudolph L and Schwiegelshohn U (2005) Parallel
job scheduling — a status report. In: JSSPP. pp. 1–16.

Garey MR and Johnson DS (1990) Computers and Intractability;
A Guide to the Theory of NP-Completeness. New York, NY,
USA: W. H. Freeman & Co. ISBN 0716710455.

Goel A and Indyk P (1999) Stochastic load balancing and related
problems. In: Proceedings of the 40th Annual Symposium on
Foundations of Computer Science, FOCS ’99. pp. 579–586.

Graham RL (1966) Bounds for certain multiprocessing anomalies.
Bell System Technical Journal 45(9): 1563–1581.

Harrigan RL, Yvernault BC, Boyd BD, Damon SM, Gibney KD,
Conrad BN, Phillips NS, Rogers BP, Gao Y and Landman BA
(2016) Vanderbilt university institute of imaging science center
for computational imaging XNAT: A multimodal data archive
and processing environment. NeuroImage 124: 1097 – 1101.

Hindman B, Konwinski A, Zaharia M, Ghodsi A, Joseph AD, Katz
R, Shenker S and Stoica I (2011) Mesos: A platform for fine-
grained resource sharing in the data center. In: Proceedings of
the 8th USENIX Conference on Networked Systems Design and
Implementation, NSDI’11. pp. 295–308.

Isard M, Budiu M, Yu Y, Birrell A and Fetterly D (2007) Dryad:
Distributed data-parallel programs from sequential building
blocks. In: Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems. pp. 59–72.

Kleinberg J, Rabani Y and Tardos E (1997) Allocating bandwidth
for bursty connections. In: STOC. pp. 664–673.

Lauzon CB, Asman AJ, Esparza ML, Burns SS, Fan Q, Gao Y,
Anderson AW, Davis N, Cutting LE and Landman BA (2013)
Simultaneous analysis and quality assurance for diffusion
tensor imaging. PLOS ONE 8(4): 1–15.

Möhring RH, Schulz AS and Uetz M (1999) Approximation in
stochastic scheduling: The power of LP-based priority policies.
Journal of the ACM 46(6): 924–942.

Motwani R, Phillips S and Torng E (1993) Non-clairvoyant
scheduling. In: SODA. Austin, TX, USA, pp. 422–431.

Mukherjee T, Tang Q, Ziesman C, Gupta SKS and Cayton P
(2007) Software architecture for dynamic thermal management
in datacenters. In: 2007 2nd International Conference on
Communication Systems Software and Middleware. pp. 1–11.

Niño Mora J (2009) Stochastic scheduling. Encyclopedia of
Optimization : 3818–3824.

Pinedo ML (2008) Scheduling: Theory, Algorithms, and Systems.
Third edition. Springer-Verlag New York, Inc.

Pruhs K, Torong E and Sgall J (2004) Online scheduling. In
handbook of scheduling: Algorithms, models, and performance
analysis, Chapter 15, CRC Press .

Samadi Y, Zbakh M and Tadonki C (2018) E-HEFT: Enhancement
heterogeneous earliest finish time algorithm for task scheduling
based on load balancing in cloud computing. 2018
International Conference on High Performance Computing
and Simulation (HPCS) : 601–609.

Shmoys DB, Wein J and Williamson DP (1991) Scheduling parallel
machines online. In: FOCS. San Juan, Puerto Rico, pp. 131–
140.

Simakov NA, White JP, DeLeon RL, Gallo SM, Jones MD, Palmer
JT, Plessinger BD and Furlani TR (2018) A workload analysis
of NSF’s innovative HPC resources using XDMoD. CoRR
abs/1801.04306.

Thusoo A, Sen Sarma J, Jain N, Shao Z, Chakka P, Zhang N,
Anthony S, Liu H and Murthy R (2010) Hive - a petabyte scale
data warehouse using hadoop. pp. 996–1005.

Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A,
Hazlewood V, Lathrop S, Lifka D, Peterson GD, Roskies R,
Scott JR and Wilkins-Diehr N (2014) XSEDE: Accelerating
scientific discovery. Computing in Science and Engineering
16(5): 62–74.

Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M,
Evans R, Graves T, Lowe J, Shah H, Seth S, Saha B, Curino
C, O’Malley O, Radia S, Reed B and Baldeschwieler E
(2013) Apache hadoop yarn: Yet another resource negotiator.
In: Proceedings of the 4th Annual Symposium on Cloud
Computing. pp. 5:1–5:16.

Wang H and Yushkevich P (2013) Multi-atlas segmentation with
joint label fusion and corrective learningan open source
implementation. Frontiers in Neuroinformatics 7: 27.

Weidner O, Atkinson M, Barker A and Filgueira Vicente R
(2016) Rethinking high performance computing platforms:
Challenges, opportunities and recommendations. In: Proceed-
ings of the ACM International Workshop on Data-Intensive
Distributed Computing. pp. 19–26.

Yoo AB, Jette MA and Grondona M (2003) Slurm: Simple linux
utility for resource management. In: JSSPP. pp. 44–60.

Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng
X, Rosen J, Venkataraman S, Franklin MJ, Ghodsi A, Gonzalez
J, Shenker S and Stoica I (2016) Apache spark: A unified
engine for big data processing. Commun. ACM 59(11): 56–65.

Prepared using sagej.cls

	1 Introduction
	2 Background and related work
	2.1 Theoretical work on HPC scheduling
	2.2 Current HPC scheduling in practice
	2.3 Scheduling challenges for unpredictable workflows

	3 Characterization of neuroscience workflows
	3.1 Variability in resource requirements
	3.2 Unpredictability of resource requirements
	3.3 Performance vs. productivity

	4 Running unpredictable workloads on HPC systems
	4.1 Synthetic workload generation
	4.2 Simulated schedulers
	4.3 Evaluation metrics
	4.4 Performance evaluation

	5 Towards robust HPC schedulers
	5.1 Workflow-level analysis
	5.2 Hybrid schedulers for HPC

	6 Conclusion

